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Abstract:Detection of baby cry is an important task of babymonitoring application. Effective and real-time detection of baby detection makes the
baby well cared for while releasing the care giver’s pressure. Almost all existing methods for detection of baby cry use supervised support vector
machines, CNN, or their varieties. In this work, we propose to use weakly supervised anomaly detection to detect baby cry in which baby cry is
detected as an anomalous audio event. In this weak supervision framework, we only need weak annotation of if there is a cry in an audio file. We
design a datamining technique using the pre-trainedVGGish feature extractor and an anomaly detection network to obtain short audio files from long
untrimmed audio files. The obtained dataset is used to train a delicately designed super lightweight CNN for cry/non-cry classification. This CNN is
then used as a feature extractor in an anomaly detection framework to achieve better cry detection performance on untrimmed audio files or streams.
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1. Introduction

Baby monitoring is an important application of video surveillance,
computer vision, and machine learning. It helps take better care of
babies and reduces the burden of caregivers. Baby cry is a signal to
communicate their needs including hunger, discomfort, or pain. It is
used not only for caregiving but also for disease diagnosis.

The goal of is to detect the baby’s cry and localize its starting
and end position in an audio signal. It is a challenging task since the
baby’s cry sound may be mixed with different background noise in
various environments, such as home and hospital.

In recent years, the detection of baby cries has been studied using
both traditional machine learning and deep learning algorithms. The
traditional algorithm, typically Support Vector Machine (SVM),
works well on hand-crafted acoustic features in both the frequency
and time domains. Typical examples include Mel frequency cepstral
coefficients (MFCCs) and their varieties, pitch-related features,
harmonic features, energy, zero crossing rate, etc. For a review of
these approaches, the readers are referred to References [1–3].

The deep learning algorithms mostly use CNN [1–6], and some
use other types of neural network [7]. In Reference [8], a CNN and
other features are fused to improve detection performance. In
Reference [9], it trains an LSTM-with-self-attention model on
infant-cry samples automatically detected from the recorded audio
through cluster analysis and Hidden Markov Model classification.
It has been shown in References [1, 3] that the performance of
CNN is much better than traditional machine learning. On the other
hand, the complexity of the CNN may be high, preventing it be
used in common embedded devices, like low-cost IP cameras or
tablets. In this paper, we will address this issue by designing a
super lightweight CNN.

Most, if not all, existing CNNmethods use supervised learning.
The work by Coro et al. [9] is defined as self-training but it generates
a supervised dataset for the training of an LSTM model. Therefore,
frame-level annotation is needed. This annotation is very
time-consuming and prone to human mistakes. In the few datasets
available online, some of the audio files [10] are trimmed and
annotated, and some others [11] are untrimmed with only audio-
level annotations. In this work, we propose to use weakly
supervised anomaly detection [12] to detect baby cries on the
audio signal. This weak supervision only requires weak
annotation, i.e., if there is a cry in the audio file without frame-
level annotation, therefore making the data annotation a lot easier.

Based on this weakly supervised anomaly detection, and a well-
known pre-trained VGGish network [13] for audio feature
extraction, we design a data mining technique to obtain frame-
level datasets for supervised CNN classification. We use this
dataset to train a delicately designed super lightweight CNN,
which runs very fast on embedded devices. This CNN, as the
feature extractor in an anomaly detection framework, gives better
performance than the CNN alone.

After this work, we realized that there are multiple years of the
Workshop on Detection and Classification of Acoustic Scenes and
Events (DCASE). For its 2024 Workshop, please refer to the
website https://dcase.community/challenge2024/. Task 4 – Sound
Event Detection with Heterogeneous Training Dataset and
Potentially Missing Labels is most relevant to our work. Its 2024
technical reports [14–20] have a summary of all algorithms
explored in Task 4.

The contribution of this paper is three-fold:

1) First, we propose to use anomaly detection to detect baby cries in
audio signals. We deal with single-type audio event detection,
rather than multiple-type audio event detection in the DCASE
workshops.*Corresponding author: Weijun Tan, LinkSprite Technologies, USA.
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2) We design a data mining technique using the pre-trained VGGish
[13] feature extractor and an anomaly detector. The obtained
dataset has a similar performance to an annotated dataset on
our lightweight CNN.

3) We design a super lightweight CNN. This CNN makes our
framework possible to run on embedded devices.

2. Related Work

In this section, we first review the literature on baby cry
detection. Then, we review the anomaly detection approaches on
video signals. We borrow this anomaly detection idea and extend
it to baby cry detection on audio signals.

2.1. Baby cry detection

The first step of baby cry detection is audio signal pre-
processing. The main tasks are denoising and audio segmentation.
The purpose of denoising is to filter out noise in unwanted
frequency bands. Audio segmentation is to use a vocal activity
detector to remove silent duration. In this work, we treat silent
duration as non-cry segments and directly apply cry detection to it.

The signal processing features of audio signals can be
categorized into cepstral domain, prosodic domain, time domain,
image domain, and wavelet domain [2]. The cepstral domain is
the most widely used. It includes the MFCCs, linear frequency
cepstral coefficients (LFCCs), and the corresponding spectrogram.
Please note that the spectrogram is 2D data, while the cepstral
coefficients are several scalar data. Baby cry detection is essentially
a binary classification task. A variety of classification techniques
can be used, including 2-D CNN, 1-D CNN, SVM, KNN, and
multiple-layer perceptron (MLP), LSTM. In previous work [3, 4, 9,
21–26], these different features and classification methods are used
on their private datasets. Since their datasets are private, it is
impossible to conclude which is better. However, in their
comparison, a common recommendation is that CNN outperforms
the traditional machine learning methods. For a complete review,
please refer to References [1–3].

As a super-set of baby cry detection, audio anomaly detection
typically uses unsupervised learning [27]. The work by Abbasi et al.
[28] presents a large audio dataset for anomaly detection including
baby cry detection. However, even though the term anomaly
detection is used, in their detection algorithm, audio files are first
cut into small segments then supervised learning is used to classify
every segment. In Reference [5], baby cry detection in a real-world
environment is explored. In DCASEs (see technical reports [14] and
of previous years), multiple audio events are detected using
supervised learning, self-supervised learning, or unsupervised learning.

2.2. Anomaly detection on videos

Weakly supervised anomaly detection only uses video-level
annotation. This annotation only gives a binary label of abnormal
or normal for a video. Sultani et al. [12] propose the MIL
framework using only video-level labels and introduce the large-
scale anomaly detection dataset, UCF-Crime. This work inspires
quite a few follow-up studies [6, 29–35].

However, in theMIL-based methods, abnormal video labels are
not easy to be used effectively. Typically, the classification score is
used to tell if a snippet is abnormal or normal. This score is noisy in
the positive bag, where a normal snippet can be mistakenly taken as
the top abnormal event in an anomaly video. To deal with this
problem, Zhong et al. [6] treat this problem as a binary
classification under a noisy label problem and use a graph

convolution neural (GCN) network to clear the label noise. In
RTFM (robust temporal feature magnitude) [33], a temporal
feature magnitude is used to select the most reliable abnormal
snippets from the abnormal videos and the normal videos. They
unify the representation learning and anomaly score learning by a
temporal feature ranking loss, enabling better separation between
normal and abnormal feature representations, and improving the
exploration of weak labels compared to previous MIL methods.
More details will be given later.

3. Proposed Methods

3.1. Anomaly detection in audios

The task of anomaly detection is to find and localize anomalous
or abnormal events in videos. There are self-supervised methods
trained only on normal datasets and weakly supervised methods
trained on both abnormal and normal datasets annotated with
video or audio-level labels. The weakly supervised anomaly
detection in videos is first proposed in Reference [12]. It uses a
multiple-instance learning (MIL) framework to find a segment in
the positive (abnormal) or negative (normal) data sample whose
classification scores are the maximum. Then the distance between
the two segment scores is maximized for the best discriminability.

In this work, we extend the anomaly detection from the video
signal to the audio signal. In videos, since the frame is 2D, therefore a
segment of frames is 3D. In audio signal, a segment is a 1D audio
signal and its spectrogram is 2D. So instead of a 3D CNN
backbone, a 2D CNN backbone is needed.

Let Va and Vn represent the segments in the abnormal and normal
audio. The MIL expects to have the following objective function,

max
i2Ba

f ðVi
aÞ > max

i2Bn

f ðVi
nÞ (1)

where Ba and Bn are the bags of segments in the abnormal and normal
audio, f is the predicted anomaly score in the range of 0 and 1. The
functionmax is taken over all instances in a bag. It is used because the
segment-level annotation is not available. It is expected that in the
positive bag, the highest-scored instance is a true abnormal
segment. The highest-scored instance in the negative bag is the
one most similar to the positive bag but is a negative instance.
This makes the negative instance a hard one and therefore benefits
the discriminability in the model training. To push the positive
instance and negative instance further apart, the MIL ranking loss
is defined as

lðBa;BnÞ ¼ max 0; 1�max
i2Ba

f ðVi
aÞ þmax

i2Bn

f ðVi
nÞ

� �
(2)

It is worth noting that this loss function looks similar to the
contrastive loss function which is used to separate two or
more classes as far as possible. Two regularization terms, the
smoothness term and the sparsity term, are added to it. So the
overall loss function is [12],

l ¼max 0; 1�max
i2Ba

f ðVi
aÞ þmax

i2Bn
f ðVi

nÞ
� �

þ λ1

X
i

ðf ðViþ1
a Þ � f ðVi

aÞÞ2 þ λ2

X
i

ðf ðVi
aÞÞ2

(3)

It is expected in Equation (1) that abnormal segments have higher
scores than normal segments. However, this is not always true.
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A few methods [30–35] have been studied how to improve the score
quality so that the correct abnormal segment is chosen in the
abnormal bag. In the work RTFM [33], a different approach is
used. Instead of using the classification score as
the criterion to choose the abnormal segment, the authors
propose to use a feature magnitude, which they believe has better
discriminability between abnormal and normal instances.
Furthermore, they propose to use multiple instances whose feature
amplitude is the largest and call them the top-k instances. In their
approach, the MIL ranking loss is defined by the feature magnitude,

lFðBa;BnÞ ¼ maxð0;m� dðmðVtop�k
a Þ;mðVtop�k

n ÞÞ (4)

where Xtop�k
a and Xtop�k

n are the top-k segments whose feature mag-
nitudes are the largest k instances out of the abnormal and normal
bag, f is the feature magnitude function, m is a predefined margin,
and d is the defined distance function between the two sets of top-
k features. In their implementation, this function is simply the square
of the mean of the top-k feature magnitude.

The standard cross-entropy loss is used as the classification loss.
However, it is applied to the top-k segments whose feature
magnitude is the largest. If k> 1, the scores are averaged before
feeding into the cross-entropy loss function,

lSðBa;BnÞ ¼ �y logðf ðXtop�kÞ � ð1� yÞ logð1� f ðXtop�kÞÞ (5)

The same smoothness term and sparsity term are also used, so the
overall loss function is,

lðBa;BnÞ ¼ lS þ αlF þ λ1

X
i

ðf ðViþ1
a Þ � f ðVi

aÞÞ2 þ λ2

X
i

ðf ðVi
aÞÞ2

(6)

where α, λ1, and λ2 are predefined weight factors.
In addition, a multi-scale (dilated convolution) non-local

aggregation (MSNL) block is used [33] on the feature extracted
from the pre-trained CNN backbone. This block is also important
for the feature magnitude training. Without this block, the feature
is fixed and cannot be learned. The MSNL is used in Reference
[33], but other simpler networks, e.g., a few full-connection (FC)
layers may also work.

3.2. Proposed anomaly detection framework

The overall block diagram of our proposed network is
illustrated in Figure 1. The style of the figure is borrowed from
Reference [12]. A framework similar to RTFM [33] is used, with
all necessary modifications for anomaly detection of baby cries
in audio.

The abnormal or normal audio signal is first divided into a
certain number of equal-length segments. We use 16 in the figure
as an example. Every segment is called an instance in the positive
or negative bag of instances. All instances pass through a pre-
trained CNN backbone, and CNN features are extracted. In
Figure 1, the CNN backbone is called BlazeNet – our delicately
designed super lightweight network. This CNN feature is fed into
a feature refinement network and a second CNN feature is
extracted. The features of the positive instance bag form the
positive feature bag, the same is true for the negative feature bag.
The top-k instances whose feature magnitudes are the largest
among this bag are selected. The classification network is
typically two or three FC layers. Through the backpropagation of
the loss function in Equation (5), the feature magnitude and the
classification are both learned at the same time.

In the implementation, when the audiofile is very short and the
audio signal is divided into 16 segments, every segment may not
belong enough for a frame. So CNN feature is extracted for every
frame, and then, linear interpolation is used to generate features
for 16 segments.

3.3. BlazeNet

Our goal of this study is to design a baby cry detection
framework that can work efficiently on embedded devices.

So the CNN backbone network must be super lightweight, and
at the same time, achieve good performance. We have tested the
popular MobileNet, ShuffleNet, SqueezeNet, and find that they
are still too large, no need to mention the popular VGGish-Net
widely used in audio recognition. We take the backbone from the
BlazeFace in Reference [36]. We make changes so that the input
size is 64 × 64 and the output feature size is 224. We use 16
BlazeBlocks, where the 11th BlazeBlock output is classified by
the first classifier FC1(88,2), and the 16th BlazeBlock output is
classified by a second classifier FC2(96,6). The outputs of these
two classifiers are flattened and concatenated and then classified

Figure 1
Anomaly detection of baby cry block diagram. The log-Mel-spectrum is not shown
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by the final FC(224,2) classifier. The details of our BlazeNet are
listed in Table 1. The total number of parameters of this model is
89,680 in PyTorch.

3.4. Data mining datasets for BlazeNet

The CNN backbone in Figure 1 is pre-trained and fixed when
the anomaly detection network (feature refinement network and
classification network) is trained. If this CNN and the anomaly
detection network are trained together end-to-end, the GPU can be
easily overflowed. For this reason, all previous anomaly detection
methods in videos use pre-trained 3D CNN.

So we need to pre-train the CNN backbone before the whole
anomaly detector framework can work to detect baby cries in
audio. To do so, we need some training data (herein including
validation and test dataset without confusion). One way to do so
is to prepare some audio data manually, which we do in this
work. More details will be given later. However, manually
annotating audio data is very time-consuming and is prone to
human mistakes. We propose a second way to mine training data
from a weakly annotated dataset and a different pre-trained CNN
backbone.

In Reference [11], the authors publish a large audio dataset
called AudioSet. At the same time, they publish a pre-trained
VGGish backbone [13] for CNN feature extraction. With their
default settings, the log-Mel-spectrogram is used on a 0.96-s
frame. The output CNN feature is 128-D. We use this VGGish
network to exact CNN features for audio files, then apply the
anomaly detection framework to it. So to make it clear, the 2D
BlazeNet in Figure 1 is replaced with the pre-trained VGGish
network. After the anomaly detection network (feature refinement
network and classification network) is trained, the framework is
set to inference mode, and all training, validation, and test datasets
are processed. Please note that, in the inference mode, the audio
files are not divided into 16 segments. Instead, the audio signal in

the form of a 1s-frame is used. Then, the top t 1s segments whose
classification scores are the largest are saved. In this way, we
obtain the new training, validation, and test dataset to train the 2D
BlazeNet.

The pipeline of the data mining and anomaly detection
framework for baby cry is shown in Figure 2. The blocks on the
left perform the data mining, and the blocks on the right perform
the anomaly detection of baby cry detection. Please note only the
training procedure of anomaly detection is plotted, and the testing
procedure can be derived accordingly.

4. Experiments

4.1. Datasets

Even though there are quite some publications on baby cry
detection, none of the used datasets are publicly available. We
search online and organize the datasets from the sources listed in
Table 2. Please note that the background of all these datasets is
clean except for the AudioSet [11], whose background is very

Table 1
Layers of our BlazeNet. The BlazeNet parameters are

number of input channels, number of output channels, kernel
size, and stride. The sequence of layers is from top to bottom,

from left to right

BlazeBlock Others

– Conv2D(3,24,5,2)
BlazeBlock-1(24,24,3,1) –

BlazeBlock-2(24,28,3,1) –

BlazeBlock-3(28,32,3,2) –

BlazeBlock-4 (32,36,3,1) –

BlazeBlock-5(36,42,3,1) –

BlazeBlock-6(42,48,3,2) –

BlazeBlock-7(48,56,3,1) –

BlazeBlock-8(56,64,3,1) –

BlazeBlock-9 (64,72,3,1) –

BlazeBlock-10(72,80,3,1) –

BlazeBlock-11(80,88,3,1) FC1(88,2)
BlazeBlock-12(88,96,3,2) –

BlazeBlock-13(96,96,3,1) –

BlazeBlock-14(96,96,3,1) –

BlazeBlock-15(96,96,3,1) –

BlazeBlock-16(96,96,3,1) FC2(96,6)
– cat(FC1,FC2)
– FC(224,2)

Figure 2
Pipeline of data mining and anomaly detection for baby

cry detection

Table 2
Dataset sources of baby cry we find online

Source Length Annotation
Cleaned
number Background

[10] 5s Baby Cry,
other 3

108, 324 clean

[12] 7s Baby Cry
only

482 clean

ESC-50 [10] 5s Baby Cry,
many others

40, 1960 clean

AudioSet [11] Untrimmed Baby Cry,
many others

1364, a
lot

noisy
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noisy. We clean the datasets and filter out the ambiguous cases. The
numbers of cleaned samples are listed in the table.

In total, we have 2624 baby cry audios and tremendous other
audios. We use all other audios in References [10] and then
collect randomly other audios in Reference [11]. The total number
of other non-cry audios is about the same as the number of baby
cry audio.

For the training of BlazeNet, we have two audio frame lengths,
5s, and 1s. If the length of an audio is longer than two times the
frame length, then more than one frame can be cut from an
audio file. After the cutting, we manually check if there is a
segment of a baby cry in the audiofile. The total audio frames
are randomly divided into training, validation, and test datasets
with a ratio 8:1:1.

For anomaly detection, we use two audio lengths: one is 5s, and
the other is the original audio file length. When the length is 5s, it is
the same dataset as above. In this case, the frame length is only 1s.
When the length is the original audio file length, the frame length is
also 1s.

Until very recently, we found that a new baby cry dataset was
released in Reference [5]. However, the link to where the dataset is
saved is broken. So it is not publicly available.

4.2. Implementation details

For the BlazeNet as a standalone CNN classification network on
baby cry detection, we implement it in PyTorch. The SGD is used as
the optimizer with a starting learning rate of 0.001 and momentum of
0.9. The training runs 60 epochs. The learning rate is decayed by a
factor of 0.1 every 20 epochs. A batch size of 32 is used. A single
Nvidia 1080TI GPU card is used.

For anomaly detection, we use the RTMF codebase [33] in
PyTorch. Every audio file is divided into 5 segments when the
input audio file is 5s long. It is divided into 10 segments when the
original audiofiles are used. The top-k is set to 2. Two dataset
iterators, one for the abnormal data and the other for the normal
data, are used. This way, the pairing of abnormal and normal data
is random, even when the numbers of abnormal and normal
samples are different. An initial training rate of 1E-3 is used, and
the training runs 20000 steps (we do not use epochs because the
abnormal data loader and the normal data loader are iterating).
A batch size of 128 is used.

For the VGGish input, the default log-Mel spectrogram
parameters are used, specifically, sampling rate= 16 K Hz,
number of frames in batch= 96, number of Mel bands= 64, FFT
window length= 0.025s, FFT hop length= 0.01s, min Mel
frequency= 125 Hz, max Mel frequency= 7500 Hz, log
offset= 0.01, example hop seconds= 0.96. The only change we
make is for example window seconds= 1s so that we have a 96 ×
64 log-Mel spectrogram output for every 1s of audio.

For the BlazeNet input, we use different log-Mel spectrogram
parameters and we use the Librosa library. When the example
window seconds= 1s, sampling rate= 8 K Hz (this is the audio
signal sampling rate on most IP cameras), number of Mel bands= 64,
FFT window length= 0.064s, FFT hop length= 0.01475, min Mel
frequency= 0 Hz, max Mel frequency= 8000 Hz. Other default
parameters are used. Please note that we use an FFT hop length
such that the spectrogram out size is 64 × 64, which is required
by BlazeNet. Resizing the Mel spectrogram array is not
recommended since it causes performance loss. When the
example window seconds= 5s, the FFT window length and
FFThop length are adjusted accordingly so the spectrogram out
size is 64 × 64.

Please note that, in all our performance evaluations, the data
unit is the 1s audio segment. In practice, we give detection results
for every 1s audio signal input.

4.3. Data mining using VGGish

We first test how VGGish [13] features work in the anomaly
detection network. The performance must be good for the data
mining to work well. From the standpoint of anomaly detection,
positive instances must have a larger score than negative instances
(see Equation (1)). In other words, the largest scored instances in
the abnormal bag must be truly positive instances.

We do this test on both the trimmed 5s audio files and the
untrimmed audiofiles as datasets. VGGish features are extracted
for 1s segments sequentially without overlap in every audiofile.
These features and their audio labels are used in training and
testing the anomaly detection network.

The experiment results are listed in Table 3.We observe that the
validation and test accuracy results are all higher than 0.90. We
believe this good performance will make the data mining method
work well, which will be verified later with the performance of
the standalone BlazeNet classification.

4.4. BlazeNet classification results

We first train the BlazeNet on trimmed 1s audios. The trimmed
5s audios are prepared manually. To get a 1s audio dataset, every 5s
audio is cut into 5 segments of 1s-long audio without overlap. When
the 1s audios are used in training, there are two modes. In the first
mode, all 5 segments of every 5s long audio file are used. In the
second mode, only 2 randomly selected segments are used. This is
for a fair comparison with the data mining method, where only
the top 2 segments are saved as training datasets.

Please note that in all these experiments, only the training
dataset changes, while the validation and test datasets stay the
same. In the last experiment, long untrimmed audios are added to
the training dataset. We argue that always using short 1s audio
files as validation and test datasets is reasonable because, in
practical applications, a decision per 1s audio signal is preferred
to avoid long latency.

The experiment results are listed in Table 4, where all the
accuracy results are taken at default threshold= 0.5. The accuracy
result of using all 1s segments is the best, and the one using
random 2 segments is a little bit worse. This is probably because
the selected segments do not cover as many cases as using all 1s
segments.

Considering the 5s audios are well annotated, any 1s segment
should be good to be used. When top-2 1s segments are mined
from 5s audios, we expect to have the same performance as the
random 2 1s segments, however, the results are not so. The
accuracy is worse than using the annotated data by 1%. We test
further two cases, one using only mined positive data, and the
other using only mined negative data. The results show that hard

Table 3
Performance of anomaly detection of baby cry using
VGGish features. Accuracy is measured at default

classification threshold= 0.5

Dataset Val Acc Test Acc

5s audios 0.9447 0.9312
Untrimmed audios 0.9370 0.9223
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negative samples with the highest scores in the mined negative data
are preferred, while the positive samples with the highest scores are
not preferred.

The performance of the mined data from the long untrimmed
audio is even worse. This is understandable since some negative
samples may be chosen as positive samples. However, as a
backbone for an anomaly detection framework, the backbone does
not need to be perfect. As in anomaly detection in videos, a
pre-trained 3D CNN is used without training on the anomaly
detection dataset [12, 33]. The experiment result will be shown in
the next subsection.

4.5. Anomaly detection results

In this subsection, we test the anomaly detection framework
shown in Figure 1 with the fixed BlazeNet, which has been
trained in the previous subsection.

In the first experiment, we use this method on the manually
annotated 5s audio files. The goal is to find the detection results
on every 1s audio segment and measure the accuracy. In this
experiment, since there are only 5 1s segments in a 5s audiofile,
the number of segments in anomaly detection is set to 5, and the
top-kis set to 2.

In the second experiment, long untrimmed audiofiles are used
as training datasets, while 5s audio files are used as validation and
test datasets. After looking at the distribution of the audiofile
length, we set the number of segments in anomaly detection to 10.
The top-k is still set to 2.

The experiment results are listed in Table 5.We observe that the
performance is very close to that using the VGGish feature in
Table 3, while the complexity of the BlazeNet is a lot lower than
that of the VGGish network. For BlazeNet trained at Table 4 Line
6, the performance is worse than the one trained at Table 4 Line 1.

So the quality of the BlazeNet feature does matter in the anomaly
detection performance. So manually annotating some datasets for
the BlazeNet is preferred.

4.6. Discussion: Anomaly detection vs.
classification

Our goal is to find a solution for baby detection on embedded
devices, so we ignore any results directly using the VGGish network
in inference mode. When comparing the results of BlazeNet in
Tables 4 and 5, we see that the performance of anomaly detection
is already more than 2% better than that of the standalone BlazeNet.

Furthermore, we note that we only use the accuracy at default
threshold= 0.5 in all these experiments (We use this threshold
because it is dominantly used in the training of a binary
classifier). So we do some analysis in terms of the max F1 score
and the ROC curve.

We collect prediction scores of all 1s audio segments in the test
dataset and then calculate the max F1 score and the corresponding
threshold. Finally, we calculate the test accuracy at this threshold.
The results are listed in Table 6. It is observed that for the
BlazeNet since it is a binary classification, the threshold to
achieve the max F1 is near 0.5, and the test accuracy at this
threshold is almost identical to the one in Table 4. While for
anomaly detection, for its nature of MIL ranking loss, the
threshold to achieve the max F1 is pushed to the 1.0 side.

The ROC curves of the same three cases in Table 6 are plotted in
Figure 3. The gain from the anomaly detection is obvious, and so is
the ROC AUC.

Table 5
Performance of anomaly detection of baby cry using BlazeNet
features. Two trained BlazeNet backbones from Table 4 are

used. Accuracy is measured at default classification
threshold= 0.5

Dataset Backbone Val Acc Test Acc

5s audios Table 4. Line-1 0.9457 0.9302
Untrim audios Table 4. Line-1 0.9141 0.9020
Untrim audios Table 4. Line-6 0.8652 0.8473

Table 6
Performance of anomaly detection of baby cry using BlazeNet
features. Two trained BlazeNet backbones from Table 4 are

used. Accuracy is measured at default classification
threshold= 0.5

Dataset Method F1-max Test Acc

5s audios BlazeNet 0.8873 0.8836
5s audios Anomaly 0.9241 0.9305
Untrim audios Anomaly 0.9306 0.9360

Figure 3
ROC curves of standalone BlazeNet and the anomaly detection

Table 4
Performance of BlazeNet as a standalone baby cry classifier.
Accuracy is measured at default classification threshold= 0.5

Dataset
Val
Acc

Test
Acc

All 1s segments from 5s audios 0.8868 0.8820
Random 2 1s-segments from 5s audios 0.8784 0.8654
Mined top-2 1s-segments from 5s audios 0.8609 0.8542
Mined positive top-2 1s-segments from
5s audios

0.8748 0.8562

Mined negative top-2 1s-segments from
5s audios

0.8748 0.8622

Mined top-2 1s-segments from untrimmed
audios

0.8142 0.8292
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5. Conclusion

In this paper, we studied baby cry detection in audio. We extend
an anomaly detection framework RTMF [33] from video to audio and
use it to detect baby cries in audio. Since anomaly detection
only requires audio-level annotation, it reduces significantly
the workload of annotating datasets for supervised training.
Furthermore, to make the detector simple and run fast, we designed
a super lightweight BlazeNet for baby cry/non-cry classification.
We designed a few experiments and showed that anomaly detection
can achieve better performance than the standalone BlazeNet
classification with a little bit of extra complexity.

To overcome the lack of dataset problem, we proposed to use
the anomaly detection framework with a pre-trained VGGish
backbone to mine training data from the AudioSet [11]. Even
though the BlazeNet trained with this data is not as well as the
one using manually annotated data, using this BlazeNet in an
anomaly detection framework still works relatively well.

This study demonstrates that weakly supervised anomaly
detection is a promising solution for baby cry detection. We can
reasonably believe that this method can extend to other single-
type audio event detection.
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