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Abstract: Prostate cancer is a widespread and global disease which affects adult males – it is said that key causes of the cancer
include age, family history and ethnicity. In this study, the Kaggle prostate cancer dataset, comprising of data of 100 patients with
a mixture that both had cancer and did not have cancer, was used alongside machine learning prediction models for the design of
unsupervised and automated intelligent systems for the prediction of prostate cancer. Two intelligent systems were designed and
underpinned by unsupervised learning algorithms, namely, fuzzy c-means and agglomerative hierarchical clustering, where the
various intelligent systems were able to make a prostate cancer prediction with accuracies of over 80% for the various
classification metrics, alongside being able to predict an associated stage of the prostate cancer. Both designed intelligent systems
offer a complimentary alternative to each other, and their relative merits are discussed in the paper.
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1. Introduction
Prostate cancer accounts for a high rate of mortality worldwide; the American Cancer Society, for example, provided a

statistic which indicated that over 190,000 men would be diagnosed with prostate cancer in 2020 [1]. The causes of prostate
cancer are broad and multifactorial, nonetheless the consensus reached from dedicated review studies is that there are three key
drivers behind the onset of prostate cancer, namely, age, family history and ethnicity [2-5]. The age of a male has been long
viewed as an established driver towards prostate cancer; statistically speaking, males over 70-years-old have a 1 in 8 chance of
being diagnosed with prostate cancer, while under 40-year-old males are statistically unlikely to be diagnosed with prostate
cancer. In terms of family history, for prostate cancer to be fully deemed as a hereditary case, it is said that it needs to have
affected either three generations, three first-degree relatives, or for two relatives to have been diagnosed prior to the age of 55 [3].
It is also said that men with a first degree relative who has been diagnosed with prostate cancer have up to a 3-times likelihood of
being diagnosed with prostate cancer when compared with an individual with no family history [6].

Importantly, prostate cancer diagnoses and incidence have been seen to be related to ethnicity, where males with African
ethnicity carry the highest number of prostate cancer diagnoses worldwide. In the United States of America – despite a drop in
the overall mortality rate since the early ‘90s – prostate cancer related deaths amongst African Americans appear to be over twice
the number of Caucasian males [7, 8]. With further investigation into this discrepancy, it has been noted on a genetic scale that
different gene expression exists between a case study involving African Americans and Caucasian patients, therein implying
racial subtleties in the synthesis and metabolism of androgens [3, 9].

The human prostate is the size of a walnut, and it forms a functional part of both the endocrine and reproductive systems,
while one of its functions is the secretion of seminal fluids which are used to nurture and facilitate the transportation of sperm [1,
10]. The atrophy and proliferation of prostate cells are dependent upon androgens (i.e., testosterone) which are effectively steroid
hormones that develop the male characteristics via binding to androgen receptors [1, 10, 11]. Androgens are generally produced
via negative feedback involving the testicular-hypothalamic-pituitary, which ensures the required levels of androgen are
produced in a balanced fashion[1]. The rapid increase in the number of prostate cells gives rise to a prostate-specific antigen
(PSA), which is normally contained inside the prostate wall, except during the creation of prostate cancer cells, which ultimately
leads to the disruption of cell walls and therein a leakage of PSA [11]. This serves as a biomarker for prostate cancer and serves
as a surrogate for the estimation of tumour volumes computationally[11]. An image showing the various stages of development
of prostate cancer can be seen in Figure 1 [12].
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Figure 1 An image of the various stage of prostate cancer

Due to the phenomenon of PSA leakage, the onset of prostate cancer diagnosis usually commences with a blood test to
measure the PSA levels, and is closely followed up by digital rectal examinations such as prostate biopsy and transrectal
examinations [1]. Pending the positive diagnosis of a cancer, a Gleason index score is calculated which informs both the risk
group of the patient and the potential treatment sources. Urodynamic-based methods have also been proposed by various authors
as a means of inferring growth of the prostate via the closure of the urinary tract and therein the flow rate of urine; but despite the
success of this method, it continues to remain mostly an auxiliary source in the diagnosis and monitoring of prostate cancer
[13,14].

Machine learning has been extensively applied in various aspects of clinical medicine over the years and has been viewed as
a useful tool which can contribute towards bridging the gap between limits of medical knowledge and patient needs, and
contributing towards enhancing clinical care strategies via the use of varied information sources towards predicting risks for
various outcomes [15, 16]. From the literature, various machine learning methods have been applied towards the prediction of
prostate cancer. These methods primarily hinge on a supervised learning architecture which is deemed a form of ‘weak AI’ and
relies upon a form of external expert-based intervention to label the training sample set before the designated machine learning
algorithm learns for the various data classes [17-24].

Furthermore, these applied methods in the literature show a continued trend of utilising a binary-based prediction framework
(i.e., cancer/no-cancer) for the training of the machine learning classifier, which limits the insight provided by the classifier to the
clinician, especially for a disease like cancer where the treatment delivered is dependent on the stage of the cancer. As a means
towards providing a solution to this shortcoming, this study uses the prostate cancer dataset from the Kaggle website [25],
containing geometric features from digital examinations performed across 100 patients, to design two contrastive predictive
systems. These systems are underpinned with unsupervised learning algorithms and provide a predictive insight into the stage of
the cancer, which would carry high appeal in a clinical setting [16].

Specifically, the contributions made in this manuscript are as follows:

-The application of fuzzy c-means unsupervised learning to create class labels for the data, followed by supervised learning
to identify whether prostate cancer is present, and a subsequent prediction of the stage of cancer for cases where the patient does
indeed have cancer

-The application of the agglomerative hierarchical unsupervised learning method, alongside probabilistic supervised
learning and fuzzy logic, to create an intelligent system capable of inferring a cancer stage given an estimated probability for a
patient who is predicted to have prostate cancer

The intention is that either of these intelligent prediction models can play the role of a prediction machine in a previously
proposed clinical cybernetic system involving human-machine collaboration that is poised towards enhancing care for cancer
patients via the augmentation of both human and Artificial Intelligence within a clinical setting.
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2. Mathematical Prostate Cancer and Dataset

2.1.Mathematical Prostate Cancer

Mathematical models have a high appeal in the study of cancer due to the complexity of the disease, and help with the
typical ‘what’ and ‘how’ questions, which include ‘the effectiveness of a care therapy for a specific patient’, ‘optimal dosage’,
and ‘least vs most effective treatments’ to name a few [1]. Although this paper is not a theoretical study, the intention is to
present a mathematical model around prostate cancer and immunotherapy to show a mathematical relationship between the
different variables and immunotherapy action as part of the prostate cancer disease. The models presented here are adopted from
the work done by Kronik et al.[26] and Badziul et al. [27], as follows:

For the cellular vaccine V:

dV
dt

=− KinvV
(1)

where is the rate of cell maturation after a vaccine, and is the number of vaccine cells necessary to take up maturation of a single
dendritic cell.

For the antigen-presenting dermal dendritic cells Dm:

dDm
dt

= ki V + Vp − kmDm
(2)

where Vp is the natural influx of mature dendritic cells, and km is the migration rate of dendritic cells migration from to the skin
to lymph nodes.

For the mature dendritic cells Dc:

dDc
dt

= αlkmDm − kCRDC
(3)

where αl is the fraction of antigen-presenting dendritic cells entering the lymph nodes.

For the ‘exhausted’ dendritic cells ��:

dDR
dt

= kCRDC − µDDR
(4)

where kCR is the rate of exhaustion of mature dendritic cells, and µD is the death rate of the ‘exhausted’ mature dendritic cells.

For the antigen specific effector cell �:

dC
dt

= acDC − µCC − kRCR
(5)

where ac is the effector cell recruitment by mature dendritic cells, µC is the effector cell death rate, and kR is the rate of effector
cell inactivation by a set of inhibitory cells.

For the regulatory/inhibitory cells �:

dR
dt

= aRDR − µRR
(6)

where aR is the rate of inhibitory cell recruitment by exhausted dendritic cells, and µR is the death rate of the inhibitory cells.

For the prostate cancer cells P:

dP
dt

= rP − apCP
hp

hp + P
(7)

where r is the tumour growth rate, ap represents the maximal prostate cancer killing efficacy, and hp is the effector cell
efficacy damping coefficient.
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2.2. Dataset

The dataset used as part of this study is the open-source data available on the Kaggle website containing data collected from
100 patients involving digital examination of their prostates, and contains post-processed values from the digitised images of the
prostate, namely, Radius, Perimeter, Texture, Smoothness, Area, Compactness, Symmetry, and Fractal Dimension[25]. The
dataset contained 68 cases where the patient was without prostate cancer and 32 cases where there was cancer present
(malignant); the various classes were balanced using the SMOTE algorithm, as applied in various prior studies [16, 28]. Due to
the various scales, ranges and values of the features within the dataset, the matrix containing all the features was standardised
prior to the classifier training. It is worth noting that data integration and heterogeneity is not an immediate concern for this kind
of dataset, due to the source of the data emanating from a clinical imaging modality.

3. Methods

3.1. Intelligent System 1

Fuzzy C-Means and Supervised Learning

3.1.1. Fuzzy C-Means (FCM): given a sample group of elements defined as X = {x1, x2, …. xn}, the FCM is an unsupervised
learning method that can partition the data into various groups based on its objective function [29]. In the FCM, membership
functions are used to express the extent to which a sample data point belongs to a certain cluster, with a value of 1 implying a
maximal value and full compatibility between a sample and a cluster.

The objective function used for the partitioning of data points into various clusters can be seen as follows:

Jm =
i=1

D

j=1

N

μijm�� xi − cj
2 (8)

where D represents the number of data points, N is the total number of clusters, m is the fuzzy partition matrix exponent, xi
is an ith data point, cj is a cluster centroid, and μij is the degree of membership of a candidate point xi in a jth cluster.

For the work done in this paper, the fuzzy partition matrix exponent was chosen to be 2, while the soft clustering option was
utilised with a set membership function value of 0.6 in order to help identify candidate patients who have eligibility in both
clusters (cancer and no-cancer), and thus could potentially be an early-stage cancer.

3.1.2. Supervised Learning Algorithms: The labelled data from the FCM was passed into a set of supervised learning
algorithms, where in this stage the following sets of supervised learning algorithms were applied and contrasted.

- Decision Tree (DT): decision trees are a class of non-parametric learners which apply a Boolean-like logic towards sorting
data into various classes, and are typically regarded as a white-box-based modelling approach due to the transparency associated
with their classification process [16]. The mathematical underpinning of decision trees can be seen in Nsugbe et al. [16].

- Quadratic Support Vector Machine (Q-SVM): this classifier is of an iterative form and works towards finding an optimal
separation boundary between data classes in a high dimensional subspace, while utilising a portion of the data known as support
vectors for this[15, 16]. The classifier utilises a ‘kernel’ trick which is a computationally effective means of projecting the data
into a high dimensional subspace where the class boundaries are applied and the overall structure is preserved[15, 16]. The
quadratic kernel was used and therein a non-linear separation boundary between the respective data classes; the mathematical
formulation and prior applications of the classifier in related studies can be seen in Nsugbe et al. [15] and Nsugbe et al.[16].

The classification exercises were conducted using the MATLAB Classification Learner Application which, for a selected
model and options, iteratively tunes for the best parameters that fulfil the selected architecture; the classifiers were validated
using a k-fold cross validation framework with k chosen to be 10, while the data was split into 80% for training and 20% for
validation purposes.

3.2. Intelligent System 2

3.2.1. Agglomerative Hierarchical Clustering, Probabilistic Learning and Fuzzy Logic

3.2.2. Agglomerative Hierarchical Clustering (AHC):

This is an unsupervised method that utilises a hierarchical tree-based format to produce distinct classes for unlabelled data
[35]. The three key steps associated with the computation of the AHC include:

- A similarity calculation using the default Euclidean distance, assuming points xs and xt, expressed as follows:
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dst2 = (xs − xt)(xs − xt) (9)

where d denotes the Euclidean distance.

- After the first step, data points within proximity of each other are associated together using a linkage function in an
iterative fashion. The Ward’s linkage function was applied in the implementation of the algorithm in this study, and is
mathematically expressed as follows:

2nrns
(nr + ns)

xr� − xs� 2
(10)

where 2 is the Euclidean distance metric, xr� and xs� are centroids for candidate clusters r and s, and nr and ns are the
number of points assigned to those two clusters.

- The final stage involves the pruning of the dendrogram clusters into distinct groups as part of the final partitioning process,
and involves the identification of groupings within the hierarchy of the dendrogram.

3.2.3. Supervised Learning Algorithms: In this scenario, the labels produced by the AHC were passed towards a set of
probabilistic supervised learning algorithms, as follows:

- Probabilistic Support Vector Machines (PSVM): this algorithm works in the same way as the standard support vector
machine but utilises the Platt scaling mechanism to convert the classification scores from the model, which yield binary class
labels into probability distributions across various classes[30, 31]. This Platt scaling allows for the obtaining of a probabilistic
score associated with a class prediction which, unlike the classical classification, provides an associated degree of certainty about
the prediction [30, 31]. The Platt scaling works with a fitting process where the classification scores from a model are converted
to a probabilistic reflection via the fitting of a logistic regression model, which is expressed mathematically as follows:

1
1 + exp (Af x + B)

(11)

where f x represents the classifier scores, and parameters A and B are learned as part of the algorithm’s fitting process.

The medium Gaussian kernel was used for the support vector machine’s computations prior to the probabilistic conversion.

- Naïve Bayes (NB): underpinned by the Bayes probabilistic rule, and expressed in equation 12, the NB can provide
associated probabilities for label class predictions [16, 32].

P Hk E = P E Hk P(Hk)
P(E)

(12)

where Hk represents the number of classes, P E Hk is the joint probability with a prior Hk , P(Hk) is an initial probability
held by the hypothesis, P(E) is a variable for the assumption that the training data can potentially be observed with the supplied
information within the feature vector, while P Hk E is the estimated posterior probability which conveys a certain confidence
level of the hypothesis after the training data has been observed. The NB algorithm assumes that the data is normally distributed,
P xi Hk , a mathematical framework of how the data are sorted into their various classes for a sample 2-class problem, Ha and Hb,
assuming Ha carries a higher likelihood, and can be seen as follows:

P Ha
i=1

N

P xi Ha > P Hb�
i=1

N

P xi Hb� → P Ha x > P(Hb|x) (13)

where, for a specific class:

H = argmaxP(Hk)
i=1

N

P xi Hb� (14)

where k∈{1,2,….k}, and H is the most likely class given a feature vector x.
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Rule Base

Fuzzification De-fuzzificationInference

3.2.4. Fuzzy Logic (FL):

FL contributes towards the use of linguistic variables to model expert knowledge on a certain process, and in a sense extends
classical logic towards a form of truth modelling [33, 34]. Looking at this from a set theory perspective, where classical logic
typically requires an element to be either in a set or not, fuzzy logic allows for partial membership within a set. The fuzzy sets
(FS) are a component of FL that carries the extent to which an element belongs to a particular set.

The type 1 FL is adopted for use in this work, and utilises linguistic variables such as small, medium and large with respect
to the size of a building, for example, based on expert knowledge. The term ‘membership function’ (MF) is currently used in FL
systems, and refers to the extent of the similarity of an element within a set to the FS. For the deployment of an FL system into an
engineering or clinical setting, a complete system comprising the following constituent parts is required, a diagram of which can
be seen in Figure 2.

Figure 2 FL system diagram showing the various system components

- Fuzzification: the fuzzification step takes in information about the process at hand, which contains a degree of vagueness and
forms an internal representation of this information [33, 34].

This process makes the crisp input quantities fuzzy. The premise behind fuzzification is that many quantities which are
presumed crisp, carry a significant amount of uncertainty [33, 34]. For example, the quantity ‘about 6 feet tall’ carries uncertainty
in terms of vagueness of information. The ammeter usually outputs crisp current values, but this could be subject to several errors
which would result in imprecision. Fuzzification provides a mechanism to represent, and consequently handle, these types of
uncertainties.

- Rule Base: the rule base aspect of the FL system is responsible for the mapping of linguistic input variables to a respective
output action, which forms a key component of what makes FL systems interpretable and thus of high appeal to clinical
applications [33, 34]. The rule base generically works with an IF-THEN architecture.

- Inference Engine: the inference engine is responsible for the conversion of the input data into a respective action based on a set
of defined rules.

- Defuzzification: the defuzzification process can be viewed as an interpolation process that produces a final output – methods for
defuzzification include maxima, centroid and centre of sums methods [33, 34].

For the implemented FL system in this work, the inputs were modelled using Gaussians while the outputs were modelled
using triangular functions, the Mamdani type 1 fuzzy system was implemented and the defuzzification was achieved using a
centroid approach.

4. Results

The following classifier metrics were used to assess the performance of the designed intelligent systems, as adopted from
previous studies, namely, accuracy (ACC), sensitivity (SEN), specificity (SPEC) and area under the curve (AUC) [16].

4.1. Intelligent System 1

The clustering accuracy was calculated as the number of correctly classified samples using the accompanying labels of the
dataset as ground truth, and it was seen that the FCM produced a clustering accuracy in the region of 70%. The results for the
FCM labelled data for a 3-class cancer classification problem comprising Cancer, Early-Stage Cancer and No-Cancer, can be
seen in Table 1. From this it can be noted that both classifiers produced accuracies greater than 80% across the four chosen
classifier metrics, with the DT seen to produce the best set of results, thereby showcasing the notion that a tree-based splitting
and classification method is superior to the kernel method for this kind of dataset.
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Table 1 Results from the implementation of Intelligent System 1

ACC SEN SPEC AUC

FCM-DT 88.3 ± 0.95 93.7 ± 0.95 86.0 ± 0.0 90.0 ± 0.0

FCM-QSVM 88.7 ± 0.48 87.0 ± 0.0 80.4 ± 0.97 83.7 ± 0.48

A diagrammatic flow of the proposed Intelligent System 1 can be seen in Figure 3

Figure 3 Diagrammatic representation of Intelligent System

4.2. Intelligent System 2

The AHC clustering exercise produced a clustering accuracy of 69%. The result of the 2-class exercise to probabilistically
predict cancer vs no-cancer can be seen in Table 2. Both candidate classifiers produced accuracies around 90%, with the PSVM
performing slightly better than the NB, which can be attributed to the superiority of the complexity of kernel-based classifiers
when compared to NB, which has a simpler classification architecture.

Table 2 Results from the implementation of Intelligent System 2

ACC SEN SPEC AUC

AHC-PSVM 94.2 ± 0.79 93.4 ± 1.10 96.0 ± 0.0 94.0 ± 0.0

AHC-NB 90.9 ± 0.74 89.4 ± 0.70 92.5 ± 0.85 90.8 ± 0.63

As mentioned, for cases where cancer has been predicted by a classifier, the associated probability estimate is to be passed
through to an FL system primed towards associating a cancer stage based on a probabilistic rule set, as seen in Table 3. A
screenshot of the rules in MATLAB’s FL toolbox in symbolic format can be seen in Figure 4.

Table 3 Probability values and associated potential cancer stage

Probability Value Potential Cancer Stage

0.4–0.5 Early Stage

0.5–0.7 Medium Stage

0.7+ Advanced Stage
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Figure 4 FL representation of the rule set in symbolic format from the MATLAB FL toolbox
A diagrammatic representation of the Intelligent System 2 framework can be seen in Figure 5.

Figure 5 Diagrammatic representation of Intelligent System 2
Contrasting both sets of Intelligent System architectures, it can be seen that Intelligent System 1 produces slightly lower

classifier performance metrics, but provides more insight on various stages of the prostate cancer, while posing a simpler
computational architecture, which also implies a simpler hardware demand and maintenance requirement from an
implementation perspective.

While Intelligent System 2 provides a higher set of classification metrics, there are more models involved in the overall
architecture, hence it is envisaged to be relatively more expensive to implement and maintain from a practicality perspective. The
mechanism through which a cancer stage is estimated in Intelligent System 2 is through an indirect means and therein an
inference approach via probability estimates, thus it may be possible that this aspect of the system may be a cause for concern
from a clinical application perspective.

It can also be noted from the architecture of both intelligent systems that neither one contains a black box prediction
architecture, thus both systems have model interpretability incorporated within them as part of their respective designs.

4.3. Feature Ranking Exercise
In order to identify the key drivers within the dataset driving the differentiation between the prediction of the prostate cancer

vs no-cancer, a feature ranking exercise was conducted using the Relief algorithm, which is a filter-based feature selection
algorithm [36]. The following were the five top ranked features in order of importance from the algorithm:

- Compactness

- Fractal dimension

- Smoothness

- Radius

- Perimeter

Feature

Vector

AHC
Unsupervise
d Learning

Probabilistic
Supervised
Learning

Fuzzy Logic Decision

- Cancer

- No Cancer

- PSVM

- NB

- Gaussian and
Triangular
Membership
Functions

- If-Then Rules



Artificial Intelligence and Applications Vol. XX Iss. XX 2024
_________________________________________________________________

9

Given the scope of this paper, it is not immediately apparent how these can be linked directly to the structure and physiology
of the male prostate in order to translate this information into tangible biomarkers. Future work will involve a further study
around this basis.

5. Conclusion
Prostate cancer is a widespread cancer which accounts for a high mortality in adult males. Medically it has been seen that

factors such as age, family history and ethnicity are some of the main drivers behind the cancer, alongside the notion that Black
and African ethnicity have a greater predisposition towards this variant of cancer.

Machine learning models have been investigated in this study towards the prediction of prostate cancer. The source of the
data is the Kaggle dataset, which contains features extracted from digital examination of 100 patients. This study showcases the
application of a relatively “Strong AI” framework underpinned by unsupervised learning for the design of a contrastive set of
Intelligent Systems to self-sort the prostate cancer dataset prior to the application of a supervised learning model. Two sets of
Intelligent Systems were designed, where the first candidate system works with the FCM followed by supervised learning for the
prediction of whether a patient has cancer, alongside the detection of a potential early-stage cancer which is medically difficult to
diagnose with current methods. The second Intelligent System is underpinned by AHC alongside probabilistic learning, which
allows for a cancer stage inference via the use of probabilistic estimates and is further automated with the application of a type 1
Mamdani FL system.

The results from both sets of Intelligent Systems showcased various aspects towards predicting for prostate cancer alongside
various associated cancer stages using different prediction frameworks. Both of the systems can be seen to carry interpretability
due to the refrainment from the use of black box prediction architectures, and are therein likely to carry a high degree of clinical
appeal for a candidate decision support system. From a practical perspective, it is envisaged that Intelligent System 2 is likely to
carry a greater resource demand for the implementation of the system due to its model architecture, while Intelligent System 1
offers a lower hardware implementation requirement.

Future work in this area is set to involve the investigation of the use of regression techniques that will allow for a continuous
cancer stage estimation, as has been shown in separate studies [37, 38]. The complexity of the FL system can also be expanded
by including further rule sets and clinical expert intuition in order to further robustify the system and perhaps contribute towards
making it more informative.

It should be noted that the proposed prediction models are intended towards forming a key component in a cybernetic
architecture which facilitates human-machine collaboration between clinical experts and a prediction machine as part of strides
towards an enhanced platform for improving care strategies within clinical medicine.

Furthermore, other aspects of extending the proposed work could involve the development of a cloud-based ‘human health
monitoring solution’, where further considerations such as data storage and networking need to be considered.
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