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Towards Unsupervised Learning Driven
Intelligence for Prediction of Prostate Cancer
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Abstract: Prostate cancer is a widespread and global disease which affects adult males – it is said that key causes of the cancer include age, family
history, and ethnicity. In this study, the Kaggle prostate cancer dataset, comprising of data from 100 patients with a mixture that both had cancer
and did not have cancer, was used alongside machine learning predictionmodels for the design of unsupervised and automated intelligent systems
for the prediction of prostate cancer. Two intelligent systems were designed and underpinned by unsupervised learning algorithms, namely fuzzy
c-means and agglomerative hierarchical clustering, where the various intelligent systems were able to make a prostate cancer prediction with
accuracies of over 80% for the various classification metrics, alongside being able to predict an associated stage of the prostate cancer. Both
designed intelligent systems offer a complimentary alternative to each other, and their relative merits are discussed in the paper.
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1. Introduction

Prostate cancer accounts for a high rate of mortality worldwide;
the American Cancer Society, for example, provided a statistic which
indicated that over 190,000 men would be diagnosed with prostate
cancer in 2020 [1]. The causes of prostate cancer are broad and
multifactorial; nonetheless, the consensus reached from dedicated
review studies is that there are three key drivers behind the onset
of prostate cancer, namely, age, family history, and ethnicity
[2–4]. The age of a male has been long viewed as an established
driver toward prostate cancer; statistically speaking, males over
70 years old have a 1 in 8 chance of being diagnosed with prostate
cancer, while under 40-year-old males are statistically unlikely to be
diagnosed with prostate cancer. In terms of family history, for
prostate cancer to be fully deemed as a hereditary case, it is said
that it needs to have affected either three generations, three first-
degree relatives, or two relatives to have been diagnosed prior to
the age of 55.1 It is also said that men with a first-degree relative
who has been diagnosed with prostate cancer have up to 3 times
likelihood of being diagnosed with prostate cancer when compared
with an individual with no family history [5].

Importantly, prostate cancer diagnoses and incidence have been
seen to be related to ethnicity, where males of African ethnicity carry
the highest number of prostate cancer diagnoses worldwide. In the
United States of America – despite a drop in the overall mortality
rate since the early ‘90s – prostate cancer-related deaths among
African Americans appear to be over twice the number of
Caucasian males [6, 7]. With further investigation into this
discrepancy, it has been noted on a genetic scale that different

gene expression exists between a case study involving African
Americans and Caucasian patients, therein implying racial
subtleties in the synthesis and metabolism of androgens [8].

The human prostate is the size of a walnut, and it forms a
functional part of both the endocrine and reproductive systems,
while one of its functions is the secretion of seminal fluids which
are used to nurture and facilitate the transportation of sperm
[1, 9]. The atrophy and proliferation of prostate cells are
dependent upon androgens (i.e., testosterone) which are
effectively steroid hormones that develop the male characteristics
via binding to androgen receptors [1, 9, 10]. Androgens are
generally produced via negative feedback involving the testicular-
hypothalamic-pituitary, which ensures the required levels of
androgen are produced in a balanced fashion [1]. The rapid
increase in the number of prostate cells gives rise to a prostate-
specific antigen (PSA), which is normally contained inside the
prostate wall, except during the creation of prostate cancer cells,
which ultimately leads to the disruption of cell walls and therein a
leakage of PSA [10]. This serves as a biomarker for prostate
cancer and serves as a surrogate for the estimation of tumor
volumes computationally [10]. An image showing the various
stages of development of prostate cancer can be seen in Figure 1.2

Due to the phenomenon of PSA leakage, the onset of prostate
cancer diagnosis usually commences with a blood test to measure the
PSA levels and is closely followed up by digital rectal examinations
such as prostate biopsy and transrectal examinations [1]. Pending the
positive diagnosis of a cancer, a Gleason index score is calculated
which informs both the risk group of the patient and the potential
treatment sources. Urodynamic-based methods have also been
proposed by various authors as a means of inferring growth of the
prostate via the closure of the urinary tract and therein the flow
rate of urine; but despite the success of this method, it continues
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to remain mostly an auxiliary source in the diagnosis and monitoring
of prostate cancer [11, 12].

Machine learning has been extensively applied in various aspects
of clinical medicine over the years and has been viewed as a useful tool
which can contribute toward bridging the gap between the limits of
medical knowledge and patient needs and contributing toward
enhancing clinical care strategies via the use of varied information
sources toward predicting risks for various outcomes [13, 14].
From the literature, various machine learning methods have been
applied toward the prediction of prostate cancer. These methods
primarily hinge on a supervised learning architecture which is
deemed a form of “weak AI” and relies upon a form of external
expert-based intervention to label the training sample set before the
designated machine learning algorithm learns for the various data
classes [15–22].

Furthermore, these applied methods in the literature show a
continued trend of utilizing a binary-based prediction framework
(i.e., cancer/no-cancer) for the training of the machine learning
classifier, which limits the insight provided by the classifier to the
clinician, especially for a disease like cancer where the treatment
delivered is dependent on the stage of the cancer. As a means toward
providing a solution to this shortcoming, this study uses the prostate
cancer dataset from the Kaggle website [23], containing geometric
features from the digital examinations performed across 100 patients,
to design two contrastive predictive systems. These systems are
underpinned with unsupervised learning algorithms and provide a
predictive insight into the stage of the cancer, which would carry
high appeal in a clinical setting [14].

Specifically, the contributions made in this manuscript are as
follows:

1) The application of fuzzy c-means unsupervised learning to create
class labels for the data, followed by supervised learning to
identify whether prostate cancer is present, and a subsequent
prediction of the stage of cancer for cases where the patient
does indeed have cancer

2) The application of the agglomerative hierarchical unsupervised
learning method, alongside probabilistic supervised learning
and fuzzy logic, to create an intelligent system capable of
inferring a cancer stage given an estimated probability for a
patient who is predicted to have prostate cancer

The intention is that either of these intelligent prediction models
can play the role of a prediction machine in a previously proposed
clinical cybernetic system involving human-machine collaboration
that is poised toward enhancing care for cancer patients via the
augmentation of both human and Artificial Intelligence within a
clinical setting.

2. Mathematical Prostate Cancer and Dataset

2.1. Mathematical prostate cancer

Mathematical models have a high appeal in the study of cancer
due to the complexity of the disease and help with the typical “what”
and “how” questions, which include “the effectiveness of a care
therapy for a specific patient”, “optimal dosage”, and “least vs
most effective treatments” to name a few [1]. Although this paper
is not a theoretical study, the intention is to present a
mathematical model around prostate cancer and immunotherapy to
show a mathematical relationship between the different variables
and immunotherapy action as part of the prostate cancer disease.
The models presented here are adopted from the work done by
Kronik et al. [24] and Badziul et al. [25], as follows:

For the cellular vaccine V:

dV

dt
¼ �KinvV (1)

where is the rate of cell maturation after a vaccine, and is the
number of vaccine cells necessary to take up maturation of a
single dendritic cell.

For the antigen-presenting dermal dendritic cells Dm:

dDm

dt
¼ ki V þ Vp

� �� kmDm (2)

where Vp is the natural influx of mature dendritic cells, and km is the
migration rate of dendritic cell migration from the skin to lymph nodes.

For the mature dendritic cells Dc:

dDc

dt
¼ αlkmDm � kCRDC (3)

Figure 1
An image of the various stage of prostate cancer

Artificial Intelligence and Applications Vol. 2 Iss. 4 2024

264



where αl is the fraction of antigen-presenting dendritic cells entering
the lymph nodes.

For the “exhausted” dendritic cells DR:

dDR

dt
¼ kCRDC � µDDR (4)

where kCR is the rate of exhaustion of mature dendritic cells, and µD

is the death rate of the “exhausted” mature dendritic cells.
For the antigen-specific effector cell C:

dC
dt

¼ acDC � µCC � kRCR (5)

where ac is the effector cell recruitment by mature dendritic cells, µC

is the effector cell death rate, and kR is the rate of effector cell
inactivation by a set of inhibitory cells.

For the regulatory/inhibitory cells R:

dR
dt

¼ aRDR � µRR (6)

where aR is the rate of inhibitory cell recruitment by exhausted den-
dritic cells, and µR is the death rate of the inhibitory cells.

For the prostate cancer cells P:

dP
dt

¼ rP � apCP
hp

hp þ P
(7)

where r is the tumor growth rate,ap represents themaximal prostate cancer
killing efficacy, and hp is the effector cell efficacy damping coefficient.

2.2. Dataset

The dataset used as part of this study is the open-source data
available on the Kaggle website containing data collected from
100 patients involving digital examination of their prostates and
contains post-processed values from the digitized images of the
prostate, namely, Radius, Perimeter, Texture, Smoothness, Area,
Compactness, Symmetry, and Fractal Dimension [23]. The dataset
contained 68 cases where the patient was without prostate cancer
and 32 cases where there was cancer present (malignant); the
various classes were balanced using the SMOTE algorithm, as
applied in various prior studies [14].3 Due to the various scales,
ranges, and values of the features within the dataset, the matrix
containing all the features was standardized prior to the classifier
training. It is worth noting that data integration and heterogeneity
are not an immediate concern for this kind of dataset, due to the
source of the data emanating from a clinical imaging modality.

3. Methods

3.1. Intelligent system 1

1) Fuzzy C-Means and supervised learning
2) Fuzzy C-Means (FCM)

Given a sample group of elements defined as
X ¼ x1; x2; . . . :xnf g, the FCM is an unsupervised learning method
that can partition the data into various groups based on its objective
function.4 In the FCM, membership functions are used to express the

extent to which a sample data point belongs to a certain cluster, with a
value of 1 implying amaximal value and full compatibility between a
sample and a cluster.

The objective function used for the partitioning of data points
into various clusters can be seen as follows:

Jm ¼
XD
i¼1

XN
j¼1

µm
ij xi � cj
�� ���� ��2 (8)

where D represents the number of data points, N is the total number
of clusters, m is the fuzzy partition matrix exponent, xi is an ith data
point, cj is a cluster centroid, andµij is the degree of membership of a
candidate point xi in a jth cluster.

For thework done in this paper, the fuzzy partitionmatrix exponent
was chosen to be 2,while the soft clustering optionwas utilizedwith a set
membership function value of 0.6 in order to help identify candidate
patients who have eligibility in both clusters (cancer and no-cancer)
and thus could potentially be an early-stage cancer.

3) Supervised learning algorithms

The labeled data from the FCM were passed into a set of
supervised learning algorithms, where in this stage the following
sets of supervised learning algorithms were applied and contrasted.

Decision Tree (DT): DTs are a class of non-parametric learners
which apply a Boolean-like logic toward sorting data into various
classes, and are typically regarded as a white-box-based modeling
approach due to the transparency associated with their
classification process [14]. The mathematical underpinning of
decision trees can be seen in Nsugbe et al. [14].

Quadratic Support Vector Machine (QSVM): this classifier is
of an iterative form and works toward finding an optimal separation
boundary between data classes in a high dimensional subspace, while
utilizing a portion of the data known as support vectors for this [13,
14]. The classifier utilizes a “kernel” trick which is a computationally
effective means of projecting the data into a high dimensional
subspace where the class boundaries are applied and the overall
structure is preserved [13, 14]. The quadratic kernel was used and
therein a non-linear separation boundary between the respective data
classes; the mathematical formulation and prior applications of the
classifier in related studies can be seen in Nsugbe et al. [13, 14].
The classification exercises were conducted using the MATLAB
Classification Learner Application which, for a selected model and
options, iteratively tunes for the best parameters that fulfill the
selected architecture; the classifiers were validated using a k-fold
cross-validation framework with k chosen to be 10, while the data
were split into 80% for training and 20% for validation purposes.

3.2. Intelligent system 2

1) Agglomerative hierarchical clustering, probabilistic learning, and
fuzzy logic

2) Agglomerative hierarchical clustering (AHC)

This is an unsupervised method that utilizes a hierarchical tree-
based format to produce distinct classes for unlabeled data.5 The
three key steps associated with the computation of the AHC include:

A similarity calculation using the default Euclidean distance,
assuming points xs and xt, expressed as follows:

3https://www.analyticsvidhya.com/blog/2020/10/overcoming-class-imbalance-usi
ng-smote-techniques/

4https://uk.mathworks.com/help/fuzzy/fcm.html-Supervised%20learning
5https://uk.mathworks.com/help/stats/linkage.html
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d2st ¼ xs � xtð Þ xs � xtð Þ (9)

where d denotes the Euclidean distance.

After the first step, data points within proximity of each other are
associated together using a linkage function in an iterative fashion. The
Ward’s linkage function was applied in the implementation of the
algorithm in this study, and is mathematically expressed as follows:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nrns
nr þ nsð Þ

s
xr � xsj jj j2 (10)

where □j jj j2 is the Euclidean distancemetric, xr and xs are centroids for
candidate clusters r and s, and nr and ns are the number of points
assigned to those two clusters.

The final stage involves the pruning of the dendrogram clusters
into distinct groups as part of the final partitioning process and
involves the identification of groupings within the hierarchy of the
dendrogram.

3) Supervised learning algorithms

In this scenario, the labels produced by the AHC were passed
toward a set of probabilistic supervised learning algorithms, as
follows:

Probabilistic Support Vector Machines (PSVM): this
algorithm works in the same way as the standard support vector
machine but utilizes the Platt scaling mechanism to convert the
classification scores from the model, which yield binary class
labels into probability distributions across various classes [26].6

This Platt scaling allows for the obtaining of a probabilistic score
associated with a class prediction which, unlike the classical
classification, provides an associated degree of certainty about the
prediction [26]. The Platt scaling works with a fitting process where
the classification scores from a model are converted to a probabilistic
reflection via the fitting of a logistic regression model, which is
expressed mathematically as follows:

1
1þ exp Af xð Þ þ Bð Þ (11)

where f xð Þ represents the classifier scores, and parameters A and B are
learned as part of the algorithm’s fitting process.

The medium Gaussian kernel was used for the support vector
machine’s computations prior to the probabilistic conversion.

Naïve Bayes (NB): underpinned by the Bayes probabilistic
rule, and expressed in Equation (12), the NB can provide
associated probabilities for label class predictions [14, 27].

P HkjEð Þ ¼ P EjHkð ÞP Hkð Þ
P Eð Þ (12)

whereHk represents the number of classes, P EjHkð Þ is the joint prob-
ability with a prior Hk, P Hkð Þ is an initial probability held by the
hypothesis, P Eð Þ is a variable for the assumption that the training data
can potentially be observed with the supplied information within the
feature vector, while P HkjEð Þ is the estimated posterior probability
which conveys a certain confidence level of the hypothesis after
the training data has been observed. The NB algorithm assumes that
the data are normally distributed, P xijHkð Þ, a mathematical frame-

work of how the data are sorted into their various classes for a sample
2-class problem,Ha andHb, assumingHa carries a higher likelihood,
and can be seen as follows:

P Hað Þ
YN
i¼1

P xijHað Þ > P Hbð Þ
YN
i¼1

P xijHbð Þ ! P Hajxð Þ > PðHbjxÞ

(13)

where, for a specific class:

H ¼ argmaxP Hkð Þ
YN
i¼1

P xijHbð Þ (14)

where k2{1,2, : : : .k}, and H is the most likely class given a feature
vector x.

4) Fuzzy logic (FL)

FL contributes toward the use of linguistic variables to model
expert knowledge on a certain process, and in a sense extends
classical logic toward a form of truth modeling [28, 29]. Looking
at this from a set theory perspective, where classical logic
typically requires an element to be either in a set or not, fuzzy
logic allows for partial membership within a set. The fuzzy sets
(FS) are a component of FL that carries the extent to which an
element belongs to a particular set.

The type 1 FL is adopted for use in this work and utilizes linguistic
variables such as small, medium, and large with respect to the size of a
building, for example, based on expert knowledge. The term
“membership function” (MF) is currently used in FL systems and
refers to the extent of the similarity of an element within a set to the
FS. For the deployment of an FL system into an engineering or
clinical setting, a complete system comprising the following
constituent parts is required, a diagram ofwhich can be seen in Figure 2.

Fuzzification: the fuzzification step takes in information about
the process at hand, which contains a degree of vagueness and forms
an internal representation of this information [28, 29].
This process makes the crisp input quantities fuzzy. The premise
behind fuzzification is that many quantities which are presumed
crisp, carry a significant amount of uncertainty [28, 29]. For
example, the quantity “about 6 feet tall” carries uncertainty in terms
of vagueness of information. The ammeter usually outputs crisp
current values, but this could be subject to several errors which
would result in imprecision. Fuzzification provides a mechanism to
represent, and consequently handle, these types of uncertainties.

Rule base: the rule base aspect of the FL system is responsible
for the mapping of linguistic input variables to a respective output
action, which forms a key component of what makes FL systems
interpretable and thus of high appeal to clinical applications [28,
29]. The rule base generically works with an IF-THEN architecture.

Inference engine: the inference engine is responsible for the
conversion of the input data into a respective action based on a set
of defined rules.

Defuzzification: the defuzzification process can be viewed as
an interpolation process that produces a final output – methods for
defuzzification include maxima, centroid, and center of sums
methods [28, 29].

For the implemented FL system in this work, the inputs were modeled
using Gaussians while the outputs were modeled using triangular
functions, the Mamdani type 1 fuzzy system was implemented, and
the defuzzification was achieved using a centroid approach.6https://uk.mathworks.com/help/stats/classificationsvm.fitposterior.html
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4. Results

The following classifier metrics were used to assess the
performance of the designed intelligent systems, as adopted from
previous studies, namely, accuracy (ACC), sensitivity (SEN),
specificity (SPEC), and area under the curve (AUC) [14].

4.1. Intelligent system 1

The clustering accuracywas calculated as the number of correctly
classified samples using the accompanying labels of the dataset as
ground truth, and it was seen that the FCM produced a clustering
accuracy in the region of 70%. The results for the FCM labeled
data for a 3-class cancer classification problem comprising Cancer,
Early-Stage Cancer, and No-Cancer can be seen in Table 1. From
this, it can be noted that both classifiers produced accuracies greater
than 80% across the four chosen classifier metrics, with the DT
seen to produce the best set of results, thereby showcasing the
notion that a tree-based splitting and classification method is
superior to the kernel method for this kind of dataset.

A diagrammatic flow of the proposed Intelligent System 1 can
be seen in Figure 3.

4.2. Intelligent system 2

The AHC clustering exercise produced a clustering accuracy of
69%. The result of the 2-class exercise to probabilistically predict
cancer vs no-cancer can be seen in Table 2. Both candidate
classifiers produced accuracies around 90%, with the PSVM
performing slightly better than the NB, which can be attributed to
the superiority of the complexity of kernel-based classifiers when
compared to NB, which has a simpler classification architecture.

As mentioned, for cases where cancer has been predicted by a
classifier, the associated probability estimate is to be passed
through to an FL system primed toward associating a cancer
stage based on a probabilistic rule set, as seen in Table 3. A
screenshot of the rules in MATLAB’s FL toolbox in symbolic
format can be seen in Figure 4.

A diagrammatic representation of the Intelligent System 2
framework can be seen in Figure 5.

Figure 2
FL system diagram showing the various system components

Rule Base

Fuzzification De-fuzzificationInference

Table 1
Results from the implementation of intelligent system 1

ACC SEN SPEC AUC

FCM-DT 88.3 ± 0.95 93.7 ± 0.95 86.0 ± 0.0 90.0 ± 0.0
FCM-QSVM 88.7 ± 0.48 87.0 ± 0.0 80.4 ± 0.97 83.7 ± 0.48

Figure 3
Diagrammatic representation of intelligent system

Feature
Vector

FCM
Unsupervised

Learning

Supervised
Learning

Decision

- Cancer

- Early- Stage 
Cancer

- No Cancer

- DT

- QSVM

Table 2
Results from the implementation of intelligent system 2

ACC SEN SPEC AUC

AHC-PSVM 94.2 ± 0.79 93.4 ± 1.10 96.0 ± 0.0 94.0 ± 0.0
AHC-NB 90.9 ± 0.74 89.4 ± 0.70 92.5 ± 0.85 90.8 ± 0.63
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Contrasting both sets of intelligent system architectures, it can
be seen that Intelligent System 1 produces slightly lower classifier
performance metrics, but provides more insight on various stages
of the prostate cancer, while posing a simpler computational
architecture, which also implies a simpler hardware demand and
maintenance requirement from an implementation perspective.

While Intelligent System 2 provides a higher set of
classification metrics, there are more models involved in the
overall architecture; hence, it is envisaged to be relatively
more expensive to implement and maintain from a
practicality perspective. The mechanism through which a
cancer stage is estimated in Intelligent System 2 is through an
indirect means and therein an inference approach via
probability estimates; thus, it may be possible that this aspect
of the system may be a cause for concern from a clinical
application perspective.

It can also be noted from the architecture of both intelligent
systems that neither one contains a black box prediction
architecture; thus, both systems have model interpretability
incorporated within them as part of their respective designs.

4.3. Feature ranking exercise

In order to identify the key drivers within the dataset driving the
differentiation between the prediction of the prostate cancer vs no-
cancer, a feature ranking exercise was conducted using the Relief
algorithm, which is a filter-based feature selection algorithm [30].
The following were the five top-ranked features in order of
importance from the algorithm:

1) Compactness
2) Fractal dimension
3) Smoothness
4) Radius
5) Perimeter

Given the scope of this paper, it is not immediately apparent how
these can be linked directly to the structure and physiology of the
male prostate in order to translate this information into tangible
biomarkers. Future work will involve a further study around
this basis.

Table 3
Probability values and associated potential cancer stage

Probability value Potential cancer stage

0.4–0.5 Early stage
0.5–0.7 Medium stage
0.7+ Advanced stage

Figure 4
FL representation of the rule set in symbolic format from the MATLAB FL toolbox

Figure 5
Diagrammatic representation of intelligent system 2

Feature
Vector

AHC
Unsupervised

Learning 

Probabilistic
Supervised
Learning

Fuzzy Logic Decision

- Cancer

- No Cancer

- PSVM

- NB

- Gaussian and 
Triangular 
Membership 
Functions

- If-Then Rules
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5. Conclusion

Prostate cancer is a widespread cancer which accounts for a
high mortality in adult males. Medically it has been seen that
factors such as age, family history, and ethnicity are some of the
main drivers behind the cancer, alongside the notion that Black
and African ethnicity have a greater predisposition toward this
variant of cancer.

Machine learning models have been investigated in this
study toward the prediction of prostate cancer. The source of
the data is the Kaggle dataset, which contains features
extracted from digital examination of 100 patients. This study
showcases the application of a relatively “Strong AI”
framework underpinned by unsupervised learning for the
design of a contrastive set of Intelligent Systems to self-sort
the prostate cancer dataset prior to the application of a
supervised learning model. Two sets of Intelligent Systems
were designed, where the first candidate system works with the
FCM followed by supervised learning for the prediction of
whether a patient has cancer, alongside the detection of a
potential early-stage cancer which is medically difficult to
diagnose with current methods. The second Intelligent System
is underpinned by AHC alongside probabilistic learning, which
allows for a cancer stage inference via the use of probabilistic
estimates and is further automated with the application of a
type 1 Mamdani FL system.

The results from both sets of Intelligent Systems showcased
various aspects toward predicting prostate cancer alongside
various associated cancer stages using different prediction
frameworks. Both of the systems can be seen to carry
interpretability due to the refrainment from the use of black box
prediction architectures and are therein likely to carry a high
degree of clinical appeal for a candidate decision support
system. From a practical perspective, it is envisaged that
Intelligent System 2 is likely to carry a greater resource demand
for the implementation of the system due to its model
architecture, while Intelligent System 1 offers a lower hardware
implementation requirement.

Future work in this area is set to involve the investigation of the
use of regression techniques that will allow for a continuous cancer
stage estimation, as has been shown in separate studies [31, 32]. The
complexity of the FL system can also be expanded by including
further rule sets and clinical expert intuition in order to further
robustify the system and perhaps contribute toward making it
more informative.

It should be noted that the proposed prediction models are
intended toward forming a key component in a cybernetic
architecture which facilitates human-machine collaboration
between clinical experts and a prediction machine as part of
strides toward an enhanced platform for improving care
strategies within clinical medicine.

Furthermore, other aspects of extending the proposed work
could involve the development of a cloud-based “human health
monitoring solution”, where further considerations such as data
storage and networking need to be considered.
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