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Abstract: Enemy items refer to any two items that should not appear on the same test form. Accurately identifying enemy pairs is critical for
ensuring the quality and fairness of exams, but it can also be challenging and time-consuming given the large number of possible item pairs in the
exam item bank. Various enemy identification approaches have been explored to automate or semi-automate this task. In this process, the critical
component is the encoding technique. The better the encoding technique captures the meaning of the sentences, the more accurate the similarity
index and enemy classification results will be. This study focuses on evaluating the performance of a transformer-based model against the results
from a string-based vector-spacemodel (VSM) encoding technique under different research conditions formultiple-choice andmultiple-response
items used in a foundational information technology (IT) certification exam. The results suggest that when using sufficient representative training
data and conducting fine-tuning, the transformer-based model significantly outperforms the VSM for enemy identification.
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1. Introduction

Enemy items refer to any two items that should not appear on
the same test form [1]. Such items either measure similar content and
are duplicative in nature [2], or one item provides information that
could hint at the answer to another (cueing) [3]. Presenting enemy
items on the same exam form can compromise measurement
precision and jeopardize test validity. For testing programs with a
large item bank, enemy identification becomes an ever-growing
challenge for exam developers: every newly developed item must
be compared against all existing items in the bank. Consequently,
the number of item pairs requiring review increases exponentially,
making manual review unfeasible.

Several methods have been proposed to identify enemy items and
maintain the fairness and quality of exams. The process typically begins
with an encoding technique to convert text items into a numerical
format. This conversion is critical as it enables the calculation of
similarity indices, which provide the basis for identifying enemy item
pairs. Once the similarity indices have been computed, they can be
utilized by either a machine learning (ML) algorithm or an arbitrary
cutoff value to identify enemy item pairs. The use of ML algorithms
is becoming increasingly popular due to their ability to account for
complex relationships between item features. Finally, content experts
review the flagged pairs to confirm their enemy status.

This study aims to evaluate and compare encoding techniques
used for ML-based enemy identification of item pairs from a
foundational IT certification exam item bank. It contrasts the
traditional string-based vector-space model (VSM) with state-of-
the-art transformer models.

2. Literature Review

Text similarity is an important natural language processing
(NLP) technique [4, 5] that enables machines to search through text
corpora and identify relevant documents or passages [6]. Various
numerical computations have been compared [7], and the accuracy
of these indices heavily depends on the effectiveness of converting
text to numbers. There are three main categories of encoding
techniques used in NLP: string-based, knowledge-based, and
corpus-based. Among these, corpus-based word embedding has
emerged as the most popular and effective technique. This method
represents each word in a text as a high-dimensional vector of
numbers. Several methods have been proposed to generate word
embeddings, including latent semantic analysis (LSA) [8], latent
Dirichlet allocation (LDA) [9], Global Vectors for Word
Representation (GloVe) [10], and Word2Vec [11]. More recently,
transformer-based models [12] have revolutionized NLP research.

Transformer models such as BERT [13] and GPT [14] use a
self-attention mechanism to encode the meaning of sentences or
documents. Unlike other methods, transformer models can capture
the context and dependencies among words in their embeddings,
enabling more accurate and nuanced word representations that
consider the full context in which a word appears.

However, for sentence similarity tasks, models developed
particularly for this purpose, such as sentence transformer models
[15], are preferable. These models modify the existing transformer
network to derive semantically meaningful sentence embeddings,
making them more effective for tasks like sentence similarity and
semantic search. In contrast, general-purpose transformer models
like BERT or RoBERTa may not be as effective for these tasks
without additional fine-tuning [15].*Corresponding author: Huijuan Meng, Psychometrics and Data Science,
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Despite the effectiveness of transformer-based text
representation approaches, these methods have not been widely
adopted in the field of educational measurement for enemy
identification/classification research. Specifically, Fu and Han [16]
conducted a study comparing the performance of 11 different text
similarity indices for enemy pair classification, finding that cosine
similarity obtained under the string-based VSM and the corpus-
based LSA produced the best results for moderate corpus sizes
(about 1,000 items/passages) with short to median document
lengths (30–150 words per item/passage). Weir [1] improved
classification accuracy and sensitivity in flagging enemy pairs by
adding item bank metadata and subject matter experts’ (SMEs)
input to an LDA approach combined with ML classification
techniques. Mao et al. [17] examined the effectiveness of using a
string-based VSM-cosine similarity index (CSI) to flag enemy
items in a medical licensure exam item bank. Peng [18] compared
VSM, LDA, and LSA encoding techniques for enemy classification
and found that VSM and LSA outperformed the LDA model.
Finally, Becker and Kao [19] systematically conducted enemy
identification across five item banks from different testing
programs, computing several VSM-cosine similarities for the full
item, question only, key only, question plus key, and non-key
options. These CSI values, along with content area information,
were used as predictors in a linear regression model to predict
enemy relationships. Their work suggested that some cumulative
distribution of item pairs across similarity categories can be helpful
for determining a threshold for selecting item pairs for SMEs’ review.

A common theme observed in these recent enemy identification
studies is the exhaustive checking of all items in the bank/corpus,
leading to the creation of thousands to millions of unique item pairs.
These pairs have highly unbalanced distributions between enemy and
non-enemy groups. All studies used bank enemy information for
evaluating classification results, and SMEs reviewed some pairs and
provided feedback, except for Fu and Han’s [16] study.

Previous studies have made significant contributions to the field
of automated enemy identification by shedding light on factors that
may affect the results. However, these studies have not explored
the use of transformer-based models, which are designed to
produce semantically meaningful sentence embeddings and shown
to outperform other models in benchmark NLP tasks such as text
classification, question answering, and topic modeling [20, 21]. To
address this gap, our study aims to investigate the effectiveness of
sentence transformer models in the context of enemy identification.

3. Research Methodology

This section offers a detailed overview of the characteristics of
the data and justifies the selection of transformer and ML models
for classifying enemies. It compares five encoding techniques
across ten diverse ML models. The workflow for enemy
classification under various encoding conditions is graphically
illustrated. Additionally, a strategic method is introduced to address
data imbalance by leveraging item pair types and the stratified
sampling technique. Finally, three training datasets are developed to
investigate the impact of sample size and the representativeness of
item pairs on the enemy classification results.

3.1. Item data

The data used in this study were derived from a foundational IT
certification exam item bank, which comprised 1,649 multiple-
choice items (with 4 options) and 305 multiple-response (MR)
items (with 5 options). On average, each item contains

approximately 30 words, including both the question and the
answer key. The total of 1,954 items yields about 2 million
unique item pairs.

This item bank has not undergone a thorough review by content
experts specifically for enemy identification. It includes some known
enemy pairs, with additional enemy relationships typically identified
during the exam form review process. Consequently, only a small
fraction of item pairs have a known status. Item pairs included in
each published exam form are considered non-enemy pairs, as
they have been manually reviewed by SMEs. Conversely, item
pairs with existing enemy information are classified as enemy
pairs. The status of the remaining pairs is unknown.

Table 1 summarizes the types of item pairs in this bank. Of the
1,908,081 unique item pairs, only 947 (0.05%) are labeled as
“enemy.” Furthermore, 27,433 pairs (1.44%) derived from
individual exam forms are designated as “non-enemy.” The
remaining item pairs are divided into two groups based on their
key comparison results: pairs where two items have at least 50%
word overlap in the key are labeled as “uncertain with key
overlap” (12,258, 0.64%); all other pairs are marked as “uncertain
without key overlap” (1,867,441, 97.87%).

Key overlap is a strong indicator of enemy relationships: among
enemy pairs, 69% exhibit key overlap, whereas for non-enemy pairs,
this figure is only 0.39%. One method to quantify this feature is by
computing the similarity between two keys [18, 19]. However, the
item bank used in this study contains MR items, each with a key
comprising two options, one of which may be used as the key for
a multiple-choice question. Computing the similarity between the
key of a multiple-choice item and the key of an MR item can
yield misleading results. To address this issue, a key overlap
variable was created to enhance the accuracy of classification results.

Furthermore, a string-basedVSM-CSI was calculated for all item
pairs in the bank. Results are summarized across five CSI intervals and
four types of item pairs (Table 2). The distribution of CSI values
reveals a clear pattern: most non-enemy item pairs have CSI values
at or below 0.2, while a greater proportion of enemy item pairs
have CSI values higher than 0.4. For uncertain item pairs without
key overlap, the CSI distribution is similar to that of non-enemy
pairs, although some pairs have higher CSI values. In contrast,
uncertain item pairs with key overlap exhibit a unique CSI pattern:
they tend to have a smaller proportion of high CSI values
compared to enemy pairs and a smaller proportion of low CSI
values compared to non-enemy pairs. CSI means were also
compared across the four types of item pairs. The enemy group has
the highest mean CSI value at 0.63, followed by the uncertain with
key overlap group at 0.32. The mean CSI values for the non-enemy
and uncertain without key overlap groups were around 0.05.

Table 1
Item pair distribution across different types

Item pair type Pair N Pair %
Pair with key
overlap %

Enemy 947 0.05 69.13
Non-enemy (pairs
within a form)

27,433 1.44 0.39

Uncertain with key
overlap

12,258 0.64 100

Uncertain without
key overlap

1,867,443 97.87 0

Total 1,908,081 100 0.68
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Although the general trend suggests that higher text similarity
often correlates with item pairs being classified as enemies, the CSI
distributions indicate that text similarity alone might not be sufficient
to determine an enemy relationship. Thus, other relevant information
should also be considered when making this determination. This
observation is consistent with enemy identification approaches in
previous research [1, 18, 19].

3.2. Transformer model selection

The primary objective of this study is to assess the effectiveness
of transformer-based models in the context of enemy identification.
Two types of encoders can be used to generate similarity scores:
bi-encoders and cross-encoders.

In a bi-encoder model, two sentences are encoded separately; the
resulting sentence embeddings (two numerical vectors) are then used
to compute a similarity index. In contrast, a cross-encoder model takes
in a pair of sentences and encodes them together in a single encoding
step, outputting a similarity score between 0 and 1. Figure 1 illustrates
the workflow for the two types of encoders.

According to Reimers and Gurevych [15], cross-encoders
achieve better performance than bi-encoders because they model
interactions between sentences more explicitly. However, with the
availability of more powerful bi-encoder models, such as MPNet

[22–24], which was trained on large datasets, it is unclear whether
the previous comparison results between cross-encoders and
bi-encoders still hold true. Therefore, in this study, for each type
of encoder, a well-performing model was selected and used to
obtain similarity indices. Additionally, each model was run twice:
once with additional training and once without. The latter is
commonly referred to as the “out-of-the-box” model.

Table 3 summarizes the models evaluated in this study. For the
bi-encoder, the “paraphrase-mpnet-base-v2” model was selected,
which is trained on paraphrase datasets. The underlying transformer
model is MPNet [22], which combines the strengths of masked and
permuted language modeling for enhanced natural language
understanding. MPNet has been shown to outperform BERT, XLNet,
and RoBERTa models on multiple NLP benchmarks [23]. The “stsb-
roberta-large” model has been selected for the cross-encoder due to its
excellent performance on the semantic textual similarity (STS)
benchmark [15]. STS is a widely used dataset for training and
evaluating models on the task of measuring semantic similarity
between sentences in a pair, which aligns with the goal of identifying
enemy relationships between items. Finally, since the string-based
VSM encoding technique was found to outperform other
non-transformer techniques [16, 18], it was selected to compute the
CSI, which is used to establish the evaluation baseline for enemy
classification.

Table 2
Item pair string-based VSM-CSI distribution across different types

CSI category
Non-enemy
N = 27,433

Uncertain without key overlap:
N = 1,867,443

Uncertain with key overlap:
N = 12,258 Enemy N = 949

0.0∼0.2 94.2 93.7 29.9 2
0.2∼0.4 5.1 5.4 37.6 9.4
0.4∼0.6 0.7 0.7 25.7 27.4
0.6∼0.8 0 0.1 6.4 44.9
0.8∼1.0 0 0 0.5 16.3

CSI Mean 0.049 0.051 0.319 0.63

Figure 1
Bi-encoder and cross-encoder workflow
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3.3. Machine-learning (ML) classification

Since the application of ML algorithms for classifying enemy
pairs represents a novel approach in enemy identification research,
it is uncertain which model might produce better results. Therefore,
ten popular supervised ML models are trained to classify enemy
pairs, including logistic regression (LR), linear discriminant
analysis, quadratic discriminant analysis (QDA), k-nearest
neighbors, naïve Bayes, support vector machine (SVM), decision
tree (DT), random forest (RF), adaptive boosting, and neural
networks. These models are selected since they vary in complexity
and cover both linear and nonlinear approaches; technical details of
these models can be found in Kuhn and Johnson [25].

Furthermore, this study focuses on comparing the performance
of different encoding techniques in enemy identification. Therefore,
default ML models are utilized without grid-search hyperparameter
tuning. Conducting a grid search could result in varying ML model
configurations for the examined encoding techniques, potentially
confounding the comparison results. By maintaining constant ML
hyperparameter values, any observed differences can be directly
attributed to the encoding techniques themselves.

Four features are incorporated into the ML classification
models, all of which demonstrate a certain degree of association
with the enemy status of item pairs. These features and their
respective correlation coefficients with enemy labels (calculated
based on the data used in this study) are as follows:

1) Similarity index (0.66): This is a cosine similarity value from the
baseline and bi-encoder models or a similarity score from the
cross-encoder models. Here, the correlation is calculated based
on the string-based VSM-CSI.

2) Key overlap (0.57): This indicates whether or not two items in the
pair have at least 50% word overlap in the key.

3) Same topic (0.41): This indicates whether or not two items in the
pair belong to the same content topic.

4) Same item type (0.10): This indicates whether or not two items in
the pair have the same item type.

Finally, the classification label has two values: 0 indicates that the
item pair is not an enemy, while 1 indicates that it is.

3.4. Enemy identification workflow

In this study, the enemy identificationworkflow is consistentwith
common practice, as summarized in the earlier section, except for the
omission of the last step, which involves a review by SMEs. Figure 2
illustrates the process for enemy classification using encoding
techniques without a training step, including the string-based VSM
and two out-of-the-box sentence transformer models.

Essentially, item pairs from both the training and test data are
input into the encoder to produce a similarity index for each pair.

This value, along with three other features, namely, key overlap,
same topic, and same item type, are used as predictors in the ML
classification model. The ML model is trained with these
predictors and the enemy labels from the training data, using
default hyperparameter values. The trained ML model is then used
to predict the enemy status of item pairs in the test data.

Figure 3 illustrates the encoding process involving training two
sentence transformermodels before using them to compute similarity
values for each item pair. The only distinction from Figure 2 is that
the sentence transformer models are first fine-tuned with the training
data (item pairs and enemy labels). Then, the trained sentence
transformer models encode item pairs from both the training and
test datasets. After this step, the subsequent steps are identical to
those in the encoding without the training process.

This training serves dual purposes: first, it enables the pretrained
models to adapt to specific domain knowledge by exposing them to
relevant content. Second, for cross-encoder models, training allows
the model to adjust its weights to minimize the discrepancy
between predicted and actual labels. In essence, the model learns to
bring representations of enemy pairs closer together in the vector
space while distancing those of non-enemy pairs.

In the sentence transformer training process, the batch size is set
to 16, and the number of epochs is set to 1. This training could be
configured with varying numbers of batches and epochs following
a systematic comparison. However, this falls outside the scope of
our current research. Considering the training dataset comprises at
least 400 pairs, setting it to 16 batches—with 25 item pairs each—
and one epoch is considered sufficient.

3.5. Enemy data structure

Item pairs in the bank are typically highly imbalanced between
the enemy and non-enemy groups. Among all unique pairs in this
bank, only 1.49% have a known enemy status, and these pairs
exhibit very different text similarity patterns. Since enemy labels are
required for training either the transformer model or ML model, or
both, one approach to structuring the data is to use only pairs with a
known status. Another approach is to manually add labels to some
uncertain item pairs to increase the balance of the data. Given that
most pairs in the bank fall under the unknown condition and need
to be classified, the authors manually labeled an additional 600 item
pairs, of which 400 were used in training and 200 in testing.

To examine the impact of data structure, two training datasets
were constructed, each containing 800 item pairs. The first dataset is
representative of the test data, where item pairs are relatively evenly
distributed across all four types: enemy, non-enemy, uncertain with
key overlap, and uncertain without key overlap. The second dataset
contains only item pairs with known labels, half enemy and half non-
enemy. Furthermore, to evaluate the impact of sample size on
classification accuracy, a small training dataset was created using
half of the representative training data.

Additionally, instead of randomly selecting items from each
group, some strategies were implemented in creating training and
test datasets. To ensure content coverage, for non-enemy item
pairs selected from existing exam forms, each item is used in no
more than two pairs. For the uncertain item pairs without key
overlap, pairs with a VSM-CSI below 0.2 were excluded from
selection to reduce the CSI mean value gap between this group
and the uncertain item pairs with the key overlap group.
Furthermore, stratified sampling was applied to ensure that both
uncertain groups have similar CSI distributions.

More specifically, the mean CSI for the “uncertain with key
overlap” group is 0.32, whereas the mean CSI values for the

Table 3
Transformer models and baseline model

Encoding technique Model

Bi-encoder 1. paraphrase-mpnet-base-v2: without
training

2. paraphrase-mpnet-base-v2: with training
Cross-encoder 3. stsb-roberta-large: without training

4. stsb-roberta-large: with training
String-based
(baseline)

5. Vector-space model
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“uncertain without key overlap” groups are around 0.05. To
minimize the differences in mean CSI between these two groups,
CSI intervals were established. By using the number of pairs
within each interval from the “uncertain with key overlap” group
as targets, an equivalent number of item pairs were selected from
the “uncertain without key overlap” group. This stratified
sampling approach ensures that the CSI means are comparable in
both uncertain groups. It is presumed that this will increase the
difficulty for transformer and ML models to learn the enemy
relationship, potentially improving the classification accuracy of
all pairs in the bank after training is complete.

In summary, four datasets were created as follows:
1) Large and representative training data: item pair N= 800
2) Large and non-representative training data: item pair N = 800
3) Small and representative training data: item pair N= 400
4) Test data: item pair N= 400

Table 4 summarizes the data structure of the three training datasets
and the test dataset.

3.6. Evaluation criteria

Three evaluation metrics are computed for each model under
each research condition, including accuracy, false positive rate
(FP rate), false negative rate (FN rate). Accuracy is the proportion
of correct ML classifications, but it can be misleading when
evaluating results from imbalanced data. However, the data used

in this study is specifically structured to be more or less balanced
between two classification groups and across different types of
item pairs. Therefore, evaluation metrics designed for imbalanced
data such as the F1 score are not included.

There are other evaluation indices that can be used to assess ML
classification performance, such as precision, recall, the receiver
operating characteristic (ROC) curve, and the Kappa score.
However, given that this study primarily evaluates the impact of
different encoding techniques on enemy item classification, the
chosen metrics (accuracy, FP rate, and FN rate) allow for a direct
interpretation of the results. This approach enables readers to
easily understand the differences—for instance, the false positive
rate represents the percentage of items incorrectly classified as
enemies. Utilizing Kappa scores or ROC curves could potentially
complicate the interpretation of the outcomes, namely, the
differences across different encoding techniques.

4. Results

In this section, we first compare the performance across five
encoding approaches: string-based VSM, bi-encoder with and
without training, and cross-encoder with and without training.
Overall, the bi-encoder with domain knowledge adaptation training
outperforms the other approaches, achieving the highest accuracy
and the lowest rates of both false positives and false negatives.

We also examine the results across four item pair types: enemy,
non-enemy, uncertain with key overlap, and uncertain without key

Figure 2
Encoding without training workflow (vector-space model encoder and sentence transformer encoder)

Figure 3
Encoding with training workflow (sentence transformer encoder)
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overlap. These categories represent the structure of the item pairs
studied here. The patterns in the results are consistent across
various encoding techniques: compared to other item pair types,
classification accuracy rates are significantly lower for item pairs
in the “uncertain with key overlap” group. In this group, the best-
performing approach, the bi-encoder with training, achieves only
an 84.5% accuracy rate.

Additionally, the results are evaluated across ten supervisedML
models. Simpler models, such as the QDAmodel and LR, yield more
accurate results than complex models like the RF and DT.

Regarding the impact of training sample size (400 vs. 800) on
enemy classification, using more item pairs with known status in the
training dataset does not improve the outcome, except for the bi-
encoder with training encoding approach.

Finally, the structure of the training data plays a crucial role in
achieving better results. Among all unique item pairs in the item
bank, less than 2% have a known enemy status; we are uncertain
about the status of other pairs. To assist models in better encoding
all types of item pairs, we intentionally constructed the test data to
have a relatively equal distribution across item pair types. When
the training data does not accurately represent the item pair types
contained in the test data, the results are less satisfactory, even
with a larger sample size.

4.1. Overall performance

In this study, we compare enemy classification results across
five encoding approaches. The classification results, averaged
across ten ML models, are summarized in Table 5. Without any
domain knowledge adaptation training, both the bi-encoder and
the cross-encoder models slightly underperformed compared
with the string-based VSM, which served as the baseline
encoding technique. The bi-encoder achieved an accuracy rate of

86.5%, slightly higher than the cross-encoder’s rate of 86.3% by
0.2%, while the VSM reached an accuracy rate of 86.7%.
However, after training with domain knowledge, the accuracy of
the cross-encoder increased to 88.8%, and that of the bi-encoder
rose to 93%. The best-performing sentence transformer model,
the bi-encoder with training, outperformed the baseline model by
6.3%. Additionally, it achieved the lowest false positive rate
(5.1%) and the lowest false negative rate (2%), representing
improvements over the baseline approach by 2.9% and 3.3%,
respectively.

4.2. Performance across item pair types

Results are further broken down by item pair types and
summarized in Table 6. Please note that in this table and
subsequent tables, the transformer-based encoding techniques are
arranged in descending order based on their overall performance
presented in Table 5, starting with bi-encoder without training,
followed by cross-encoder without training, cross-encoder with
training, and bi-encoder with training.

The largest performance differences are observed in the
“uncertain with key overlap” group. With domain knowledge
adaptation training, the bi-encoder achieved an accuracy of
84.5%, surpassing the baseline by 21.7% (62.8%). It also
demonstrated better performance for item pairs classified as
“enemy,” albeit with a smaller margin (94.4% vs. 91.4%).
However, for the “non-enemy” group and the “uncertain without
key overlap” group, the baseline approach slightly outperformed
the best transformer models by 0.5% and 1.1%, respectively.
Notably, the patterns in performance differences for false positive
and false negative rates mirror those observed in the accuracy results.

The cross-encoder, after domain knowledge adaptation
training, achieved perfect accuracy (100%) in classifying item

Table 4
Item pair data structure

Large and representative training data (item pair N= 800)

Item pair type Item pair N Key overlap N Same topic N Same item type N Enemy N CSI mean CSI SD

1. Non-enemy 200 2 86 146 0 0.10 0.14
2. Uncertain without key overlap 163 0 40 115 6 0.30 0.11
3. Uncertain with key overlap 237 237 186 174 126 0.31 0.11
4. Enemy 200 144 174 150 200 0.63 0.17

Large and non-representative training data (item pair N= 800)

Item pair type Item pair N Key overlap N Same topic N Same item type N Enemy N CSI mean CSI SD

1. Non-enemy 400 3 189 294 0 0.09 0.12
4. Enemy 400 281 358 304 400 0.63 0.18

Small and representative training data (item pair N= 400)

Item pair type Item pair N Key overlap N Same topic N Same item type N Enemy N CSI mean CSI SD

1. Non-enemy 100 1 40 76 0 0.11 0.13
2. Uncertain without key overlap 84 0 30 51 5 0.32 0.12
3. Uncertain with key overlap 116 116 92 82 61 0.30 0.09
4. Enemy 100 72 91 77 100 0.63 0.17

Test data (item pair N= 400)

Item pair type Item pair N Key overlap N Same topic N Same item type N Enemy N CSI mean CSI SD

1. Non-enemy 100 0 56 69 0 0.08 0.10
2. Uncertain without key overlap 91 0 25 74 3 0.28 0.09
3. Uncertain with key overlap 109 109 83 89 63 0.30 0.10
4. Enemy 100 66 85 86 100 0.63 0.19
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pairs within the “non-enemy” group and outperformed the baseline
approach for “enemy” and “uncertain with key overlap” groups.
However, for item pairs in the “uncertain without key overlap”
group, it produced the lowest accuracy rate (91.8%), even lower
than that of the untrained cross-encoder approach. An examination
of misclassified item pairs in this group revealed that the
classification accuracy was adversely affected by an unusually
high false positive rate.

Table 7 summarizes the baseline and transformer model’s CSI
values across false positive categories for the “uncertain without key
overlap” group. Providing enemy labels to the default cross-encoder
model during training resulted in an overemphasis on the textual
differences between “enemy” and “non-enemy” item pairs. This
led to high similarity scores for item pairs with higher VSM-CSI
values and low similarity scores for those with lower VSM-CSI
values. While this overemphasis proved effective for the “enemy”
and “uncertain with key overlap” groups, where a “higher CSI
indicates a higher likelihood of being an enemy” relationship

holds true, it resulted in a significantly higher false positive rate
for item pairs in the “uncertain without key overlap” group.

4.3. Performance across ML models

The ML classification results, averaged across five encoding
techniques, are reported in Table 8. The quadratic discriminant
analysis (QDA) model and LR both achieved the highest
classification accuracy at 89.4%, surpassing the lowest performer,
the DT model, by 3.6%. While the difference in the false positive
rate between the highest and lowest performers is relatively small
(7.1% vs. 8%), there is a wider gap in the false negative rate
(2.6% vs. 7.1%).

Table 9 presents the best-performing ML model for each
encoding technique. With the CSI outcome from the trained
bi-encoder model, LR achieved the highest accuracy rate of
95%, with a false positive rate of 3.8% and a false negative rate
of 1.2%. In comparison, for the baseline approach using the

Table 5
Overall1 enemy identification results for different encoding techniques

Encoding technique Accuracy rate % FP rate % FN rate % Performance Order

String-based vector-space model (VSM) 86.7 8 5.3 3
Bi-encoder: without training 86.5 8.7 4.8 4
Bi-encoder: with training 93 5.1 2 1
Cross-encoder: without training 86.3 8.4 5.3 5
Cross-encoder: with training 88.8 7.6 3.5 2

1Results are averaged over ten ML classification outcomes

Table 6
Overall enemy identification results across encoding techniques and item pair type

Accuracy rate %

Encoding technique

Item pair type

Non-enemy Uncertain without key overlap Uncertain with key overlap Enemy

String-based vector-space model (VSM) 99.3 96.2 62.8 91.4
Bi-encoder: without training 99.2 96.3 65.4 88
Cross-encoder: without training 99.7 94.1 66.6 87.2
Cross-encoder: with training 100 91.8 72.7 92.7
Bi-encoder: with training 98.8 95.1 84.5 94.4

False positive rate %

Encoding technique

Item pair type

Non-enemy Uncertain without key overlap Uncertain with key overlap Enemy

String-based vector-space model (VSM) 0.7 2.9 25.1 1.2
Bi-encoder: without training 0.8 2.6 28.2 1
Cross-encoder: without training 0.3 4.8 26 0.6
Cross-encoder: with training 0 8 19.4 2
Bi-encoder: with training 1.2 3.8 13.3 1.2

False negative rate %

Encoding technique

Item pair type

Non-enemy Uncertain without key overlap Uncertain with key overlap Enemy

String-based vector-space model (VSM) 0 1 12 7.4
Bi-encoder: without training 0 1.1 6.4 11
Cross-encoder: without training 0 1.1 7.4 12.2
Cross-encoder: with training 0 0.2 8 5.3
Bi-encoder: with training 0 1.1 2.2 4.4
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string-based VSM, accuracy dropped by 7%, the false positive rate
increased by 5%, and the false negative rate increased by 2%.

The best ML results were further analyzed by item pair type and
summarized in Table 10. Using the best ML model, the trained bi-
encoder outperformed the baseline model on all evaluation metrics
across all item types, except for the non-enemy group, where the
performance was the same.

4.4. Impact of training data sample size on enemy
identification results

Table 11 summarizes the performance differences resulting from
varying the size of the training data. The large dataset contains 800
pairs, and the small one contains 400 pairs; both are relatively evenly
distributed across four groups: enemy, non-enemy, uncertain without
key overlap, and uncertain with key overlap. Among the five encoding
techniques, the most significant difference was observed in the trained
bi-encoder’s results, where doubling the sample size increased the
accuracy rate by 4.3% and reduced the FP rate by 1.8% and the FN
rate by 2.4%. However, for the other techniques, the gains were
minimal, and in two instances, the trained cross-encoder even achieved
slightly better results with the smaller training sample.

Table 12 shows the performance differences across four item
pair groups. For the trained bi-encoder, the size of the training
data significantly affected enemy identification results for item
pairs in the “uncertain with key overlap” group: with the smaller
sample, accuracy dropped by 10.3%, the FP rate increased by
6.9%, and the FN rate increased by 3.4%. For item pairs in the

“enemy” group, reducing the training dataset by half lowered the
accuracy by 5.9% and increased the FN rate by 6.1%. For the
other encoding techniques, the impact of varying the training data
size on accuracy, FP rate, and FN rate was not consistent, and the
differences in performance were relatively minor.

4.5. Impact of training data structure on enemy
identification results

In this study, one training dataset was intentionally constructed
to contain only known enemy and non-enemy item pairs. This data
structure significantly and consistently affects enemy identification
results, as shown in Table 13. With a non-representative training set,
accuracy drops, ranging from 3.1 to 8.3% across encoding
techniques, and the FP rates increased by 6.3% to 9.2%.
However, the FN rates decreased, ranging from 1% for the trained
bi-encoder to 4.3% for the baseline VSM approach. This means
that with non-representative training data, more enemy pairs have
been misclassified as non-enemies.

The results of the item pair type breakdown demonstrate similar
patterns (Table 14), indicating that the training power significantly
diminishes without a representative dataset. This effect is
particularly pronounced for item pairs in the “uncertain with key
overlap” group, where the accuracy can drop by up to 24.6%, and
the FP rate can increase by up to 26.4 percentage points.
However, this misalignment in data structure reduces FN rates for
the “enemy” and “uncertain with key overlap” groups. Essentially,
when the feature values in the training set significantly differ
between the two groups being classified, such as the VSM-CSI
mean being 0.08 for the “non-enemy” group and 0.63 for the
“enemy” group, the similarity index may be overweighted in the
classification, leading to more item pairs being classified as
enemies. This results in higher FP rates and lower FN rates.
Admittedly, the impact of training data structure on enemy
classification results can be confounded by the training in the ML
modeling, and further investigation is needed to disentangle the
factors contributing to these results.

5. Discussions and Recommendations

In summary, this paper evaluates the performance of
increasingly popular transformer-based models in the context of
enemy identification, a topic not previously explored in this
research area. Based on a literature review of non-transformer
encoding techniques, the string-based VSM was chosen as the
baseline and compared against four transformer-based approaches,
including bi-encoder and cross-encoder, both with and without

Table 7
Baseline CSI and transformer CSI between false positive category (uncertain without key overlap group)

Encoding False positive VSM-CSI mean Transformer-CSI mean

String-based vector-space model (VSM) No 0.27 NA
Yes 0.57 NA

Bi-encoder: without training No 0.28 0.59
Yes 0.46 0.78

Cross-encoder: without training No 0.28 0.50
Yes 0.37 0.68

Cross-encoder: with training No 0.27 0.04
Yes 0.44 0.77

Bi-encoder: with training No 0.27 0.19
Yes 0.50 0.60

Table 8
Overall2 enemy identification results for different ML models

ML model
Accuracy
rate %

FP rate
%

FN rate
%

Decision tree (DT) 85.8 7.1 7.1
Random forest (RF) 86.5 7 6.6
Support vector machine (SVM) 87.8 9.7 2.5
k-nearest neighbors (KNN) 88 7.3 4.7
Adaptive boosting (AdaBoost) 88.6 6.2 5.1
Linear discriminant analysis 88.8 8.5 2.6
Neural networks (NN) 89 7.1 3.9
Naïve Bayes (NB) 89.1 7.8 3.1
Logistic regression (LR) 89.4 6.9 3.7
Quadratic discriminant analysis
(QDA)

89.4 8 2.6

2Results are averaged over five encoding technique outcomes
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domain knowledge adaptation training. The two sentence
transformer models evaluated in this study are “paraphrase-mpnet-
base-v2” and “stsb-roberta-large.” These models were pretrained
with data for NLP tasks such as measuring semantic similarity

between sentence pairs, which is similar to the enemy
identification task. Given their superior performance across
multiple NLP benchmarks, they were selected for this study. The
similarity index values derived from these encoding techniques,
along with three dichotomous predictors—key overlap, same
topic, and same item type—were input into ten ML models to
predict the enemy status for item pairs in the test data.
Furthermore, three training datasets were created to evaluate the
impact of sample size and data representativeness on enemy
classification results.

Comparison results for encoding techniques revealed that,
without domain knowledge adaptation training, transformer-based
models did not produce better text representations, and thus, better
enemy identification results than the non-transformer model.
However, with training, the transformer models adapted to the
domain knowledge and improved enemy classification accuracy
by up to 6.3%. Among item pair groups, the best transformer-
based model, the bi-encoder with training, outperformed the
baseline model by 21.7% in accuracy. Another transformer-based

Table 9
Best enemy identification results for each encoding technique

Encoding technique ML model Accuracy Rate % FP rate % FN rate %

String-based vector-space model QDA 88 8.8 3.2
Bi-encoder: without training LR 88.2 7.2 4.5
Cross-encoder: without training AdaBoost 88.2 6.5 5.2
Cross-encoder: with training QDA 89.8 8.2 2
Bi-encoder: with training LR 95 3.8 1.2

Table 10
Best ML enemy identification results across encoding techniques and item pair type

Accuracy rate %

Encoding technique

Item pair type

Non-enemy Uncertain without key overlap Uncertain with key overlap Enemy

String-based vector-space model (VSM) 99 94.5 67 94
Bi-encoder: without training 100 98.9 70.6 86
Cross-encoder: without training 100 95.6 71.6 88
Cross-encoder: with training 100 91.2 73.4 96
Bi-encoder: with training 99 96.7 88.1 97

False positive rate %

Encoding technique

Item pair type

Non-enemy Uncertain without key overlap Uncertain with key overlap Enemy

String-based vector-space model (VSM) 1 4.4 26.6 1
Bi-encoder: without training 0 0 25.7 1
Cross-encoder: without training 0 3.3 21.1 0
Cross-encoder: with training 0 8.8 21.1 2
Bi-encoder: with training 1 2.2 11 0

False negative rate %

Encoding technique

Item pair type

Non-enemy Uncertain without key overlap Uncertain with key overlap Enemy

String-based vector-space model (VSM) 0 1.1 6.4 5
Bi-encoder: without training 0 1.1 3.7 13
Cross-encoder: without training 0 1.1 7.3 12
Cross-encoder: with training 0 0 5.5 2
Bi-encoder: with training 0 1.1 0.9 3

Table 11
Overall performance difference between large and small

training datasets (large–small)

Encoding technique
Accuracy rate

%
FP rate

%
FN rate

%

String-based vector-space
model

0.5 −0.7 0.2

Bi-encoder: without training 0.7 −0.5 −0.2
Cross-encoder: without
training

0.2 −0.1 −0.2

Cross-encoder: with training −0.1 1.5 −1.5
Bi-encoder: with training 4.3 −1.8 −2.4

Artificial Intelligence and Applications Vol. 2 Iss. 4 2024

331



model, the cross-encoder, yielded slightly better results but with an
unusually high false positive rate for item pairs in the “uncertain
without key overlap” group. Further exploration of item pairs
under the false positive categories suggested that while cross-
encoders could potentially perform better than bi-encoders by
explicitly modeling interactions between sentences, they might
overemphasize the relationship between text similarity and item
pair enemy status, resulting in an inappropriately high similarity
score. This overemphasis results in a higher false positive rate for
items in the ‘uncertain without key overlap’ group, where only a
few pairs are enemies, yet more pairs have higher CSI values—an
outcome of the sample selection strategy utilized in this study.
After learning about the enemy labels and item pairs during
training, the cross-encoder model significantly increased the

similarity scores for items with higher CSI values, leading to their
incorrect identification as enemies in ML classification.

Ten ML models were evaluated across different encoding
techniques for their classification accuracy. In general, the QDA and
LR models produced the most accurate results, while the DT and RF
models performed the worst. With one continuous and three
dichotomous predictors, simpler ML models were more adept at
determining the optimal weights for each feature and their
interrelationships. Moreover, when the best ML model was used, the
bi-encoder with training outperformed the baseline model on all
evaluation metrics for all item types except for the non-enemy group,
where its performance was tied to another encoding approach. It is
noteworthy that this study employed default settings in ML
classification to avoid confounding the results of the encoding
technique comparison. However, systematic hyperparameter tuning
could potentially improve the accuracy of enemy classification.

The impact of training dataset size and structure on enemy
classification was also evaluated. When the training and test data
contained a similar distribution of item pairs across the four groups
(enemy, non-enemy, uncertain without key overlap, and uncertain
with key overlap), halving the training data sample size did not
significantly impact the enemy identification results, except for the
best transformer-based approach, the bi-encoder with domain
knowledge adaptation training. However, if the item pairs in the
training dataset do not representatively match those in the test
dataset, it can significantly lower classification accuracy across all
encoding techniques. Based on this study’s findings, it is
recommended to train transformer-based encoding techniques using
domain-specific data to enhance their text representation capability.
Additionally, ensuring that the training data shares a similar

Table 12
Overall performance difference between large and small training datasets across encoding techniques and item pair type (large–

small)

Accuracy rate %

Encoding technique

Item pair type

Non-enemy Uncertain without key overlap Uncertain with key overlap Enemy

String-based vector-space model (VSM) −0.1 0.2 1.2 0.3
Bi-encoder: without training −0.1 0.9 0.9 1.1
Cross-encoder: without training 0.5 0 0.2 0.2
Cross-encoder: with training 0.7 −3 −2 4.1
Bi-encoder: with training 0.3 −0.3 10.3 5.9

False positive rate %

Encoding technique

Item pair type

Non-enemy Uncertain without key overlap Uncertain with key overlap Enemy

String-based vector-space model (VSM) 0.1 0 −2.6 −0.1
Bi-encoder: without training 0.1 −0.9 −1.2 0.1
Cross-encoder: without training −0.5 0 −0.1 0.4
Cross-encoder: with training −0.7 3.7 2.8 0.2
Bi-encoder: with training −0.3 0.3 −6.9 0.2

False negative rate %

Encoding technique

Item pair type

Non-enemy Uncertain without key overlap Uncertain with key overlap Enemy

String-based vector-space model (VSM) 0 −0.1 1.3 −0.2
Bi-encoder: without training 0 0 0.3 −1.2
Cross-encoder: without training 0 0 0 −0.6
Cross-encoder: with training 0 −0.7 −0.7 −4.3
Bi-encoder: with training 0 0 −3.4 −6.1

Table 13
Overall performance difference between representative and

non-representative training datasets

Encoding technique
Accuracy rate

%
FP rate

%
FN rate

%

String-based vector-space
model

3.9 −8.2 4.3

Bi-encoder: without training 3.1 −6.3 3.2
Cross-encoder: without
training

3.1 −6.8 3.6

Cross-encoder: with training 5.7 −7.9 2.1
Bi-encoder: with training 8.3 −9.2 1
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structure with the test data, and increasing the training data size, can
improve the accuracy of similarity index values for item pairs.
Contrary to prior research [15], our study found that the cross-
encoder did not outperform the bi-encoder; instead, the bi-encoder
with training produced significantly better enemy identification
results.

During the research, some labeling errors were discovered in
item pairs within the enemy and uncertain groups, emphasizing
the importance of SME review of the classification results. An
iterative rotating strategy could be integrated into the training and
testing process to identify and correct mislabeled item pairs in
both datasets, potentially enhancing the performance of the
encoding model and the ML classification outcome.

Overall, while this study does not advocate for complete
automation of enemy identification when using sufficient and
representative training data, the transformer-based approach
clearly outperforms non-transformer methods in accurately
representing the semantic meanings of item pairs, leading to better
enemy identification results from supervised ML models. A
follow-up study will incorporate more item pairs labeled by SMEs
in the uncertain groups. Richer training data is anticipated to
enable transformer models to better adapt to domain-specific
content, producing more accurate similarity indices and thus
improving the accuracy of the machine-based enemy identification
approach.
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