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Abstract: Medical imaging is a vital tool in the existing healthcare system for precise analysis and treatment of various medical conditions. The use
of artificial intelligence particularly machine learning and deep learning approaches has changed the interpretation of medical images and resulted in
substantial advances in the area. With the increasing occurrence of eye diseases and the imperative need for early diagnosis, artificial intelligence
presents potential solutions for the automatic, precise, and early detection of various eye problems. New advances in machine learning and deep
learning allow different ocular disorders to be automatically analyzed, classified, and segmented which leads to early and precise diagnosis. This
study attempts to give a comprehensive overview of the rapidly evolving field by reviewing the most recent approaches, challenges, and possible
uses of artificial intelligence in medical imaging for ocular illnesses with a focus on segmentation and classification. The research also presents
advanced methodologies such as transfer learning with MobileNet and U-Net for automating the diagnosis of various ocular problems using

classification and segmentation. The study highlights the importance of early and accurate diagnoses for better patient outcomes.
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1. Introduction

Medical images are crucial in modern healthcare for accurate
diagnosis and treatment of a wide range of medical disorders. The
application of artificial intelligence (Al), particularly deep learning
(DL), techniques has resulted in breakthroughs in the field of
medical image interpretation [1, 2]. Al-powered medical image
analysis has demonstrated tremendous promise in automating the
identification and characterization of anomalies in medical images
such as X-rays, magnetic resonance imaging (MRI) scans,
computed tomography (CT) scans, and histopathology slides.
Techniques such as convolutional neural networks (CNNs) and
recurrent neural networks have outperformed humans in tasks
including cancer detection, organ segmentation, and illness
categorization, creating new standards in the field [3-5]. Deep
fusion clustering (scDFC) is an innovative method introduced by
Hu et al. [6] intended for the analysis of single-cell RNA
sequencing data. This protocol powers DL approaches to improve
the accuracy of single-cell transcriptomic data clustering by
integrating data from numerous sources. The authors offer
insightful information on the processing of single-cell RNA-seq
data by signifying how scDFC advances clustering results when
compared to conventional methods. These advances have
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significantly improved the accuracy and efficiency of medical
image interpretation resulting in better patient care and results.
Recent advances in Al for medical image analysis have resulted in
the creation of sophisticated algorithms capable of detecting
minute patterns and abnormalities that the human eye may miss
[7, 8]. As a result of the advancements in this area, medical image
analysis has become much more accurate and effective, improving
patient care and results [9-11]. Even with the advancements, there
are still issues with the current strategies. Obstacles including
interpretability, scalability, and resilience in many therapeutic
settings continue to exist. Understanding these limitations is
essential to create solutions that not only deal with the present
issues but also foresee future medical image analysis needs. Thus,
in this rapidly evolving setting, it becomes imperative to show
how new solutions contribute to ongoing advancements in
addition to addressing the modern problems that current methods
are facing. The purpose of this study is to examine the rapidly
evolving field by reviewing the most recent approaches,
challenges, and possible uses of Al in medical imaging for ocular
illnesses with a focus on segmentation and classification, and
advance the area by filling in important gaps in the existing
approaches by enhancing accuracy in challenging imaging
conditions or improving interpretability for clinical practitioners
through segmentation and classification. The study, hence
examines the critical issue of early and accurate diagnosis of eye
illnesses by concentrating on the application of Al, particularly
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Figure 1
Different eye diseases: (a) normal, (b) cataract, (c) glaucoma, and (d) diabetic retinopathy

DL techniques, in automating the segmentation and classification of
ocular disorders. By exploiting medical imaging techniques such as
fundus photography, the research examines the application of CNNs
trained on huge datasets of annotated healthy and diseased eye
pictures. Moreover, the research investigates the effectiveness of
transfer learning and fine-tuning pre-existing models like MobileNet,
explicitly for eye disease datasets to achieve high accuracy in
classification. This approach contributes to the development of Al-
driven solutions for automatically classifying eye disorders aiming to
improve the timely detection and prevention of visual impairment
globally. Additionally, this study focuses on the use of DL models,
like the U-Net architecture, for the segmentation of eye illnesses. The
goal of the research is to better understand the complexities involved
in accurately identifying and isolating afflicted areas within ocular
images by exploring the nuances of segmentation approaches,
especially when using cutting-edge models such as U-Net. The
research explores the utilization of U-Net and similar models with a
focus on their efficiency for future use in medical image segmentation.

The rest of the paper is organized as follows: Section 2 presents
a detailed review of related literature. Section 3 furnishes details of
the methodologies available and employed in classification and
segmentation in the context of ocular diseases. In Section 4, the
results of the study based on the selected model are presented.
Finally, Section 5 concludes the paper by providing a summary of
the study and exploring the future scope in this field.

2. Literature Review

The domain of medical imaging has seen enormous growth in the
recent decades. It has become a crucial component of modem
healthcare for illness diagnosis, treatment planning, and monitoring.
Various imaging modalities such as X-rays, CT, MRI, and
ultrasound offer doctors with all-inclusive visual representations of
interior anatomical structures and clinical conditions. Presently, eye
disorders constitute a major global health problem that impacts
millions of persons and imposes a significant cost on healthcare
systems worldwide. Timely and precise identification of ocular
illnesses is critical for optimal management and the prevention of
visual impairment. Traditional techniques of diagnosing eye
disorders generally rely on manual interpretation of fundus images,
which can be time-consuming and vulnerable to inter-observer
variability. In recent years, there have been substantial
improvements in the application of Al [12], notably DL approaches
[13, 14], for the automated segmentation and classification of eye
disorders [15, 16]. CNNs, a kind of DL model, have exhibited
excellent performance in the analysis and categorization of medical
pictures, notably those linked to eye disease [17-19]. These CNNs
are trained on huge datasets including annotated images of healthy
and affected eyes, enabling them to recognize subtle patterns

indicative of various ocular disorders with a high degree of
accuracy. Moreover, transfer learning is a technique that embraces
fine-tuning pre-trained models on particular eye ailment datasets
and has been proven to be important for attaining high classification
accuracy even with minimal training data [20-22]. Fundus images
have given excellent sources of image data for training and
evaluating Al models in the context of eye illness diagnosis. Given
the potential of Al to automate the segmentation and classification
of eye disorders, the intent is to examine and explicate the use of
Al-driven solutions in the context of medical imaging for ocular
pathology. By using the capabilities of DL and medical image
analysis, the work hopes to contribute to the evolution of automated
diagnostic tools for eye illnesses, ultimately aiming to enhance the
prompt detection and prevention of eye diseases on a global basis.
By incorporating both segmentation and classification into the
ongoing breakthroughs, the present challenges are not only solved
but also actively contribute to the ongoing advancements in medical
image analysis. The method is intended to set new norms,
demonstrating its potential to redefine accuracy, efficiency, and
clinical applicability. When provided with an eye image as input,
the system accurately classifies the image into one of the predefined
categories as shown in Figure 1.

The classes are as follows: normal, cataract, glaucoma, and
diabetic retinopathy (DR). This classification is based on the
training of the model, where the model learns to differentiate
between the various characteristics and features associated with
each class through the analysis of a labeled dataset.

2.1. Al-based segmentation

Medical image segmentation is the process of dividing a medical
image into several segments in order to detect and outline certain
structures or regions of interest [23—25]. Treatment planning, surgical
guiding, and disease monitoring entirely rely on segmentation. DL
approaches such as U-Net and SegNet, have shown great promise in
precise and fast medical image segmentation [26, 27]. However, the
need for robust models that can handle variations in image quality,
noise, and anatomical variation are the most challenging aspects of
segmentation. The integration of real-time segmentation into
clinical operations remains a barrier that must be addressed.
Figure 2 illustrates different retinal structures like hemorrhages,
microaneurysms, hard exudates, soft exudates, and optic discs. The
ability of the system to properly segment these features is highlighted
as essential for its functionality.

2.2. Al-based classification

The Al-based classification in medical image analysis requires
categorizing the images into specific classes or spotting irregular
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Figure 2
Different retinal structure: (a) hemorrhages, (b) microaneurysms, (c) hard exudates, (d) soft exudates, and (e) optic disc

Figure 3
Different stages DR: (a) normal, (b) mild, (c) moderate, (d) severe, and (e) proliferative

Figure 4
Different stages of macular edema: (a) Stage 0, (b) Stage I, and (c) Stage 11

patterns. CNNs have emerged as a powerful technique for image
classification due to their ability to automatically learn hierarchical
features. CNNs have been used to categorize medical images such
as X-rays, MRIs, CT scans, and histopathology slides in many
investigations. Despite the advancement of Al-based categorization,
it confronts challenges. The need for large annotated datasets,
model conclusion interpretability, and the risk of biased predictions
are a few of them. Overcoming these obstacles is critical for the
effective implementation of Al in clinical practice. Figures 3 and 4
showcase different stages of DR and macular edema respectively. It
indicates the need for the system to accurately classify and
differentiate between these critical conditions based on distinctive
features extracted from retinal images.

3. Methodology

The research utilizes a pre-trained CNN model applied to medical
images to automatically segment and classify eye disorders. A variety of
annotated eye images were gathered from fundus photography. These
images covered a range of ocular pathologies such as glaucoma, DR,
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and cataracts. The foundation for the proposed method is formed
through key findings and insights into the existing gaps and
opportunities for innovation. Hence, the proposed method introduces
a comprehensive Al-based technique for eye disease detection that
goes beyond existing standards. The approach is designed to tackle
the identified challenges and provide an innovative solution in
medical image analysis utilizing both segmentation and classification.

3.1. Datasets for classification

Researchers frequently use datasets like the Kaggle DR Detection
dataset EyePACs.! It contains high-resolution retina images labeled with
DR severity for the categorization of DR. The APTOS 2019 Blindness
Detection from Kaggle is another popular color image dataset that
provides different degrees of DR.? Other well-liked datasets for DR
are the Messidor dataset and RIGA dataset [28]. Furthermore, the
DIARETDB1 and DIARETDBO databases include a variety of

Thttps://www.kaggle.com/c/diabetic-retinopathy-detection
2https://www.kaggle.com/competitions/aptos2019-blindness-detection
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Table 1
Comparison of pre-trained models for classification

Cons

Complexity Accuracy Parameters Pros

Architecture

Model

Limited depth compared to newer models
Prone to overfitting due to a large

Effective feature extraction

~62 million

Moderate

High
High

Eight layers (5 conv, 3 fully connected)

CNN - 19 layers with 3 x 3

AlexNet

Simplicity, easy to understand.

~138 million (VGG16)

High

VGGNet

number of parameters.
Complex architecture may be

convolutional filters
CNN - Inception module with

Efficient parameter usage, reduced

~23 million (InceptionV3)

High

Moderate

Inception

challenging to train.
Computationally demanding, during

overfitting.
Parameter-efficient architecture in terms

filters of various sizes
CNN with depth-wise separable

~22 million (Xception)

High

Moderate

Xception

training as separable convolutions’

added depth and complexity.
Increased complexity, may be

of both speed and memory.

convolutions

Very deep architectures, mitigates

~25 million (ResNet50)

High

Moderate

CNN — Residual connections

ResNet

computationally expensive.
Increased memory consumption

degradation
Improved parameter efficiency, reduced

to address vanishing gradient
CNN - Dense connectivity, each layer

~6 million (DenseNet121)

Moderate

Moderate

DenseNet

due to dense connectivity
Sacrifices some accuracy compared

vanishing gradient.
Lightweight, suitable for mobile and

connected to every other
CNN - Depth-wise separable

~4 million (MobileNetV2)

Moderate

Low

MobileNet

to larger models
Training may require more resources

edge devices
State-of-the-art accuracy with fewer

convolutions
CNN - Compound Scaling

Varies based on the version

High

Low/
Moderate

EfficientNet

compared to smaller models

parameters

(depth, width, and resolution)

images with DR annotations. On the other hand, the IDRIiD dataset
concentrates on DR in Indian patients [29]. The terms of use for the
dataset should be followed by researchers, and they even need to
preprocess images to make them compatible with particular ML models.

3.2. Datasets for segmentation

Several datasets are used in the field of DR segmentation to train and
assess segmentation algorithms. For segmentation, the same EyePACs
can be used as was previously used in classification. Two well-known
datasets for retinal vascular segmentation which is a critical
component of DR segmentation are DRIVE [30] and DRIONS-DB
[31]. Another useful resource that offers images for the segmentation
of optic discs and retinal vessels is the STARE dataset [32]. These
datasets are frequently used by researchers to create and evaluate
segmentation algorithms. They are intended to detect and demarcate
areas of interest (lesions or blood arteries within retinal pictures)
accurately. However, it is critical to follow dataset usage standards.
The data must be preprocessed to make it compatible with the model.
Once the images are preprocessed to ensure consistent format and
quality, an appropriate pre-trained CNN model is chosen in the next
step. The model is then fine-tuned to focus on identifying patterns
associated with different eye diseases. To enhance the model’s
resilience and ability to generalize the new data, data augmentation
techniques can be applied to training data. The performance of the
model is then assessed using critical metrics like accuracy, precision,
recall, and F'1 score. The discriminatory power can also be evaluated
by calculating the area under the curve (AUC) and creating receiver
operating characteristic (ROC) curves. The effectiveness of the pre-
trained model can be confirmed through comprehensive comparisons
with other Al models and traditional diagnostic methods.

The objective of this study is to enhance the diagnostic tools for
eye health by utilizing the potential of pre-trained CNN models
through transfer learning to provide an Al-driven solution for the
automated categorization of ocular illnesses. The steps involved in
Al-driven classification are as follows.

1) Data collection and pre-processing

A dataset of annotated fundus images covering multiple ocular
disorders, including glaucoma, DR, and cataracts, has been
gathered. To ensure consistency in quality, resolution, and format, a
comprehensive pre-processing method is needed. This encompasses
optimizing the images by removing artifacts and inconsistencies. It
also involves multiple techniques for noise reduction and contrast
enhancement.

2) Selection of pre-trained models

The selection of the appropriate pre-trained model involves picking a
model that has been trained on large datasets such as ImageNet. The
chosen model is evaluated based on its ability to capture related
features and meet the criteria for classifying eye diseases. A thorough
evaluation is conducted considering the functionality and design of
the models to determine the best pre-trained model for transfer learning.

3) Transfer learning with fine-tuning

The selected model is initialized and its architecture is tuned to
suit the objective of classifying eye diseases. To adapt the model for
the classification of eye diseases, the modifications are incorporated
in the fully connected layer and output layer. Then, transfer learning
is applied based on the characteristics learned from the model. The
annotated image collection is then used to refine the model’s

411



Artificial Intelligence and Applications Vol. 3 Iss. 4

2025

parameters to enable it to become more proficient at identifying
patterns indicative of different ocular illnesses.

4) Training with validation

A balanced partition of various eye conditions is ensured in the
training, validation, and testing data of the dataset. These subsets
ensure a fair and unbiased evaluation of the model. The modified
model integrating data augmentation is trained on the designated
training data. The addition of data augmentation is aimed to
improve robustness and enable it to successfully generalize unseen
data. On the validation subset, the model’s performance is
thoroughly assessed. The iterative process of hyperparameter
tuning is accomplished to maximize classification accuracy.

5) Evaluation and performance metrics

The pre-trained model’s performance was assessed on the test set
using essential metrics including accuracy, precision, recall, and F1
score for every category of ocular condition [10, 33, 34]. To
evaluate the discriminating power of the model, ROC curves were
created and the AUC was computed. The pre-trained model’s
advantage in automating the classification of ocular disorders was
validated by comparative comparisons with other Al models and
traditional diagnostic techniques [35]. The comparison of the pre-
trained DL models for image classification is presented in Table 1.

Pre-trained CNN architectures such as AlexNet, VGG, Inception,
Xception, ResNet, DenseNet, MobileNet, and EfficientNet are briefed in
the table. AlexNet and VGG having millions of parameters and moderate
to high processing needs are known for their depth and simplicity
respectively. Inception and Xception use complex architectures to
make effective use of parameters. ResNet uses residual connections to
reduce the effects of vanishing gradients. DenseNet increases memory
usage while improving parameter efficiency because of its extensive
connection. EfficientNet provides advanced accuracy with fewer
parameters, but training could need more resources. MobileNet trades
accuracy for a lightweight architecture suitable for mobile devices.
Vision transformer is a recently introduced architectures that show
promise in image classification problems. It uses a self-attention
mechanism akin to transformers in natural language processing.
Furthermore, models like Swin Transformer and MLP-Mixer are
attracting attention due to their creative architectural layouts and
ability to process both token-wise and spatial data which might boost
computer vision research further [36].

CNN architectures also provide new avenues for improving
segmentation performance in the field of image segmentation.

These models can increase segmentation performance and accuracy
by combining creative architectural layouts with self-attention
techniques. The steps for Al-based segmentation are as follows:

a. Data collection and preprocessing: A substantial collection of
data must be gathered to train the model. This collection must
have a diverse array of images that illustrate different situations
and anomalies. The images should be preprocessed to ensure
consistent and ready for input into the model. This covers tasks
like scaling, normalization, noise reduction, etc.,

b. Annotation: The pictures must be annotated to generate ground
truth data for the training of the segmentation model. This
means defining the regions of interest in the images that the
model will be taught to distinguish and identify.

c. Model selection: This involves a selection of an appropriate
model for segmentation like U-Net, Fully Convolutional
Network, or DeepLab [37]. Wide-ranging models with varied
architecture and complexity are available for this task.

d. Training with validation: The selected model is trained on the
annotated dataset. The images are fed into the model and its
parameters are adjusted during training to accurately segment
the regions of interest. The validation set is extracted from the
dataset to ensure that the trained model performs well on new
and untested data. Tuning the hyperparameters is essential for
improving the performance of the model.

e. Implementation and assessment: The model is used to segment new
images after it has been trained and verified. This involves integrating
the model into a software application or a more comprehensive
medical imaging system. Lastly, new data is continuously added
to assess the performance of the model and modifications are
made as necessary. The comparison of the available pre-trained
DL models for image classification is presented in Table 2.

The table lists several segmentation models with distinct
architecture and sets of trade-offs. Both U-Net and SegNet use
encoder-decoder architecture. SegNet is strong in capturing
spatial information but struggles with complex object
boundaries. U-Net excels in segmentation but lacks context for
large objects. DeepLabV3 uses spatial pyramid pooling and
atrous convolution to produce high-resolution outputs, although
it needs large processing power. Mask R-CNN combines object
recognition with instance segmentation for accurate results with
its slower inference speeds. FCN with end-to-end convolutional
architecture preserves spatial information but may result in
coarse segmentations due to downsampling.

Table 2
Comparison of deep learning models for segmentation

Model Architecture Pros Cons
U-Net Encoder-decoder with skip Effective for medical image Limited context information,

connections segmentation may struggle with large objects
SegNet Encoder-decoder with Captures spatial information, good Limited performance on

max-pooling indices for road scenes complex object boundaries
DeepLabV3 Atrous convolution, spatial High-resolution output, good for Computationally expensive,

pyramid pooling

Mask R-CNN [38] Combines object detection

with instance segmentation

FCN (Fully Convolutional
Network) [39]

End-to-end convolutional
architecture

fine segmentation

Precise instance segmentation,
versatile

Retains spatial information,
adaptable to input sizes

may require substantial
resources

Slower inference speed
compared to simpler
models

May suffer from coarse
segmentation due to
downsampling
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Figure 5
Accuracy and loss graph during training

Accuracy per epoch graph

Accuracy

+ Training Accuracy
- Validation Accuracy
04 ® Bestepoch=9
2 4 6 8 10

Epochs

4. Results and Discussion

Al has substantially improved medical image analysis,
especially classification and segmentation tasks. This discipline
has the potential to fundamentally change diagnostic and
treatment approaches. This section discusses the results of
employing Al for medical image segmentation and classification.

1) Classification: The study found that Al-based classification using
pre-trained DL architectures such as MobileNet correctly
categorized fundus images into multiple categories. The
accuracy and loss per epoch graph throughout the training
process evaluates the training procedure’s efficacy and
convergence, as shown in Figure 5. The graph demonstrates
the model’s learning by displaying an increase in accuracy and
decreases in loss across successive epochs.

The accuracy curve indicates the percentage of correctly
categorized occurrences, whereas the loss curve reveals the model’s
inaccuracy. Analyzing these curves allows us to examine the
convergence and stability of the training process. Table 3 shows the
full results of classifying eye diseases using a pre-trained network.

The model performed admirably in the classification of eye
diseases and obtained the highest accuracy of 98% in detecting
“DR” and 83% in detecting “glaucoma” which is the least. The
effectiveness of Al in automating the classification of medical
pictures is demonstrated by the high recall and precision rates seen
in our classification findings. Furthermore, by identifying distinct
patterns of misclassification across various classes, linking these
measures with a confusion matrix provides deeper insights into the
model’s performance and helps identify areas of success and errors.
The confusion matrix for the classification is presented in Figure 6.

Table 3
Classification summary of the pre-trained model
Eye diseases Precision Recall f1-score
normal 0.91 0.85 0.88
cataract 0.97 0.89 0.93
diabetic_retinopathy 0.98 0.99 0.98
glaucoma 0.83 0.95 0.88

Loss per epoch graph
* Training Loss
8 = Validation Loss
® Bestepoch=10

Loss

Epochs

1) Segmentation: This research explores the use of Al-driven
segmentation techniques and shows promise in precisely
identifying and dividing areas of interest within medical images.
The trained segmentation models outline anatomical structures,
abnormalities, and lesions with remarkable precision, suggesting
that they could help medical professionals locate and analyze
volumes of interest with greater accuracy. This could result in
better surgical techniques, treatment plans, and continuous disease
surveillance. All of these might lead to better patient outcomes.
The results of segmentation using U-net architecture are shown in
Figure 7.

The findings highlight how Al is revolutionizing medical image
processing. The effective use of Al in segmentation and
classification tasks has the potential to enhance clinical judgment,
maximize resource allocation, and enhance patient care. Al has
several drawbacks, including interpretability, validation, and
moral questions concerning patient privacy and data security.

Figure 6
Confusion matrix for the classification of eye diseases

Normalized Confusion Matrix

1.0
Normal 0.02
0.8
_ Cataract 0.05 0.6
2
©
|
@
=
(S . 0.4
Diabetic 0.00
Retinopathy
0.2
Glaucoma 0.01 0.00 0.04
- . . 0.0
Normal Cataract Diabetic Glaucoma

Retinopathy
Predicted Label
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Figure 7
Segmentation results of eye diseases: (a) original image, (b) blood vessel segmentation and (c) optic disc segmentation

These are issues that must be resolved before implementing Al in the
healthcare industry.

5. Conclusion and Future Scope

The application of Al in fundus image classification and
segmentation is an advancement in the field of medical imaging
and diagnostics. This study demonstrates the potential of Al to
automate the interpretation and analysis of medical images. It aids
in the detection of various ocular conditions such as cataracts,
DR, and glaucoma. An effective integration of Al into medical
imaging improves the effectiveness and precision of identifying
and treating eye illnesses. It can automate the process, resulting in
improved patient care and outcomes. In this study, Al-based
segmentation and classification algorithms collaborate to provide a
comprehensive framework for extracting useful information from
medical photos. The framework provides doctors with critical
information for diagnosis and predictions.

The widespread use of Al in medical imaging needs thoughtful
consideration of ethical, legal, and interpretability issues. Concerns
around computational openness, data privacy, and the appropriate
application of AI technology in clinical practice must be
addressed. Further study and collaboration across interdisciplinary
teams are also necessary to improve Al models. It is also critical
to prove their efficacy across a variety of patient populations.
Continuous evaluation and development are required to increase
their efficacy and usefulness in clinical practice.
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