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Abstract: In this study, we aim to obtain numerical results of the modified Benjamin-Bona-Mahony equation, Ostrovsky-Benjamin-Bona-
Mahony equation, and Mikhailov-Novikov-Wang equation via the physics-informed neural networks (PINN) method. The equations are
modeled for shallow and long water waves, as well as fundamental and phenomenal models in ocean engineering. According to the
implementation, we obtained the PINN solutions of kink, bright, multi-soliton (two-soliton), and mixed dark-bright soliton solutions.
According to the inference from the obtained results, we achieved good results in some cases compared to other approximate solution
methods in the literature. However, it was also observed that the best possible results could not be obtained in cases where the soliton
type was intricate and layered. While the results were obtained, the number of hidden layers and the number of neural networks in the
layers also varied. These results are shown in tables. Since it is known that the aforementioned models are not solved by the PINN
method, we anticipate that the study will lead to other studies in the field of ocean engineering.

Keywords: soliton solutions, modified Benjamin-Bona-Mahony equation, Ostrovsky-Benjamin-Bona-Mahony equation,
Mikhailov-Novikov-Wang equation, physics-informed neural networks

1. Introduction

Machine learning and artificial neural networks draw attention
to the advantages they provide and the widening of their usage areas.
Machine learning and artificial neural networks, which are
extensively used in scientific studies, are helpful technologies for
researchers to clarify time and focus. One of these fields is
differential equations [1, 2].

Differential equations are used effectively in water wave
models. This situation is becoming an area of interest for
researchers in the integration of machine learning and artificial
neural networks, which are today’s technologies, into these areas.
The physics-informed neural networks (PINN) model proposed by
Raissi et al. [3] to solve nonlinear PDEs can also be evaluated in
this context. The PINN model, which is one of the models with
increasing potential in mathematical physics and engineering, was
used in this study with the support of artificial neural networks in
physically based solutions of ocean waves.

Some of the studies used by PINN to obtain numerical solutions
are as follows: The PINN method was discussed by Fang et al. [4]
within the scope of different soliton solutions of the nonlinear
Schrodinger equation (NLSE). On the other hand, PINN method
is used to examine the propagation of solitons in water depending
on the KdV equation [5]. In a different study, Wu et al. [6]

investigated the standard NLSE with the PINN method based on
artificial neural networks they developed and conducted studies
on estimating the coefficients. In the study by Peng et al. [7],
investigations were made on a rigged periodic wave, breath wave,
soliton wave, and periodic wave solutions using the Chen-Lee-Liu
equation. In Lin and Chen [8], Sawada-Kotera equations were
analyzed with the PINN method. Also, there are some different
versions of the PINN method in the literature, such as multiple
parallel subnets PINN [9], improved PINN [10], coupled automatic-
numeric PINN (CAN-PINN) [11], and energy conservation deep
learning method [12]. On the other hand, Esen et al. [13] and Onder
et al. [14] also find some recent studies about obtaining soliton
solutions to wave equations. The method is a machine learning
technique, and since it is quite new, it also raises some questions.
One of these is the stability and convergence analysis.
Unfortunately, the subject has not been examined in this study, but
readers can take a look at some studies on this subject [15–18].

In this study, we investigated some shallow and long wave
models, such as the modified Benjamin-Bona-Mahony (MBBM)
equation, Ostrovsky-Benjamin-Bona-Mahony (OS-BBM) equation,
and the Mikhailov-Novikov-Wang (MNW) equation. Some studies
about MBBM can be listed as follows: the traveling wave solution
of the model via the modified simple equation method [19], soliton
solutions via the bifurcation method [20], and analytic treatment of
the model [21]. Also, researchers can find studies about OS-BBM
in the literature, such as dark and bright soliton solutions of model
[22]. In addition, studies like multi-soliton solutions of MNW [23]
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and novel exact solutions of MNW [23] can be listed as recent studies
about MNW in the literature.

The organization of the paper is as follows: Section 2 includes
some preliminaries, as in Section 2.1, the fundamentals of the PINN
method are included, and in Section 2.2, the PINN scheme for
the models is included. Section 3 includes implementation of
the PINN method on the models. In Section 4, the obtained results
of the application are included via tables and figures. Lastly,
Section 5 includes a conclusion about the study.

2. Preliminaries

In this section, we gave some basic preliminaries about artificial
neural networks and the PINN method, and we also gave Python
code blocks for the desired equations.

2.1. PINN

According to the method, the studied equations can be
generalized as follows:

φt x; tð Þ þ N φ x; tð Þ½ � ¼ 0; x 2 x0; x1½ �; t 2 t0; t1½ �; (1)

where ϕ(x,t) is the hidden solution of the PDE and N[.] is the
nonlinear operator for ϕ(x,t). On the other hand, the net function f
can be defined by the left-hand side of Equation (1) as follows:

f :¼ φt x; tð Þ þ N φ x; tð Þ½ � (2)

The approximation of ϕ(x,t) from f via minimizing mean square
error (MSE) and neural networks is called PINN Minimizing MSE
loss can be defined as follows:

MSE ¼ MSEφ þMSEf ;

MSEφ ¼ 1
Nφ

PNφ

i¼1
φ xiφ; t

i
φ

� �
� φi

��� ���2;
MSEf ¼ 1

Nf

PNf

i¼1
f xif ; t

i
f

� ���� ���2;
(3)

where xiφ; t
i
φ;φ

i
n o

Nφ

i¼1
represents initial and boundary

data training on ϕ(x,t) and xif ; t
i
f

n o
Nf

i¼1
represents collocation

points for f(x,t). TheMSEϕ loss denotes the loss of initial and boun-
dary values; the MSE f loss denotes the loss of the created structure
in Equation (2). In Figure 1, we illustrated the working scheme of
the PINN method for solving PDEs. The working principle is as
follows: the system is initialized using only the initial values of
the PDE. Estimates obtained via initial values are substituted in f in
Equation (2), and weight determinations are made by minimizing
the error. The system proceeds using the previous prediction value
for all points of the grid system.

Also, it should not be forgotten that PINN is a machine learning
technique. In the literature, the term black box is used for systems
containing artificial neural networks. However, to give a summary for
readers to understand more easily, the method predicts the next step
in the grid using the initial values and tries to bring the PDE solution
closer to zero by substituting the prediction into the f function. This
minimization process is done through the loss function. Once all steps
in the grid are predicted, the surface solution of a PDE is revealed.

2.2. PINN scheme for MBBM

MBBM equation is given as follows [19];

ϕt þ ϕx � αϕ2ϕx þ ϕxxx ¼ 0 (4)

where α is a nonzero constant. The MBBM equation is a model for
the surface of long waves in ocean engineering and represents the
character of hydromagnetic waves in plasma matter [20, 21]. The
real-valued neural network for the PINN scheme can be written as:

Listing 1
Real valued neural network for MBBM equation

def pinn phi (self, x, t):
phi = self. neural net (tf. concat ([ x, t ],1),
self. weights, self. biases) return phi

Listing 2
Real valued net function for MBBM equation

def net f (self, x, t):
phi = self. pinn phi (x, t)
phi t = tf. gradients (phi, t) [ 0 ]
phi x = tf. gradients (phi, x) [ 0 ]
phi xx = tf. gradients (phi x, x) [ 0 ]
phi xxx = tf. gradients (phi xx, x) [ 0 ]
f = phi t+phi x−alpha *(phi **2)* phi x + phi xxx
#Equation 1
return f

2.3. PINN scheme for OS-BBM

The OS-BBM equation is given as follows [22]:

φt þ φx � α φ2ð Þx � βφxxtð Þx � γ φþ φ2ð Þ ¼ 0 (5)

where α,β,γ is a nonzero constant. OS-BBM equation models wave
motion on the ocean surface and some special cases of magneto-
acoustic waves [22]. The real-valued neural network for the PINN
scheme can be written as:

Figure 1
PINN method working scheme
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Listing 3
Real valued net function for OS-BBM equation

def net f (self, x, t):
phi = self. pinn phi (x, t)
phi t = tf. gradients (phi, t) [ 0 ]
phi x = tf. gradients (phi, x) [ 0 ]
phi xx = tf. gradients (phi x, x) [ 0 ]

phi xxt = tf. gradients (phi xx, t) [ 0 ] phi xxx =
tf. gradients (phi xx, x) [ 0 ]
f = tf. gradients (phi t + phi x −alpha* tf.
gradients (phi **2, x) [ 0 ] − beta* phi xxt, x)
[ 0 ] − gamma(phi + phi **2) #Equation 2
return f

2.4. PINN scheme for MNW

The MNW equation is given as follows [23, 24]:

φtt � φxxxt � 8φxφxt � 4φxxφt þ 2φxφxxxx þ 4φxxφxxx þ 24φφxx ¼ 0:

(6)

MNW equations model some special ocean waves and can also
be derived from other phenomenon ocean wave models [23–25]. The
real-valued neural network for the PINN scheme can be written as:

Listing 4
Real valued net function for MNW equation

def net f (self, x, t):
phi = self. pinn phi (x, t)
phi t = tf. gradients (phi, t) [ 0 ]
phi x = tf. gradients (phi, x) [ 0 ]
phi xt = tf. gradients (phi x, t) [ 0 ]
phi xx = tf. gradients (phi x, x) [ 0 ]
phi tt = tf. gradients (phi t, t) [ 0 ]
phi xxx = tf. gradients (phi xx, x) [ 0 ]
phi xxxt= tf. gradients (phi xxx, t) [ 0 ]
phi xxxx = tf. gradients (phi xxx, x) [ 0 ]
f= phi tt− phi xxxt− 8 * phi x* phi xt−4* phi xx*
phi t

+2*phix*phixxxx+4*uxx*uxxx+24*((phix)**2)
* phi xx return f

3. Application

In this section, we applied the PINN method to the (1+1)-
dimensional PDEs.

3.1. MBBM equation

In Khan et al. [19], the kink soliton solution of the Equation (4)
is given as:

φ x; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1� βð Þ

α

� �s
� tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β

2

� �s
x � βtð Þ

 !
(7)

where α; β are arbitrary real constants with 1�β

2 > 0 and also β is
wave velocity. To simulate our method, we created a dataset of the
exact solution of the Equation (7) viaMATLAB. Datasets are created
as follows; x and t are generated for 256 equally spaced values
in �10; 10½ �.

3.2. OS-BBM equation

In the study by Alquran [22], bright soliton solution of the
Equation (5) is given as:

φ x; tð Þ ¼ �3
2

sech2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ βγ

p
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βþ αβ

p x � αþ α2

αþ βγ

� �
t

� �� �
(8)

where α;β; γ are real constants, αþα2

αþβγ

� �
is wave velocity

with α + βγ> 0 and β + αβ> 0. To simulate our method, we
created a dataset as follows; x is generated for 256 equally spaced
values in [−10, 10] and t is generated for 256 equally spaced
values in [0, 5].

3.3. MNW equation

In Akbulut et al. [24], kink type one-soliton solution of the
Equation (6) is given as:

φ x; tð Þ ¼ 2αeα
3tþαx

1þ eα
3tþαx

(9)

where α is the wavenumber and real constant, and wave speed is α3.
The dataset is created via MATLAB with x and t generated for
256 equally spaced values in [−10, 10] for α= 1.2.

In Akbulut et al. [24], kink type two-soliton interaction solution
of the Equation (6) is given as:

φ x; tð Þ ¼
2α1eα

3
1tþα1x þ 2α2eα

3
2tþα2x þ 2 α1�α2ð Þ2e α1þα2ð Þxþ α3

1
þα3

2ð Þt
α1þα2

1þ eα
3
1tþα1x þ eα

3
2tþα2x þ α1�α2ð Þ2e α1þα2ð Þxþ α3

1
þα3

2ð Þt
α1þα2

(10)

where α1;α2 are arbitrary real constants. In this problem, we applied
the method to two different parametrizations. Firstly, a dataset is cre-
ated for α1 ¼ �1:41 and α2 ¼ 1:4 values, and nodes are divided into
256 equally spaced values with x 2 �20; 20½ � and t 2 �5; 5½ �. Sec-
ondly, a dataset is created for α1 ¼ �1:5 and α2 ¼ 0:5 values, and
nodes are divided into 256 equally spaced values with
x 2 �20; 20½ � and t 2 �10; 10½ �.

In Saha Ray and Singh [23], mixed dark-bright soliton solution
of the
Equation (6) is given as:

φ x; tð Þ ¼ � x
3
þ t
3
� 2
1þ cosh �x þ tð Þ � sinh �x þ tð Þ (11)

The dataset is created for 256 equally spaced values with
x; t 2 �5; 5½ �. The next chapter describes the results using tables
and figures.

4. Results and Discussion

In this section, we give the obtained results with tables and
figures. In Table 1, a comparison of the obtained results of
Equation (7) is given. Results are changing according to initial
Nϕ and neural network numbers. According to Table 1, the
best results are obtained with 8 hidden layers and 60 neural
networks per layer. Absolute error is approximately 1.25 × 10−3.
In addition, the results are shown in Figure 2. Figure 2a shows a
3D view of the exact solution; Figure 2b shows a 3D view of the
approximate solution obtained via the PINN method; Figure 2c
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shows absolute error; and Figure 2d shows a contour plot of the
approximate solution.

Table 2 shows the comparison of obtained results for
Equation (8). According to Table 2, the best results are obtained
via 8 hidden layers with 100 neural networks per layer. Absolute
error is approximately 1.82 × 10−3. Figure 3 shows the results for
Equation (8). In Figure 3a, the soliton solution of Equation (8) is
shown. Figure 3b shows the PINN solution, and Figure 3c shows
the absolute error between soliton and the PINN solution. In
Figure 3d, a contour plot of the approximate solution obtained via
the PINN method is depicted.

According to Table 3, the best results are obtainedwith 8 hidden
layers and 40 neural networks per layer. The absolute error is
approximately 2.75 × 10−2. In addition, the results are shown in

Figure 4. Figure 4a shows a 3D view of the Soliton solution;
Figure 4b shows a 3D view of the approximate solution
obtained via the PINN method; Figure 4c shows the absolute
error; and Figure 4d shows the contour plot of the PINN
solution.

Table 4 shows the comparison of obtained results for
Equation (10). According to Table 4, the best results are obtained
via 8 hidden layers with 20 neural networks per layer. Absolute
error is approximately 2.20 × 10−2. Figure 5 shows the results for
Equation (10). In Figure 5a, the soliton solution of Equation (10)
is shown. Figure 5b shows the PINN solution, and Figure 5c
shows the absolute error between the soliton solution and the
PINN solution. In Figure 5d, a contour plot of the approximate
solution obtained via the PINN method is depicted.

Table 1
Comparison of Equation (7)

Nφ Nf Hidden layer Neural networks Error u Time(sec) Number of iterations

200 4000 8 20 1; 729082� 10�3 8.89 140
200 4000 8 40 1; 255546� 10�3 39.34 197
200 4000 8 60 4; 563819� 10�3 76.92 179
300 4000 8 100 5; 315208� 10�3 152.20 200

Figure 2
The various plots of ϕ(x,t) in Equation (7)

Table 2
Comparison of Equation (8)

Nφ Nf Hidden layer Neural networks Error u Time(sec) Number of iterations

200 4000 8 20 8; 02994� 10�1 55.92 105
200 4000 8 40 4; 284380� 10�1 1499.21 371
200 4000 8 60 7; 817779� 10�1 776.05 151
300 4000 8 100 1; 825055� 10�3 1197.72 278
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Figure 3
The various plots of ϕ(x,t) in Equation (8)

Table 3
Comparison of Equation (9)

Nφ Nf Hidden layer Neural networks Error u Time(sec) Number of iterations

200 4000 8 20 3; 797476� 10�2 47.65 133
200 4000 8 40 2; 750077� 10�2 91.62 78
200 4000 8 60 5; 433307� 10�2 165.48 70
300 4000 8 100 6; 953371� 10�2 293.65 65

Figure 4
The various plots of ϕ(x,t) in Equation (9)
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According to Table 5, the best results are obtainedwith 8 hidden
layers and 60 neural networks per layer. The absolute error is
approximately 4.94 × 10−1. In addition, the results are shown in
Figure 6. Figure 6a shows a 3D view of the soliton solution;
Figure 6b shows a 3D view of the approximate solution obtained
via the PINN method; Figure 6c shows the absolute error; and
Figure 6d shows the contour plot of the PINN solution.

Table 6 shows the comparison of obtained results for Equation
(11). According to Table 6, the best results are obtained via 8 hidden
layers with 20 neural networks per layer. The absolute error is
approximately 7.05 × 10−4. Figure 7 shows the results for
Equation (11). In Figure 7a, the soliton solution of Equation (11)
is shown. Figure 7b shows the PINN solution, and Figure 7c

shows the absolute error between the soliton solution and the
PINN solution. In Figure 7d, a contour plot of the approximate
solution obtained via the PINN method is depicted.

When evaluating the results obtained in this study, we can start
with the scope. When looking at the studies on obtaining solitons
using PINN [4, 26, 27], it can be seen that the approximate error
rate in existing studies is achieved. While other studies have
reached an error rate of approximately 10−3, these values are also
present in our study. Another thing we need to compare is the
types of solitons in existing studies. Looking at the study
examining the two-soliton, rogue structure [26, 28, 29] which are
the rare types in the literature, it will be seen that the error
obtained is similar to the error in this study. It can be seen that the

Table 4
Comparison of Equation (10)

Nφ Nf Hidden layer Neural networks Error u Time(sec) Number of iterations

200 4000 8 20 2; 200254� 10�2 1536.63 6327
200 4000 8 40 2; 697991� 10�1 5683.23 5592
200 4000 8 60 2; 405252� 10�1 67103.70 7912
300 4000 8 100 2; 766252� 10�1 180084.39 4374

Figure 5
The various plots of ϕ(x,t) in Equation (10)

Table 5
Comparison of Equation (10)

Nφ Nf Hidden layer Neural networks Error u Time(sec) Number of iterations

200 4000 8 20 4; 969024� 10�1 944.8 3796
200 4000 8 40 5; 042329� 10�1 7480.73 3485
200 4000 8 60 4; 944566� 10�1 8487.50 2805
300 4000 8 100 5; 174641� 10�1 78819.09 2970
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classical PINN method gives poor results compared to advanced
numerical methods such as B-Spline and the modified Laplace
decompositionmethod in layered and complex soliton types [30, 31].

Another unpredictable weakness of the PINN method is that it
does not have a fixed network structure. Examining some other
PINN studies revealed different error rates for varying numbers of
hidden layers. Some of these studies and their results are shown in
Table 7 for easier viewing.

As can be seen in Table 7, there is no correlation between the
increase or decrease in the number of hidden layers or neurons and
the success of the method. Therefore, researchers will have to try
many times to find the most accurate result. A disadvantage can
also be seen in this aspect. Another conclusion that can be drawn
from the table is that the PINN method can be applied to equation
types in many different fields. Although only 1D water wave
models were considered in this study, other ocean engineering
examples where the PINN method is used can be listed as
follows: Examining the shallow water equation and advection-
diffusion equation with PINN and their effects on climate change
[36] and ocean temperature [37], examination of local advection-
diffusion equations with the PINN method and uncertainty in
ocean modeling [38], and examination of internal soliton
movements modeled by the Kadomtsev-Petviashvili equation with
PINN and comparison of the results with satellite images [39].
In addition, when looking at the time-dependent calculation cost

in Table 7, a definitive conclusion cannot be made, but there are
methods in the literature that reduce the time cost, such as CAN-
PINN [11]. On the other hand, another point that concerns the
success of the method is the initial and boundary conditions.
Some customized PINN models [40–43] have included these
conditions in the loss function and achieved more successful results.

Since the PINN method is a machine learning method, we can
mention some hyperparameters that affect its success. These can be
listed as learning rate, activation function, optimization algorithm,
number of hidden layers, and neurons. This study solely utilized
tables to illustrate the impact of altering the number of hidden
layers and neurons on success. However, there are currently
studies showing the effect of other hyperparameters on the
success of PINN. Some of these studies are as follows: the effect
of hyperparameters on error convergence [44], the effect of
parameters such as activation function and network architecture
on the error rate [45], and some other similar studies [46–48].

5. Conclusion

In this work, we have studied approximate solutions of one-
dimensional shallow water waves such as the MBBM, OS-BBM,
and MNW equations. Based on this work, we have identified
several soliton structures of water waves, including kink, dark,
kink with two solitons interacting, and mixed bright-dark solitons.

Figure 6
The various plots of ϕ(x,t) in Equation (10)

Table 6
Comparison of Equation (11)

Nφ Nf Hidden layer Neural networks Error u Time(sec) Number of iterations

200 4000 8 20 7; 055715� 10�4 89.6 300
200 4000 8 40 1; 80200� 10�3 2697.15 703
200 4000 8 60 6; 029168� 10�3 1640.96 545
300 4000 8 100 4; 308377� 10�3 1307.51 369
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On the other hand, this is the first study about the mentioned models
using the PINN method. Moreover, we have reached the absolute
error in the 10−1 to 10−4 interval. We understand that some of the
error values obtained in our study are relatively high compared to
other studies in the literature. However, some of the error values we
obtained in our study also yielded reasonably good and effective
results. Examining soliton types with high error rates leads to the
conclusion that the complex and layered soliton structures prevent
numerical solutions from yielding satisfactory results. Future
researchers can set the goal of achieving better solutions in layered
solitons. The solution of models used in fields such as water waves
and ocean engineering, which include one-dimensional equations, as
well as in the field of optics, which includes larger-dimensional and
complex equations, may be one of the future goals. Another future
target can be set as working on higher-dimensional or complex-
valued models that are used in the optic field. Some studies have
stated that they have run the system successfully and obtained results,
especially for high-dimensional equations in the field of optics.
However, these studies are quite incomplete compared to traditional
methods in terms of absolute error. Therefore, the issue of reducing
the error rate is one of the important expectations for future studies.
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