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Abstract: Vehicle collision on bridges is an important issue for the transportation infrastructure management. This study explores the
significance of bridge monitoring and the benefits of employing machine learning (ML) techniques to detect and classify vehicle-deck
collisions on railway bridges. The ultimate goal is to transition from traditional bridge monitoring methods to a real-time monitoring
system based on a ML approach, aiming to improve efficiency and accuracy in detecting bridge issues. Multiple supervised ML
algorithms are evaluated to identify the most accurate model for collision detection and signal categorization. The selected ML model
employs a distributed approach, enhancing its adaptability and integration into a comprehensive monitoring system for diverse bridge
structures. The dataset comprises frequency, velocity, and displacement measurements collected over a one-year monitoring period from
three distinct railway bridges. Additionally, a controlled experiment was conducted to identify signal patterns associated with collisions
of different energy levels. The collected data underwent rigorous processing, including data cleaning, synchronization, pattern
identification, and statistical analysis, to extract relevant features. The proposed model achieved an accuracy of 100% in detecting
vehicle-deck collisions on railway bridges and demonstrated high accuracy in classifying other types of signals. The model provides
bridge managers with a valuable digital decision support tool that aids in evaluating bridge conditions, minimizing maintenance costs,
and ensuring train user safety. Furthermore, the developed approach aids in reducing disk storage and saving energy in embedded
systems, enhancing its practicality and sustainability in real-world applications.

Keywords: supervised machine learning, distributed machine learning, anomaly detection, structural health monitoring, vehicle-bridge
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1. Introduction

Railway bridges are exposed to various factors that can lead to
structural degradation and potential failure, including environmental
conditions, constant wear and tear, and unforeseen circumstances. If
not identified and addressed promptly, these issues can result in
malfunctioning, reduced structural integrity, and even catastrophic
failures, potentially causing significant loss of life and property
damage.

Railway bridges are particularly vulnerable to collisions with
road vehicles crossing beneath the bridge. These incidents can
occur when vehicles directly impact the bridge structure or carry
oversized cargo exceeding clearance height restrictions. Public
works machinery also poses a threat, as mobile elements like
buckets, mechanical shovels, and crane jibs may fail to retract to a
low position when passing under the bridge. These incidents
represented up to 50% of incidents recorded on bridges managed
by the French railway network administrator (SNCF-R) [1], over
the past decade. Moreover, more than 35% of the 300,000 railway
bridges across Europe are over 100 years old, and their reliability
directly impacts the reliability of the railway network [2].

Numerous collisions may go undetected, yet certain incidents can
have severe consequences, necessitating a temporary stoppage of
railway traffic for prompt maintenance to ensure user safety.

Recent catastrophic railway bridge failures underscore the
critical need for robust monitoring and maintenance practices.
These failures include the Kadalundi train disaster [3] of June 22,
2001, in India, caused by fatigue cracks in the steel
superstructure, resulting in the loss of 59 lives and injuries to up
to 300 people; the Valigonda rail disaster of 2005 [4], which
claimed the lives of 114 people and injured over 200; and the Big
Bayou Canot Bridge accident in 1993 [5], which resulted in the
tragic loss of 47 lives and 103 more were injured. These examples
highlight the imperative for vigilance and preventive measures to
ensure the safety and integrity of railway bridges.

Traditional bridge monitoring methods typically rely on
periodic visual inspections [6], which can be time-consuming,
expensive, and may miss subtle signs of damage (e.g., limited
accessibility and difficulty in identifying early signs of damage).
In recent years, the use of sensors attached to bridges has emerged
as a promising approach for continuous structural health
monitoring (SHM) of bridges [7, 8]. Machine learning (ML)
techniques, particularly anomaly detection, present a compelling
solution for addressing these challenges. Unlike traditional
methods, ML algorithms can analyze complex patterns and
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relationships within large datasets [9], enabling the detection of
subtle anomalies that may be overlooked by human inspection or
basic traditional approaches. Moreover, ML models can adapt and
learn from new data, improving performance over time and
enabling the detection of evolving or previously unseen
anomalies. While traditional methods may provide some level of
success, they often lack the robustness and predictive capability of
ML approaches. The integration of ML with bridge monitoring
offers significant advantages, including early detection of
structural problems, reduction of maintenance costs, and
improvement of safety measures. However, several factors make
the anomaly detection on railway bridges a challenging approach,
such as the uncertainty/variability of sensor measurements, the
varying complexity of bridge structures, and the availability of
labeled data for training/validation of models.

Several studies have investigated the application of ML
techniques for SHM. For instance, Ghiasi et al. [10] introduced a
KNN-based approach (K-Nearest Neighbors) for detecting
corrosion in steel railway bridges, achieving high accuracy in
classifying cross-section losses due to corrosion damages. They
utilized data from continuous wavelet transform scalograms and
Bayesian Modal Identification method. Another study by Ghiasi
et al. [11] employed a vibration-based deep learning approach
using convolutional neural networks for corrosion-induced cross-
section loss classification, showcasing close to 100% accuracy.
Moreover, Wang et al. [12] presented a method for anomaly
detection in high-speed railway track monitoring data, utilizing
robust sparse Bayesian learning and broad learning techniques.
This approach demonstrated advantages over traditional methods
in noise robustness, pattern identification flexibility, and real-time
monitoring efficiency, effectively detecting various damage types.
Another study by Lee et al. [13] introduced a Bayesian method
for monitoring abnormal structural responses induced by high-
speed trains, offering insights into dynamic amplifications through
probabilistic monitoring of time-history deflections. Chalouhi
et al. [14] proposed a model using artificial neural networks
(ANN) and Gaussian Processes for damage detection and
localization in railway bridges, showing good agreement with
previous studies and effectively detecting anomalous responses
during train passages. Abdu et al. [15] assessed railway bridge
pier settlement using ML algorithms, achieving high accuracy in
predicting settlement with ML models trained on train
acceleration response data. Akintunde et al. [16] introduced a
data-driven method for estimating strain at unmeasured locations
on operational railway bridges, demonstrating accurate strain
estimations with significantly lower error compared to traditional
model-based methods through k-means clustering and self-
organizing maps.

Inspired by the successes of these prior studies, the present
research explores the importance of bridge monitoring and explores
the advantages of ML techniques in detecting and characterizing
vehicle-deck collisions on railway bridges. While many studies
have investigated the use of ML for improving the monitoring
system of railway bridges, most have focused on the effects of
trains passing over the railway or cars passing above a bridge. This
study, in contrast, focuses on the detection and analysis of shocks
caused by high vehicles passing beneath the railway bridge. This
distinction is important because vehicle-deck collisions can have a
significant impact on the structural integrity of bridges, making
them a critical area of concern for bridge managers. The ultimate
goal is to develop a comprehensive monitoring system that
integrates the classification model directly into the sensor network
and operates as a real-time streaming system. The unique aspect of

this system is its ability to be applied to bridges of various
structures and dimensions. In this study, various supervised ML
algorithms are compared to identify the optimal model with the
highest accuracy for detecting vehicle-deck collisions on railway
bridges. The performance of these models will be evaluated based
on various metrics, including accuracy, precision, recall, and
F1-score. The models developed in this study employ several
features as input, such as frequency, velocity, and displacement
measurements. Unlike previous studies that primarily relied on raw
data [13, 14], the proposed approach uses only signal features (e.g.,
maximal Velocity and dominant frequency). This approach
minimizes disk storage requirements while preserving critical
information for analysis, marking a significant departure from
conventional methods. Furthermore, the used sensor leverages solar
energy for power, offering a sustainable and environmentally
friendly solution compared to energy-intensive sensors used in prior
studies. A large amount of data collected over a one-year
monitoring period from three different railway bridges is used in
this study. Additionally, a controlled experiment was performed on
a bridge to recognize the signals’ patterns associated with collisions
of varying energy, to ensure accurate classification and labeling of
the monitoring data to be used. Prior to applying statistical methods
to analyze potentially patterns and extract relevant features, the
obtained data is thoroughly cleaned and synchronized. The main
objective of the study is to classify different types of signals
generated by the sensors installed on the bridges and identify the
major impact shocks that may put the bridge in danger and require
immediate maintenance. Furthermore, this project aims to minimize
future maintenance costs by enabling proactive maintenance and
timely interventions based on the detected signals. The obtained
results can provide a digital decision support tool for bridge
managers, enabling them to effectively address the structural
condition of bridges.

This paper is divided into four sections. In the first section, the
context of the study is presented, then the instrumentation design and
implementation are detailed. The second section will cover data
preprocessing, including cleaning, synchronization, partitioning,
as well as signal pattern identification and data labeling. The third
section focuses on the development of multiple ML models and
compares the results to identify the most suitable one. The fourth
section analyzes and discusses the obtained results to finally
conclude with future research perspectives.

2. Materials and Methods

2.1. Instrumentation

The instruments used for monitoring the bridges are
accelerometer, displacement sensors, and photographic trap.

2.1.1. Accelerometer
A Micro-Electro-Mechanical Systems accelerometer type

OMNIDOTS® [17] was used for the measurement of the vibratory
wave signal generated by potential shocks. This choice was made
to align with the project’s objective of reducing disk storage and
energy consumption in embedded systems. The OMNIDOTS®

accelerometer prioritizes essential signal features, such as maximal
velocity and dominant frequency, over raw signals, thus
minimizing storage requirements and enhancing practicality and
sustainability in real-world applications. For each instrumented
bridge, this sensor was located midspan of the bridge deck’s
shoulder, as shown in Figure 1. The accelerometer records data in
three dimensions, with measurements in the vertical direction (up
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and down), perpendicular direction (left and right), and parallel
direction (along the length of the bridge). The accelerometer is
equipped with a continuous power supply and connected to a
visualization and alerting platform through a 3G/4G connection.
In real time, the device provides the dominant frequency and
particle velocity of the vibrations based on the user-defined
sampling interval, which can range from 2 to 6000 s. The device
was securely attached to a solid concrete support, while the power
supply battery was fixed near the sensor. The frequency domain
covered by the accelerometer ranges between 0.5 and 250 Hz and
the resolution of the accelerometer is 1 μm/s.

2.1.2. Displacement sensors
The standard Sisgeo® D313 sensor was selected for the

measurement of the bridge displacements. One displacement
sensor on each side was anchored between the deck abutment and
the shoulder of each instrumented bridge, as shown in Figure 1.
This sensor uses potentiometric technology and was chosen in this
study for (i) the reactivity of the measurement loop without signal
conditioning, (ii) its low voltage measurement (reduced power
consumption) in a wired configuration, (iii) its large 25 mm
amplitude, and (iv) its robust anti-corrosion construction with an
IP68 rating. For optimizing the energy consumption, the
acquisition time step of the displacement sensors was set up to
30 min. The displacement sensor was intended to complement the
accelerometer with measurement of the irreversible displacement
the bridges’ decks could undergo to enable spotting any
permanent changes in the bridge geometry that could indicate a
major impact shock.

2.1.3. Photographic trap
Due to restrictions associated with installing a video camera in a

public space, it was decided to install a camera-trapping device that
automatically takes a picture when a high vehicle passes by. This
device is powered by a rechargeable battery and solar energy, and
its storage disk can be accessed through a remote application. The
objective is to use this device to identify the type of vehicle or
object that impacted the structure after a collision, assess the
potential damage, and link this event to the measurements from
the sensors to help calibrate the alert thresholds. The camera traps

were positioned to focus on the sub-beam of the deck and do not
allow the identification of the vehicle’s registration plate.

2.2. Monitored bridges

A short list of regularly crashed bridges was extracted from the
SNCF-R database for each of which the main structural and
geometrical characteristics were accessible. These bridges were
selected based on specific criteria, that are (i) accessibility for
installation crews, (ii) relatively low height, (iii) heavy truck
traffic, (iv) active rail traffic, and (v) a remarkable accident history
(frequent collision events).

The study examined four instrumented rail bridges, which are
listed in Table 1 along with additional information showing the
diversity among selected bridges. One of the bridges, namely
Vignacourt (VCT), has been out of service for more than 25 years
and was selected in this study to perform a controlled collision
experiment to study the effects of shocks with varying energy on
the bridge structure. The remaining three bridges, namely
Villeneuve Le Roi (VLR), Saint Georges sur Loire (SGL), and
Trignac (TRC), were monitored for a one-year period, to provide
a dataset for training and validating the ML models.

2.2.1. Controlled shocks on VCT bridge
This bridge is composed of a steel deck made of twin beams

sustaining the railway tracks directly, and the deck is supported by
masonry abutments at each end of the bridge. The metal deck is
designed to be lightweight (almost 8 Mg including its equipment).
This lightweight construction makes the bridge vulnerable to
impacts or shocks. To protect the concrete of the shoulders, a thick
piece of wooden protection has been installed on the shoulder prior
to the experiment. The goal behind this preliminary experiment is
to study the signals that the bridge may encounter and assess the
impact of each provoked shock on the bridge’s structure. The test
involves simulating shocks of increasing energy on the bridge deck
using a suspended mass, which is given controlled movement
(i.e., varying pendulum angle θ) to generate the desired shock
conditions, as shown in Figure 2. Three types of masses were used
to analyze the impact the impact material rigidity, including soft
contact (a bag full of sand weighing 1.7 Mg), rigid point contact
(a demolition ball weighing 1.2 Mg), and large rigid contact
(a concrete mass cast in a metal container weighing 2.5 Mg).
Multiple shocks of varying energy were applied to the VCT bridge
using a lifting crane to hang each mass on d= 10 m long. All the
data were obtained by the accelerometer (A) and the displacement
sensors (S1 and S2) located on the bridge.

Figure 3 represents typical acceleration signals obtained with
the three different materials. Each mass provided a different signal
shape in terms of intensity and damping. However, after analyzing
all the signals, it was found that the acceleration toward the y
direction (the direction of the shock) was higher than the vertical
acceleration of the bridge (in the Z direction) and greater than the
velocity in the X direction.

On the other hand, the displacement of the bridge was measured
by the displacement sensors. Table 2 represents the displacement
registered by the two sensors after each shock. The displacement
of the steel deck caused by the impact of different materials
ranged from 0.19 to 1.24 mm, depending on the impacting
material. For instance, when comparing the impact of a 1.7 Mg
sandbag to a 1.2 Mg – metallic ball, the metallic ball was found
to have a more harmful effect on the bridge displacement, even
with an additional 0.5 Mg. It is important to note that certain
impacts can cause the bridge to move in the opposite direction

Figure 1
Schematic representation of the instrumentation and

implementation
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(reversible displacement) due to a strong rebound effect when the
shock is intense.

This experiment aimed to investigate the signals resulting from
collisions between various materials and a bridge deck, with the
objective of gaining a comprehensive understanding. The duration
of signal damping was observed to be rapid, occurring within 1–2 s
following the impact. Here, the term “damping duration” refers to
the time required for the signal to return to its normal state. The
acceleration in the Y direction exhibited the highest intensity or
sometimes approaching the velocity in the Z direction, depending
on the magnitude of the shock energy. Furthermore, it was
determined that a significant shock influenced the displacement of
the bridge by at least 0.19 mm. However, it should be noted that
the displacement may differ across bridges, as it is contingent upon
the specific structure of each individual bridge. This experiment
will serve as a valuable tool for classifying and labeling the signals
obtained from bridges in active service in the future.

2.2.2. Bridges in service for monitoring in real conditions
Saint George sur Loire (SGL)

The structure consists of a separate metal U-beam covered with
a concrete deck below each railroad track. These decks are protected
against collisions by independent heavy shoulders. Although these
shoulders are regularly hit, there are no significant signs of
displacement. To protect the concrete of the shoulders, a metal
angle protector has been installed. The abutments are made of

reinforced concrete face wall. In 2017, these decks were
structurally reinforced by joining additional plates to enhance their
dynamic behavior. Based on the site configuration and the
probability of impact assessment, only the north-side shoulder was
instrumented.

1) Villeneuve-le-Roi (VLR)

The structure of the deck is of the “coated girder” type and is
protected by independent heavy concrete shoulders. The
abutments are made of masonry. Several frequent incidents have
been noted due to the proximity of a waste storage site. Trucks
are sometimes loaded beyond the clearance height. The shoulders
were lined with metal angle iron, one of which on the west side
was destroyed. It is worth mentioning that there are four railway
tracks above the bridge.

2) Trignac (TRC)

The bridge has a coated beam deck under each railroad track
that is frequently hit due to the presence of a nearby concrete
plant and some other industrial sites. The deck is relatively heavy
and therefore not easily displaceable. Both sides of the bridge
(north and south) were instrumented, as the deck has shown signs
of repeated impacts in both directions of traffic.

2.3. Collected data

2.3.1. Accelerometer data
In this study, the acceleration data was not always accessible for

all the bridges due to some technical issues with the accelerometer. A
software configuration error in the data acquisition process led to a
three-month period of missing acceleration data at the beginning of
the instrumentation phase. Consequently, it was decided to withdraw
the use of acceleration data and instead focus on velocity data, which
serves the same purpose. In this study, the data from the TRC bridge
will not be considered due to the absence of any signals exceeding the
recording threshold, indicating that no major anomalies occurred on
this bridge.

Figures 4 and 5 display respectively the velocity and frequency
recordings in three directions:X (parallel to the track), Y (perpendicular
to the bridge, in the direction of the vehicle passing under the bridge),
and Z (vertical to the bridge), for VLR (left) and SGL (right) bridges.
The VLR data was collected over a year of monitoring, starting from
the day when the sensors were installed (April 4th, 2022 to March
29th, 2023). The bars in Figure 4 represent the absolute maximum
velocity detected by the accelerometer for each detected vibration
exceeding the threshold value (1 mm/s) in the three different
directions. The continuous time series for each observation could
be observed by clicking on the bar of each observation.
Additionally, the frequency data were obtained by applying a fast

Table 1
Information about the selected bridges

Name of
bridge In service Structure

Principle
material Length

Number of
railway tracks

Reconstruction
year

Clearance
below bridge

VCT No Twin beams Steel 5 m 2 Parior 1950 3.32 m
VLR Yes Pre-stressed concrete beams Composite

steel-concrete
12 m 4 1987 4.3 m

SGL Yes U-shaped beams reinforced with
a concrete shell

Steel 15 m 2 1991 4.3 m

TRC Yes Coated beam Composite
steel-concrete

11 m 2 1970 4.3 m

Figure 2
Schematic representation of the experiment performed on VCT

bridge
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Fourier transform to the velocity data. Figure 5 (left) represents the
dominant frequency in each direction for every detected signal. The
dominant frequency represents the frequency component that has
the highest magnitude or contributes the most to the overall
velocity signal. The dominant frequencies are found to be ranging
between 1 to 60 Hz in all directions. It’s important to mention that
the continuous time series velocity data will be used for the signal
and features analysis part, while only significant features of these
signals (consisting of the maximum velocity values and dominant
frequency values in the X, Y, and Z directions) will be used for the
model training section. After one year of monitoring the bridge,
100853 signals were recorded by the accelerometer (equivalent to
over 200 trains passing over the bridge each day). However, the
signals may vary in velocity intensity depending on factors such as
the mass and velocity of the train as well as the rail track it passes
on. Upon reviewing the maximal velocity values presented in
Figure 4, several outliers could easily be observed.

Moreover, the SGL data were collected over a year of monitoring,
starting from the daywhen the sensorswere installed (April 16th, 2022 to
March 29th, 2023). The behavior of SGL bridge was found to be similar
to that of the VLR bridge, as both have exposed an average velocity
ranging between 1 and 10 mm/s, under usual train passages. Besides,
the dominant frequencies range between 1 to 80 Hz in all directions.
While examining the velocities obtained by SGL bridge, at least one
clear outlier could be observed in all three directions. Overall, a total
of 27303 signals were recorded by the accelerometer, with at least
one or two outliers observed. However, these outliers may have been
caused by a sensor defect or other reasons that do not significantly
affect the bridge structure. Therefore, to validate the nature of these
outliers, further examination of the displacement sensor outputs is
required.

2.3.2. Displacement
Figure 6 (left) illustrates the displacement of VLR bridge

recorded by the two displacement sensors over one year of
monitoring. The figure displays several distinct displacements
ranging between 0.01 to 1.57 mm. Additionally, there were

instances where displacement was detected solely by one sensor,
depending on the direction of the vehicle’s passage. Certain
significant displacements occurred but were unobserved by the
accelerometer. For instance, on 31th October 2022, a clear
displacement was observed by the displacement sensor, while no
corresponding vibration was detected by the accelerometer at the
same time. This discrepancy could be attributed to a defect or
inaccurate estimation by one of the sensors.

Figure 6 (right) presents the displacement of SGL bridge. Several
minor displacements with a magnitude of less than 0.03 mm are
observed frequently (i.e., more than 3000 instances), and this is
believed to be produced by train passages. Additionally, the figure
also confirms the presence of an anomaly that was already identified
by the accelerometer on March 11th, 2022. This displacement, which
exceeded 1 mm and had a very high velocity value at the same time,
demonstrates the consistency between the two sensors.

Due to solar charging issues, the sensors were temporarily out of
service for a specific duration. For the VLR bridge, the sensors were
out of service from December 26th, 2022 to January 26th, 2023, as
depicted in Figure 6 (between the two vertical lines), where no
changes in bridge displacement were observed during this period.
Similarly, the sensors on the SGL bridge also experienced the
same issue and were out of service between January 15th, 2023
and March 15th, 2023. Due to the inaccessibility of data during
these periods, it will be excluded from consideration in this study.

3. Data Preprocessing

Data preprocessing focuses on the required tasks to prepare the
dataset for accurate analysis and modeling. In this section, key
aspects such as threshold determination for anomaly detection,
data cleaning, synchronization, signal pattern identification, data
labeling, statistical feature extraction, and data partitioning for
training and testing the ML model are addressed. These
preprocessing steps are essential for ensuring the quality,
reliability, and suitability of the data for subsequent analysis.

3.1. Threshold determination for anomaly
detection

Choosing an appropriate threshold value for anomaly detection
problems is a critical step in creating an effective model. In this
section, the significance of the threshold value in detecting and
categorizing signal types is discussed. The structures of the
studied bridges differ, and the behavior of each of them is unique;
thus, a single threshold value for all bridges may not be optimal
for detecting anomalies. Therefore, it is important to choose an

Figure 3
Acceleration of VCT bridge representing three different shocks with 3 different materials

Table 2
The displacement of VCT bridge caused by each shock

Material Sensor 1 (mm) Sensor 2 (mm)

Sand bag – 1.7 Mg 0.26 0.19
Metallic ball – 1.2 Mg 0.55 0.69
Concrete – 2.5 Mg 0.87 1.24
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appropriate specific threshold value for each bridge to ensure that the
model will be accurately capturing the anomalies depending on each
bridge’s behavior.

A statistical approach is employed to calculate threshold values
based on a representative sample of signals associated with normal
train passages. Considering VLR bridge, a reference sample of 200
train signals without shocks was manually selected. Based on this
reference sample, the threshold value for each direction was
determined by adding the standard deviation to the maximum
velocity observed in the reference sample for that direction. The
inclusion of the standard deviation in the threshold calculation is
motivated by the analysis of the data, which revealed that certain
subsequent normal train passages exhibited velocities slightly
higher than the maximum value obtained from the sample of 200
trains. Incorporating the standard deviation ensures that the
threshold accounts for potential variations and enables
differentiation between normal train passages and anomalies.
Hence, the threshold value in X direction is TZ= 1.9 mm/s and is
calculated as the maximum velocity observed in the X direction in

the reference sample plus the standard deviation. Similarly, TY= 2.9
mm/s and TZ= 9.1 mm/s denote the threshold values for the Y and
Z directions, respectively. A signal is classified as an anomaly
when it exceeds the predetermined threshold values in both the Y
and Z directions simultaneously (i.e., VY > TY and VZ > TZ). It is
important to note that certain anomalies may exhibit velocities in
the X direction below the threshold value (i.e., VX < TX). However,
the performed analyses revealed that, to identify an anomaly, it is
sufficient for the velocities in the Y and Z directions to surpass the
threshold values. The X direction velocity provides additional
contextual information but does not play a significant role in the
anomaly detection process.

Further analysis revealed that out of the total signals, only 65
signals exceeded the threshold values. Detailed examination
confirmed these signals as anomalies not associated with normal
train passages, which will be addressed in Section 3.3. The
effectiveness of the presented approach is demonstrated by its
ability to accurately differentiate between train passage signals
and anomalous signals, resulting in a satisfactory overall analysis

Figure 4
The absolute maximal velocity of VLR (left) and SGL (right) over one year of monitoring

Figure 5
The dominant frequency of VLR (left) and SGL (right) over one year of monitoring
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accuracy. The same procedure was applied to the dataset obtained
from the SGL bridge, where the threshold values were determined
as follows: TX= 2.05 mm/s, TY= 6.07 mm/s, and TZ= 7.22 mm/s.
Consequently, out of the total signals, only 8 signals exceeded the
threshold values in the Y and Z directions.

3.2. Cleaning and synchronization

Data cleaning is an essential step in ensuring the quality and
reliability of data collected from sensors installed on railway
bridges. This process involves identifying and removing missing
values or erroneous measurements that may arise during data
acquisition. In this study, data cleaning step was performed on all
data to eliminate any discrepancies that could potentially affect
the classification of vehicle-deck collisions.

As an initial step in the data cleaning process, signals exhibiting
a velocity less than 1mm/s are promptly excluded before undergoing
evaluation by the ML model. The determination of this threshold for
measurement retention draws upon the experiential insights of the
managing staff (SNCF-R). This criterion serves to eliminate noisy
and inconsequential data, ensuring the quality and relevance of
the retained dataset.

Section 2.3.2 of the article addressed the solar charging issues
encountered during the remote monitoring of the bridges. These
issues resulted in the displacement sensors going out of service,
leading to missing displacement data. Since the classification
decision in this study relies on data from both sensors, it is
necessary to neglect the accelerometer data obtained when the
displacement sensors were turned off. This ensures that only
reliable and synchronized data from both sensors are utilized for
the classification analysis.

Furthermore, the synchronization of the three sensors used was
conducted to validate the cause of the high-intensity signals. During
the synchronization process, it was observed that the accelerometer
and the displacement sensors were well synchronized in terms of
time. However, when examining the camera trap, numerous
photos were not captured at the exact moment of the detected
velocity vibration and displacement. This issue with the camera
trap was attributed to solar charging problems, which led to
dyssynchronization between the camera trap timer and the timer
of other sensors. Some of the high-intensity signals could be
validated by a camera trap, as illustrated in Figure 7. The figure
depicts an example where the collision between the vehicle and
the bridge was confirmed by all three sensors on July 15, 2022.

The left picture shows the truck that collided with the bridge,
while the middle figure displays the displacement of the bridge
after the collision, recorded as S1= 0.55 mm and S2= 0.25 mm.
On the right side of the figure, the vibratory signal representing
the velocity of the bridge caused by the shock can be observed,
exhibiting high intensities in all directions, surpassing the
threshold values presented in Section 3.1.

3.3. Signal patterns identification

Upon analyzing the acquired signals, our investigation revealed
three distinct categories: normal train passages, major impact
anomalies indicative of harmful vehicle/bridge collisions, and
unidentified anomalies.

3.3.1. Normal train passage
In Section 2.2.1, controlled shocks were conducted on the VCT

bridge using varying energy levels to observe the bridge’s response
and evaluate the structural effects. The analysis of the results
provided valuable insights into how detrimental shocks influence
the bridge displacement and velocity. This section focuses on
studying the signals generated by a train crossing the VLR bridge
and their impact on the displacement. To carry out this
investigation, the VLR bridge was closely monitored for 4 h by a
technical team to study the signals recorded as 40 trains were
crossing the bridge. Figure 8 shows the signals of trains passing
on different tracks. To ensure clear visualization and prioritize the
most important signal features during a train passage, only the
velocity in the Z direction is displayed. The analysis revealed that
the velocity ranged between 1 mm/s and 8 mm/s and the
displacement caused by a train did not exceed 0.03 mm. Peaks of
signals caused by a train were characterized by a short period (30
to 100 ms), distinguishing them from shock-induced signals
recorded during the controlled experiment on the VCT bridge
(Figure 3). The track on which the train passes does not
significantly affect the signal, as all signals from different tracks
exhibit similar characteristics. However, the range of maximum
velocity and the dominant frequency for a train passage may
differ for another bridge depending on the bridge structure.
Factors such as train mass, length, and speed may influence the
signal, although they do not significantly adjust its shape or
intensity. Instead, they can cause the sensor to detect the signal
for a longer period.

Figure 6
The bridge displacement of VLR (left) and SGL (right) bridges during one year of monitoring
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3.3.2. Anomaly categories
After conducting a thorough analysis of the obtained signals,

our study revealed the presence of two distinct types of
anomalies, namely Major Impact anomalies and Unidentified
anomalies.

1) Major Impact anomaly

These signals represent the velocity induced by a heavy or
harmful vehicle/bridge collision, impacting the bridge’s structural
integrity. Figure 9 illustrates an example of a major impact
anomaly that occurred on VLR bridge on August 10, 2022. The
period of these signals (140 to 200 ms) differs significantly from
normal train passages, and a notable displacement exceeding 0.1
mm is observed. Additionally, the velocity intensity is higher than
7.9 mm/s, which is the velocity threshold for train passages on
VLR. Furthermore, the velocity in Y direction is higher than in the
Z and X directions, which is consistent with the results provided
by the first approach (controlled shocks) presented in Section 2.2.1.

2) Unidentified anomaly

While monitoring the VLR bridge for four hours, an
unexplained signal with high intensity exceeding 11 mm/s was
detected, without any train passage or serious anomaly
(Figure 10). The cause of this signal could be attributed to
several factors surrounding the bridge, including environmental
conditions, nearby construction activities, or traffic. No
significant change in bridge displacement was registered during
these events. While examining the available data over one year
of the VLR bridge monitoring, this type of signal was detected
frequently with no apparent impact on the bridge displacement.
Thus, an additional category of signals must be considered to
account for what will be referred to as “Unidentified anomaly”
that does not affect the structure of the bridge. These signals
may be produced by an unusual train configuration, light vehicle
friction with the bridge, environmental conditions, or nearby
construction activities surrounding the bridge.

In conclusion, this systematic approach to signal pattern
identification involved closely monitoring the VLR bridge
and conducting controlled experiments to visualize the effects
of real shocks compared to train passages. This allowed us to
distinguish between train signals and anomaly signals (e.g.,
velocity and displacement thresholds, and signal periods),
leading to the discovery of a new pattern that does not belong
to either category as it has the pattern of an anomaly but does
not influence the bridge structure as a major shock.

3.4. Data labeling

The accelerometer and displacement sensors are essential
devices that provide valuable contextual information. Each bridge
has its unique characteristics, which can affect its behavior. In this
section, the data obtained by the accelerometer and displacement
sensor is used to distinguish 3 different types of signals.

After applying predetermined threshold values to the VLR and
SGL bridge dataset, the signals were classified into two categories:
train passages and anomalies. In the VLR dataset, out of a total of
100853 signals, 100788 were identified as train passages, while 65
signals were classified as anomalies. Similarly, in the SGL dataset,
out of 27303 signals, 27295 were identified as train passages, with
only 8 signals detected as anomalies. These results were validated
and demonstrate the effectiveness of the applied thresholds in
accurately distinguishing between normal train passages and
anomalies in both datasets. Afterward, the 65 anomaly signals
found in the VLR dataset underwent further analysis to classify
them as either major or unidentified anomaly. Despite the presence
of high amplitude signals from the accelerometer data (Figure 4), it
is difficult to determine whether a given signal indicates a major or
an unidentified anomaly. While some camera pictures were

Figure 7
A vehicle/ bridge collision validated by all three sensors installed on the VLR bridge. Trap camera (left), displacements (middle), and

velocity (right)

Figure 8
The signals in Z direction of four different trains passing on
different tracks (T1, T2, T3, and T4) above VLR bridge
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available, others were not found due to a lack of solar power and
temporal desynchronization, making them unreliable for identifying
the cause of the high amplitude signals.

Thus, to identify a major impact anomaly that influenced the
bridge structure, the displacement data is used and compared with

the accelerometer outputs. If both displacement and velocity of
bridge surpass the threshold values (i.e., the displacement
threshold value is considered as 0.1 mm), then the signal will be
considered a major impact anomaly; otherwise, it will be
considered an unidentified anomaly.

To enhance the reliability of distinguishing major and
unidentified anomalies, the threshold was judiciously chosen
based on experimental data gleaned from controlled shocks on the
VCT bridge. These controlled experiments simulated major
shocks, and the observed displacement during these controlled
shocks serves as a robust reference point. The chosen threshold of
0.1 mm reflects a conservative approach, ensuring safety by
considering that the minimum displacement caused by a major
shock during controlled experiments was observed to be 0.18 mm.
This safety margin accommodates potential variations and
uncertainties in real-world scenarios. Moreover, the threshold
selection aligns with engineering practices and standards,
encompassing a blend of empirical observations, expert judgment,
and safety considerations. This approach ensures that the model’s
classification decisions are not only robust but also prioritize
safety considerations.

The illustration of the labeling algorithm is presented in
Figure 11 and the labeling of all recorded signals by both bridges
is presented in Table 3. The results of the analysis indicated that
out of the 65 signals, 7 were identified as major anomalies, while
the remaining 58 signals were classified as unidentified anomalies.
The same analysis was also performed on the SGL dataset,
revealing that only one of the 8 anomalies represented a major
impact anomaly, whereas the remaining 7 anomalies were
classified as unidentified anomaly.

In the next section, multiple ML algorithms will be applied to
classify all the different types of signals. It is worth mentioning that
the velocity data were normalized for two reasons. The first reason is
that the same model is intended to be used for all bridges, and it
should then be able to detect and classify signals obtained from
any bridge, since the velocity of each bridge differs from the

Figure 9
Example of a major impact anomaly signal produced by a
vehicle/bridge collision on VLR bridge on August 10th, 2022

Figure 10
Unexpected signal detected while remoting the bridge during the

presence of our team beside the bridge

Figure 11
Illustration of labeling algorithm

Table 3
The label of all recorded signals by both bridges VLR and SGL

Bridge
Normal train

passage
Major impact
anomaly

Unidentified
anomaly

Villeneuve Le
Roi

100788 7 58

Saint George
sur Loire

27295 1 7

Total 128083 8 75
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others depending on its structure, train speed, and mass above it.
Therefore, the velocity data will be normalized by dividing the
maximum velocity of each signal by the corresponding threshold
value. Specifically, VX-Norm = VX/TY mm/s, VY–Norm = VY/TY mm/
s, and VZ-Norm = VZ/TZ mm/s.

3.5. Statistics and feature extraction

Before implementing a supervised model, it is essential to apply
feature selection algorithms to enhance the model’s accuracy and
efficiency. Furthermore, feature selection methods can offer
valuable insights into the significance of the features in the
dataset. Three feature selection methods, namely MRMR [18],
Chi2 [19], and Kruskal-Wallis [20], are applied to the 6 features
VX, VY, VZ, FX, FY, and FZ. The MRMR method assesses the
relevance and redundancy of each feature by calculating mutual
information between the feature and the target variable, as well as
between each feature and every other feature. It provides a
comprehensive evaluation of feature importance. The Chi2
method tests the independence between two variables and
determines whether they are statistically dependent or
independent. This method is particularly useful for categorical or
discrete variables. Lastly, the Kruskal-Wallis method tests whether
the distribution of a numerical variable significantly differs across
distinct groups, making it suitable for identifying features with
significant variations among different categories or groups. By
applying these feature selection methods, valuable insights can be
gained into the importance and relevance of the features, ensuring
that the selected features contribute meaningfully to the
subsequent classification analysis. The results obtained by the
three methods are presented in Figure 12.

After analyzing the results, the following observations were
reported:

Regarding MRMR, VY exhibited the highest MRMR score,
indicating its significance as the most informative feature for
discriminating between the target variable classes. VX and VZ

also demonstrated high MRMR scores, indicating that they are
also informative features for discriminating between the classes.
For Chi2, VX and FX were found with the highest scores,
indicating a strong association with the target variable.
Additionally, VY, VZ, and FY exhibited noteworthy scores,
suggesting their informative characteristics for the classification
process. In the case of Kruskal-Wallis, VX and FX obtained the
highest scores, implying significant differences in their
distributions across the target variable groups. VY, VZ, and FY

also received high Kruskal-Wallis scores, further highlighting

the dissimilar distributions among the groups. Overall, the
results from the three feature selection methods provide different
perspectives on the importance of the features. Kruskal-Wallis
and Chi2 suggest that VX and FX are strongly associated with the
target variable, while VY and FY have distributions that differ
significantly across the groups. MRMR suggests that VY is the
most informative feature for discriminating between the groups,
followed by VX and VZ. It is worth noting that FZ demonstrated
negligible importance based on the scores obtained from all
three algorithms. Based on these comprehensive results, it would
be reasonable to retain only five features for training the
classification model, excluding FZ from consideration.

3.6. Data partitioning (Training/Testing)

As mentioned previously, to create a model that can be
generalized to any bridge, all the velocity data should be
normalized using the threshold values calculated in Section 3.1.
This allows to account for differences in the structure of each
bridge and ensures that the model is not biased toward a specific
bridge. After normalizing all the velocity data, 75% of the data
obtained by both bridges (VLR and SGL) will be trained in order
to create the model that detect and categorize the type of each
tested signal from the remaining 25% data. It is worth mentioning
that the data partitioning was performed in a random manner and
repeated multiple times to ensure robustness of the models. This
means that the models were trained using various forms of data
partitioning, ensuring the presence of sufficient data representing
both unidentified and major anomalies throughout the testing
process. Therefore, this study will present one of the examples
that reviews the most crucial aspects to be discussed and
summarizes the various possibilities that may be encountered.

4. Model Development

The performances of the ML methods were investigated using
the parameters accuracy, precision, recall, and F1-score, which are
determined from the confusion matrix. In this study, the signals
provided by the bridge are being attempted to be classified, thus
the problem is regarded as a supervised classification problem.
The four algorithms that are employed in this study are:

1) Random Forest (RF): RF [21] is an ensemble learning method
that constructs multiple decision trees during training and
combines their predictions through a voting mechanism to
determine the final classification. It is highly effective for

Figure 12
Feature importance scores using MRMR, Chi2, and Kruskal-Wallis algorithm
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classification tasks due to its ability to handle high-dimensional
data and its robustness to overfitting.

2) K-nearest neighbors (KNN): KNN [22] is a non-parametric
method used for classification by determining the majority
class of its k nearest neighbors in the feature space. It is
particularly suitable for classification tasks where the decision
boundaries are complex or non-linear.

3) Artificial Neural Network (ANN):ANN [23] is a computational
model inspired by biological neural networks, capable of learning
complex patterns in data. It is well-suited for classification
problems, especially when dealing with large datasets and non-
linear relationships between features.

4) Support Vector Machine (SVM): SVM [24] is a powerful
supervised learning algorithm for classification tasks. It
constructs hyperplanes in a high-dimensional feature space to
separate classes with maximum margin. SVM is effective for
classification tasks with complex decision boundaries and is
known for its versatility in handling various types of data.

The performance of these algorithms is evaluated for
classifying the three categories: normal train passage (A),
unidentified anomaly (B), and major impact anomaly (C).
Figure 13 displays the confusion matrices for RF, KNN, ANN,
and SVM models, from left to right. It is worth noting that all
the algorithms underwent hyperparameter optimization to
maximize their performance to achieve the best possible results.

The optimal hyperparameters for the RF model were
determined through a systematic hyperparameter tuning process.
A grid search technique was employed to explore different
combinations of hyperparameters, including the number of
learners (representing the number of decision trees in the forest
ensemble) and the maximum number of splits. After evaluating
the performance of various hyperparameter configurations using
cross-validation, the optimal settings were identified as 295
learners and a maximum number of splits set at 4561. This

model exhibited a high level of accuracy, achieving a true
positive rate of 100% for class A instances and 88.88% for class
B instances, with a perfect classification rate of 100% for class C.

Similarly, the KNN hyperparameter tuning process was
configured to employ 1 neighbor and the Euclidean distance
metric. This optimized configuration resulted in a high accuracy
across all classes, with the model achieving a true positive rate of
100% for class A, 83.33% for class B, and 100% for class C.

For the ANNmodel, the hyperparameter tuning process identified
the optimal configuration, which includes two hidden layers. The first
hidden layer comprises 286 nodes, while the second layer comprises 61
nodes, both employing a sigmoid activation function. Stochastic
Gradient Descent was utilized to optimize the learning parameters
(weights and biases) of the ANN model, ensuring efficient
convergence and improved performance in classifying the data
accurately. This model achieved a true positive rate of 99.99% for
class A, 83.33% for class B, and 50% for class C.

For the SVMmodel, the hyperparameters were tuned using a grid
search method. The tuning process identified the optimal
configuration, which consisted of a Quadratic kernel function, the
one-vs-one multiclass method, a box constraint level of 300, and a
kernel scale of 5. The SVM model achieved a true positive rate of
99.99% for class A, 77.78% for class B, but did not identify any
instances of class C, resulting in a true positive rate of 0% for that class.

Table 4 summarizes the results obtained by the tested data using the
supervised ML methods. It shows that all the algorithms gave excellent
results with an accuracy= 99.99%. However, RF was found with the
highest precision= 99.997%, and highest recall= 99.994%, and
F1-score= 99.995% compared to all other algorithms.

5. Results and Discussion

Based on the results provided in the previous section, each of
the four models performs well in classifying the data under
different impact scenarios. However, each model has its strengths

Figure 13
Confusion matrices obtained using the tested data for RF, KNN, ANN, and SVM models, from left to right

Table 4
Classification report for the supervised machine learning methods

Method Accuracy (%) Precision (%) Recall (%) F1-score (%)

Random forest 99.993 99.997 99.994 99.995
Kth nearest neighbor 99.990 99.986 99.990 99.988
Artificial neural network 99.977 99.979 99.977 99.978
Support vector machine 99.971 99.980 99.971 99.975
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and weaknesses, and the choice of the best model depends on the
bridge manager’s specific target.

For the “Normal Train Passage” scenario, all models achieved
high true positive rates, with the RFmodel exhibiting a rate of 100%,
closely followed by KNN (100%). However, ANN and SVM failed
to identify one instance of class A, resulting in a true positive rate
of 99.99%.

When it comes to classifying “Unidentified Anomaly,” the RF
model demonstrated the highest true positive rate of 88.89%,
indicating its effectiveness in accurately identifying these
instances. Both KNN and ANN models achieved a true positive
rate of 83.33% for class B, showing comparable performance.
However, the SVM model exhibited a slightly lower true positive
rate of 77.78% for class B, suggesting some challenges in
accurately distinguishing unidentified anomaly. These results
emphasize the superior performance of the RF model in correctly
classifying unidentified anomaly, followed closely by KNN and
ANN models.

Regarding the “Major Impact Anomaly” (class C), the RF and
KNN models achieved a perfect true positive rate of 100%,
indicating their effectiveness in accurately identifying instances of
this class. The ANN model exhibited a true positive rate of 50%
for class C, suggesting challenges in accurately distinguishing
major impact anomalies. On the other hand, the SVM model had
a true positive rate of 0% for class C, indicating that it did not
correctly predict any instances of this class. These findings
highlight the superior performance of the RF and KNN models in
identifying major impact anomalies, while the ANN model
showed some limitations in this specific scenario.

Based on the analysis performed on the confusion matrices, it
was evident that all the models misclassified two unidentified
anomaly instances as major impact anomaly. Further investigation
into these specific instances revealed that all the models identified
the same two signals. This prompted a closer examination of these
ambiguous cases. Figure 14 illustrates the two signals detected on
October 18 2022, and November 30 2022, both occurring on the
VLR bridge, which were predicted as major impact shocks by all
the models. Notably, both signals exhibited high intensities
exceeding 40 mm/s in the Z direction and 25 mm/s in the Y
direction. This observation clarifies why the models predicted
these two signals as major impact shocks.

In this study, the major impact anomalies were labeled based on
the displacement values that exceeded 0.1 mm following an
anomaly. Upon analyzing the displacement induced by these two
occasions, it was found that the displacement values for the signal

on 18th October were S1 = 0.03 mm and S2 = 0 mm, whereas for
the signal on 30th November, the values were S1 = 0.03 mm and
S2 = 0.01 mm. As mentioned earlier, the displacement sensor
recorded data at 30-minute intervals. Therefore, there may be
some instances where the bridge rebounded to its initial position,
resulting in displacement values that did not fully reflect the
instantaneous impact on the bridge. These two examples seem to
demonstrate such cases and should be considered as major impact
anomalies as proposed by the models.

Furthermore, upon examining the confusion matrices generated
by KNN, ANN, and SVM, it was noticed that all three models
misclassified an unidentified as a normal train passage. A more
detailed investigation into this particular signal revealed that the
models consistently misclassified the same signal, which occurred
on March 27, 2023, at the SGL bridge. Figure 15 presents this
velocity signal, which was incorrectly classified as a normal train
passage by the models. Based on the signal pattern identification
criteria discussed in Section 3.3, it is evident that this signal does
not correspond to a normal train passage. The models KNN,
ANN, and SVM misclassified the signal due to the presence of a
low maximal velocity in the X direction, VX= 1.04 mm/s, leading
the models to mistakenly classify it as a train passage signal. This
example reinforces the choice made to neglect the velocity in the
X direction while labeling the data in Section 3.4.

Figure 14
The signals predicted as major impact anomalies: October 18th, 2022 (left) and November 30th, 2022 (right)

Figure 15
The misclassified signal of March 27th, 2023 at the SGL bridge
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Moreover, a particular signal that was already labeled as a train
passage (based on the threshold calculation discussed in Section 3.1)
was misclassified by ANN and SVM models as an unidentified
anomaly. Figure 16 presents the velocity signal from April 21, 2022,
at the VLR bridge, which was incorrectly classified as a normal train
passage by ANN and SVM. However, based on the signal pattern
identification Section 3.3, it is evident that this signal does not
correspond to a normal train passage. This discrepancy raises
concerns regarding the performance of the ANN and SVM models
and contradicts the results obtained by applying the calculated
threshold. To further understand the reason behind the
misclassification, it is important to analyze the maximum velocity
values of this signal in the Y and Z directions. These values need to
exceed the thresholds TY and TZ, respectively, to classify a signal as
an anomaly. However, the maximum velocity in the Z direction was
found to be 8.99 mm/s, which is below the threshold value of TZ =
9.1 mm/s. Consequently, since the maximum value in the Z direction
fell below the threshold, this signal was classified as a train passage.
This misclassification highlights the importance of carefully choosing
the threshold value in anomaly detection. The threshold serves as a
crucial parameter in distinguishing between normal train passages
and anomalies. In this case, even a slight deviation of 0.11 mm/s
from the threshold value resulted in an incorrect classification.

Therefore, it is imperative to consider the unique characteristics of
the signals and set an appropriate threshold that accounts for possible
variations in the data. This ensures the accuracy and reliability of the
anomaly detection process. Based on the obtained results, the RF
model demonstrated superior accuracy compared to the other three
models. Notably, only the RF model was capable of correctly
identifying the signal detected from the SGL bridge on March 27th as
an anomaly. Moreover, the RF model exhibited the highest precision,
accuracy, recall, and F1-score among all the models evaluated.

However, it is important to note that some instances were
misclassified by the models. Specifically, the signals from October
18, 2022 to November 30, 2022 were labeled as a major impact
anomaly by all the models, despite their initial classification as an
unidentified anomaly. On the other hand, the displacement sensors
revealed a 0.5 mm and 0.4 mm displacement for both events,
respectively, which is less than the chosen threshold value (0.1
mm). This finding emphasizes the limitations of relying solely on
displacement measurements for precise anomaly classification.

As mentioned previously, the careful selection of the threshold
ensures that the model’s classification decisions are not only robust

but also prioritize safety considerations. Therefore, for safety
reasons, the final model is trained considering the two
misclassified signals as major impact shocks. This precautionary
approach reflects the importance of prioritizing safety in anomaly
detection, even if it means classifying certain signals
conservatively to avoid potential risks or oversights. Additional
factors or features, beyond displacement, may need to be
considered to improve the accuracy and reliability of anomaly
classification in such cases.

6. Conclusion

This study represents a pioneering effort in the development of a
ML-based monitoring system specifically designed to detect and
classify vehicle/deck collisions on railway bridges. Unlike
previous research that predominantly focused on the effects of
trains passing over bridges, our work is the first to address the
critical issue of collisions beneath the bridge structure. The
proposed approach achieves an accuracy of 100% in detecting
vehicle-deck collisions and has the potential to significantly
improve the safety and reliability of railway bridges by providing
early warning of potential collisions and allowing for proactive
maintenance and timely interventions to address structural
damage. Moreover, the development of a real-time monitoring
system using the proposed approach can enhance the efficiency
and effectiveness of bridge management practices, while reducing
disk storage requirements and energy consumption.

The main objective of this study was to develop a generalized
model applicable to various bridge structures and dimensions,
surpassing the limitations of previous studies that focused on
specific bridges. To achieve this aim, extensive data
preprocessing was conducted as a crucial step before training the
classification model. Challenges associated with selecting
appropriate threshold values for accurate data labeling were
effectively addressed. The cleaning and synchronization
processes successfully tackled missing data and asynchronization
issues observed among the sensors. Additionally, three feature
selection methods were employed to establish the significance of
features in the dataset, revealing that FZ demonstrated negligible
importance, and thus, it was excluded from consideration. Signal
pattern identification was conducted through two experimental
approaches aimed at distinguishing between train passage signals
and anomalies. These approaches involved monitoring the bridge
during train passages in the presence of the technical team, as
well as simulating controlled shocks on an out-of-service bridge
using a suspended mass.

Following the data preprocessing stage, several supervised ML
algorithms, namely KNN, SVM, RF, and ANNs, were trained and
compared in order to identify the model with the highest accuracy
for detecting vehicle-deck collisions in railway bridges and assess
their influence of the structure. The RF model demonstrated the
highest accuracy in classifying the signals obtained from the
bridges. This model successfully categorized all tested signals,
showcasing its effectiveness in identifying significant anomalies
that could influence the structural integrity of the bridge.
However, it occasionally misclassified unidentified anomalies as
major ones, highlighting the need for further improvement,
particularly in refining the determination of threshold values for
both velocities and displacements.

The developed model presents valuable implications for bridge
managers, as it provides a reliable tool for classifying signals
obtained from accelerometers installed on any bridge structure. This
enables bridge managers to make informed decisions regarding

Figure 16
The velocity signal from April 21th, 2022, at the VLR bridge
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necessarymaintenance and protectivemeasures, whichwill eventually
minimize the futuremaintenance costs. Notably, themodel is currently
undergoing integration into the sensor manufactured by Sisgeo
company, representing a significant milestone toward practical
implementation in monitoring systems.

Looking ahead, future studies should consider exploring
unsupervised ML as they offer the potential to reveal latent patterns,
which may help understand unidentified signals by revealing
underlying patterns or similarities within the data. Additionally,
introducing additional features extracted from the frequency power
spectrum, such as signal energy, can be essential for enhancing the
model. These features can capture valuable information about the
distribution and intensity of the signals, contributing to a more
comprehensive and accurate classification. Finally, the created system
could be extended to encompass other types of bridge structures that
are vulnerable to shocks. This may provide further insights to
enhance the overall accuracy and generalizability of the system.

Overall, this study presents a significant contribution to the field
of railway bridge monitoring. The proposed approach has the
potential to significantly improve the safety and reliability of
railway bridges by providing early detection of potential collisions
and enabling proactive maintenance interventions. Additionally,
the developed approach aids in reducing disk storage and saving
energy in embedded systems.
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