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Abstract:With the advancement of industrialmodernization, industrial parks havebecome themain bodyof newenergyproduction and consumption.
However, due to the large demand for energy in industrial agglomeration, thewayof energy utilization is changing to sustainable. The direct connection
of distributed energy resources in industrial parks, including photovoltaic (PV) power generation systems, has an important impact on its planning and
operation. Furthermore, weather scenarios can have an impact on distributed PV generation, and the uncertainty in PVpower output will, in turn, affect
the uncertainty in industrial park planning. Therefore, this paper aims to address the issues of inaccurate prediction of distributed electricity generation
during the planning period and the non-uniform distribution of energy resources such as electricity, heating, and cooling. This is achieved through the
application of statistical machine learning (SML). This paper intends to incorporate the ideas of SML into the model for industrial park distributed
energy random opportunity-constrained planning, aiming to resolve the problems of non-uniform distribution of distributed energy sources within the
park, along with uncertainty in their outputs and high overall investment costs. The model takes the planning, construction, and operating costs of the
industrial park as the objective function, uses the lost load cost to ensure the safety of the industrial park, and uses theChebyshev’s inequality probability
to limit the output characteristics of distributed energy equipment. In terms of operation, the planning period is subdivided into heating period, cooling
period, and transition period, and the balance of electricity, heat, and cold is considered. Finally, an actual example of an industrial park is used to verify
the effectiveness of thismethod. Experimental validation shows that this approach can ensure safety requirements in industrial parks during the heating
season, cooling season, and transitional periods by flexibly adjusting the confidence threshold. Simultaneously, it delivers significant economic benefits.

Keywords: Statistical machine learning, Bayesian generative adversarial network, weather simulation, scenario simulation, distributed
energy, random chance constraint programming

1. Introduction

As the energy demand continues to grow, agricultural and industrial
zones, as focal points of energy consumption, exhibit characteristics of
high energy demand, centralized energy utilization, and the
aggregation of multiple loads, including cooling, heating, electricity,
and gas (Fu & Niu, 2023a). Traditional methods of supplying power
to these cooling, heating, electricity, and gas loads separately often
struggle to achieve efficient and clean energy utilization. This typically
manifests as centralized power generation from conventional power
plants, electricity-based cooling in the summer, boiler-based heating in
the winter, or centralized heating from combined heat and power plants.

However, for industrial parks employing traditional combined
cooling, heating, and power (CCHP) methods; in addition to
renewable energy sources such as solar power, the choice of primary
energy sources may also include the use of clean natural gas. This
can provide local cooling, heating, and electricity services to end-
users. Therefore, the planning of industrial parks with a focus on

multi-energy integration, leveraging photovoltaic (PV) power
generation and CCHP systems, supported by distributed energy
storage technologies, constitutes an effective approach to address the
irrational use of energy in industrial parks (Zhang et al., 2023). This
not only promotes the optimal complementarity of various energy
sources within the industrial park, fostering the distributed utilization
of energy, but also aligns with the national calls for low-carbon
development, energy efficiency, and emissions reduction.

This paper addresses the theory and methodology of stochastic
planning for distributed energy resources in industrial parks, based
on statistical machine learning (SML). The primary contributions of
this work are as follows:

i) Addressing the challenge of large-scale and complex data types in
numerical weather scenarios, where the lack of precision and
diversity limits the transmission of data value to decision-makers
in industrial park planning. We decided to use Bayesian generative
adversarial networks (BGANs) for weather scene simulation.

ii) In response to the pressures faced by industrial parks, including
uncertainty in distributed PV output, unscientific allocation of
distributed energy capacities, and excessive overall investment
costs, we introduce an SML-based method for random
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opportunity-constrained planning of distributed energy in
industrial parks.

This paper is structured as follows: Section 2 summarizes
previous related research, and Section 3 introduces the innovative
method. Case studies are presented in Section 4, and Section 5
provides the conclusion of this paper.

2. Literature Review

For a specific distributed PV power station, it often faces
uncertainties arising from atmospheric factors, which encompass
variables such as temperature, wind speed, cloud cover, and solar
irradiance. These atmospheric elements introduce inherent
unpredictability. It is worth noting that historical monitoring data
already encompass factors such as angle and position. With the
increase in data acquisition, various types of monitoring data
exhibit the following characteristics: a combination of structured
and unstructured data, discretized data from diverse collection
systems, substantial data volume, and disparate data quality.

To capture stochastic processes, numerous relevant studies have
been conducted. Morales et al. (2010) introduced autoregressive
moving average models to renewable energy generation sites to
generate spatiotemporal scenarios for a given generation profile.
Yunus et al. (2016) aimed to capture the temporal dependencies
and probability distributions of wind speed time series
observations by improving the autoregressive integrated moving
average modeling method. Hoeltgebaum et al. (2018) attempted to
capture and simulate the long-term joint distribution of
multivariate time series through a general autoregressive
conditional score model with time-varying parameters and
arbitrary non-Gaussian distributions.

Recently, machine learning (ML) theory has been increasingly
applied to stochastic scenario simulation in integrated energy
systems. Chen et al. (2018a) introduced generative adversarial
network (GAN) methods into their research to generate scenarios
using unsupervised learning, successfully capturing reliable wind
power generation scenario distributions. However, this method can
be challenging to train and may face issues such as gradient
vanishing, and it may also produce scenarios with limited diversity.
To address these challenges, Liu et al. (2019) built upon GANs by
replacing the Jensen–Shannon distance with the Wasserstein distance
and used Wasserstein-GAN to train renewable energy scenarios,
effectively resolving the aforementioned problems. Jiang et al.
(2018) further improved the performance of GAN in scenario
generation by imposing Lipschitz constraints on the discriminator
network.

In theworks of Saatci andWilson (2017) andChen et al. (2018b),
Bayesian formulas were integrated with genetic neural networks to
ensure the simultaneous distinction and generation of renewable
energy scenarios similar to historical data. This combination
guarantees effective representation of the generation process of new
energy, even in scenarios intentionally blending wind and solar
energy data. In addition, the widespread adoption of distributed
energy sources in the context of low-carbon electricity and smart
industrial parks has posed challenges for the comprehensive energy
system planning of such parks. Uncertainty issues can render the
solutions to deterministic planning problems suboptimal or even
infeasible. Due to practical considerations, uncertainty in planning
problems has received significant attention (Liu, 1997). Methods
for addressing uncertainty in planning problems primarily include
fuzzy planning (Li et al., 2016), stochastic planning (Fu et al.,
2022), and robust optimization (Li et al., 2024).

Fuzzy planning is currently limited by the subjective nature of the
membership functions for fuzzy variables, often derived from
experiments or personal expertise. Robust optimization, on the other
hand, tends to be economically conservative as it overlooks
probability distribution information, including that of distributed
energy sources. In contrast, stochastic planning allows decision-
makers to understand the relationship between risk and potential
planning outcomes, facilitating adjustments based on real-world
conditions. Consequently, it provides a better balance between the
economic and security aspects of integrated energy systems in
industrial parks.

Two-stage stochastic programming theory, introduced by
Dantzig in 1956, divides planning problems into two stages. These
stages occur before and after the realization of random variables.
The first stage involves generating preliminary optimal decisions,
while the second stage entails compensatory adjustments to these
initial optimal decisions. In practice, two-stage stochastic
programming models have proven applicable to a variety of
distributed energy system issues, including design optimization
(Mavromatidis et al., 2018), sizing and control of energy storage
systems in integrated energy systems (Bucciarelli et al., 2018),
capacity planning and energy management strategies for renewable
energy components (Li et al., 2020), and enhancing the economic
efficiency and system flexibility of distributed energy (Wu et al.,
2020). To address uncertainty in the requirements, Huang et al.
(2016) introduced a two-stage stochastic programming theory into a
multi-region optimization model. They integrated decision tree
methods and Monte Carlo simulation into the model, simplifying
electricity demand based on node structures and determining the
values and probabilities of electricity demand. This improvement
helped mitigate uncertainty related to electricity demand. Fu and
Zhou (2023b) considered the meteorological sensitivity of
agricultural production and PV generation. They established
agricultural meteorological models and energy meteorological
models, proposing a new method to optimize PV greenhouse load
control in collaboration with rural energy systems. This approach
resulted in cost savings for greenhouse energy.

As two-stage stochastic programming theory has advanced,
multi-stage stochastic programming theory has also seen gradual
progress. According to multi-stage stochastic programming,
uncertainty is dynamically updated, leading to mutual interactions
between decision-making and uncertainty. This dynamic
interaction results in more accurate and realistic outcomes. Ding
et al. (2017) addressed the uncertainty associated with node
injection power in power grid planning decisions. They made
improvements to the multi-stage scenario tree model by
incorporating uncertainty injected at nodes, which formed the
basis for the multi-stage stochastic programming model. This
model comprehensively accounts for future uncertainties. Hafiz
et al. (2019) utilized a multi-stage stochastic programming model
to optimize the problem and achieve the minimum daily
purchasing cost for communities. They achieved this by
formulating energy management control strategies to support
decision-making to minimize costs effectively. Fu et al. (2024)
proposed an optimization strategy for rural microgrids that
considers adjustments to agricultural greenhouse loads. The aim is
to address issues related to insufficient utilization of local
renewable energy while simultaneously reducing excessive daily
operational costs.

In summary, this paper addresses the challenges of large-scale,
complexly distributed, low-accuracy, and non-diverse weather
scenarios that are ineffective in conveying information to industrial
park planning decision-makers. To overcome these issues, we
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propose the use of BGAN for simulating weather scenarios. In
comparison to traditional methods, this approach can acquire large-
scale, high-precision, and diverse datasets of distributed PV
operational scenarios. Importantly, it effectively communicates these
datasets to industrial park planning decision-makers. In response to
the pressures faced by industrial parks, including the uncertainty of
distributed PV output, improper allocation of distributed energy
capacities, and high overall investment costs, we present an SML-
based method for industrial park distributed energy planning under
stochastic opportunity constraints. Finally, through case studies, we
validate the economic and security aspects of the balanced planning
solutions. Sensitivity analyses are conducted on the performance
parameters of CCHP systems and gas prices. We discuss how the
uncertainties and performance parameters of distributed energy
impact the overall cost of industrial park planning.

3. Proposed Method

3.1. Weather scenario simulation based on BGAN

Weather scenario data exhibit certain regularities and seasonal
patterns. Traditional numerical simulation methods rely on complex
probability analyses, providing strong interpretability but
encountering limitations when dealing with high-dimensional data.
They often yield low accuracy and can only simulate low-
dimensional weather scenarios of a single category. ML
algorithms possess robust autonomous learning and pattern
recognition capabilities. While weather simulation outcomes can
be comparable to traditional probabilistic numerical models, their
internal workings are often likened to black boxes, lacking
interpretability and thus lacking convincing explanations. SML
combines the strengths of probabilistic models and deep learning
algorithms, amalgamating the benefits of both. This amalgamation
enables the simulation of high-dimensional, complex, and diverse
weather scenarios while maintaining high precision. Hence, this
paper utilizes BGAN to simulate and generate weather scenarios,
enhancing traditional GANs through improvements in network
weight parameters, loss functions, and gradient descent
algorithms. From a data-physics-driven perspective, uncertainty
associated with weather variables is modeled. The adversarial
game in neural networks enables the neural network to learn how
to generate a weather scenario dataset through a random noise
distribution. Subsequently, by applying the BGAN approach to
real-world scenarios, simulated weather scenarios are generated,
providing concrete scenario conditions for decision-making in the
context of industrial park distributed energy planning.

3.1.1. Fundamentals of GAN

According to the GAN principle (Liu et al., 2019), let the weight
parameters of a generative networkG be denoted as θG, and the weight
parameters of a discriminative networkD be denoted as θD. During the
network training, the Generative network receives noise data input
znoisei , which undergoes sequential sampling and training across its
layers of neurons, resulting in the generation of a novel data distribu-
tion of scenarios, denoted as G znoisei ; θGð Þ. Simultaneously, the dis-
criminative network and generative network undergo concurrent
training. The input to discriminative network comprises genuine
weather data samples X, and its output discerns the category of
whether xi originates from the authentic data distribution.

3.1.2. Network weight refinement
The weight parameters of the generative network and the

generated samples are initially introduced with a prior distribution
as follows:

θG � pG θGf g (1)

exi ¼ G znoisei ; θGð Þ � pG xif g (2)

where θG represents the weight parameters of the generative network,
G znoisei ; θGð Þ stands for the generated data scene distribution, znoisei rep-
resents the input noise, and pG θGf g and pG xif g represent the prior dis-
tributions of weight parameters and generated samples, respectively.

Introducing the Bayesian formula into the weight parameters of
the discriminative network and the generative network, iterative
sampling is conducted from the conditional posterior, as follows
(Saatci et al., 2017):

p θD znoise;j X; θGf g /
YND

i¼1

D xi; θDð Þ �
Ym
i¼1

1� D G znoisei ; θGð Þ; θDð Þð Þ

� p θD αDjð Þ
(3)

p θG znoise;j θDf g / QNG

i¼1
D G znoisei ; θGð Þ; θDð Þ

� �
� p θG αGjð Þ (4)

where θD represents the weight parameters of the discriminative net-
work. p θD αDjð Þ and p θG αGjð Þ represent the prior distributions of the
weight parameters for the discriminative network and the generative
network, respectively. αD and αG are hyperparameters for the weight
parameters of the discriminative network and the generative network.
ND andNG denote the numbers of input samples for the discriminative
network and the generative network, respectively. p θD znoise;j X; θGf g
and p θG znoise;j θDf g represent the posterior distributions of the weight
parameters for the discriminative network and the generative network,
respectively, given the known parameters X; θG; znoise. G znoisei ; θGð Þ
represents the weather scenarios generated by the generator under
the known parameters znoisei and θG. D xi; θDð Þ and
D G znoisei ; θGð Þ; θDð Þ denote the discriminative network’s outcomes
for real weather scenes and generated weather scenes, respectively.

By incorporating Bayes’ theorem to marginalize over the noise
znoisei , a straightforward approach for handling this marginalization is
through the utilization of the simple Monte Carlo method:

p θG θDjf g ¼
Z

p θG; z
noise
j θDj

n o
dz

¼
Z

p θG znoisej ; θD

���n o
p znoisej θDj
� �

dz

� 1
JG

XJG
j¼1

p θG znoisej ; θD

���� � (5)

Similarly, we can derive

p θD θGjf g � 1
JD

XJD
j¼1

p θD znoisej ;X; θG
���� �

(6)

where JG and JD represent the number of simpleMonte Carlo samples
taken from the generator and discriminator, respectively.
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It is worth noting that when considering Equations (3) and (4) as
functions of the noise znoisei , the distributions of p θG znoisei ; θDjf g and
p θD znoisei ;X; θGjð Þ should be relatively wide because znoisei are used
to generate candidate sample data. Therefore, simple Monte Carlo
and each term in the intermediate steps will provide reasonable
adjustments to estimate the overall marginal posterior. Through iter-
ative sampling, it is possible, in the limit, to compute simulated
weather scenario sample data from each iteration of the generative
network simulation using the approximate posterior calculations
for θG and θD.

3.1.3. Loss function enhancement
Wasserstein distance, also known as the Earthmover’s distance, is

used to measure the similarity between two distributions. It has found
widespread applications in computer vision, image processing, GAN,
and various other fields. The fundamental concept of the Wasserstein
distance involves measuring the distance between two distributions
by calculating the minimum cost required to transform one
distribution into another. Its significant advantage over traditional
metrics like KL divergence or JS divergence is its applicability to
both discrete and continuous distributions. Furthermore, it can
provide reasonable distance values even when there is ample
overlap, making it capable of capturing the variability of all
categories (i.e., weather scenarios) present in the training samples.
This includes cases where these categories stem from the same
distribution pdata xf g. Furthermore, the Wasserstein distance possesses
a robust geometric interpretation and mathematical foundation, render-
ing it theoretically reliable and trustworthy. Its strong mathematical
basis lends itself to the interpretability of BGAN. Themathematical for-
mula is as follows:

W D xð Þ;G xð Þ½ � ¼ sup
θD

Ex�pdata logD xð Þ þ Ex�pG log 1� D xð Þð Þ½ �� �
(7)

where Ex�pdata and Ex�pG , respectively, represent the expectations of the
distributions of real weather scenes and generated weather scenes.

3.1.4. Dynamic gradient Hamiltonian Monte Carlo descent
algorithm

Hamiltonian Monte Carlo (HMC), initially proposed by
Metropolis et al., is also known as the “molecular dynamics”
algorithm (Brooks et al., 2011). It represents a specialized form of
Markov Chain Monte Carlo algorithm. In this paper, within the
posterior distribution of BGAN, HMC can assist in avoiding the
complexity of the denominator in the formulas.

In essence, with knowledge of the prior distribution p θf g and
the data distribution pdata X θjf g, HMC can automatically facilitate
sampling from the posterior distribution. Furthermore, both p θf g
and pdata X θjf g are computable. The specific algorithmic procedure
is outlined as follows:

• Step 1: Randomly generate a vector and set it as the initial point for
iteration θ0.

• Step 2: Perform iterative process for m iterations. At the beginning
of each iteration, generate a multidimensional normal distribution
vector γk, with the same dimension as θ, from a covariance matrix
γk � N 0;Mð Þ. Here, N 0;Mð Þ is referred to as the momentum.

• Step 3: During the k-th iteration, the sampled specimens generated
from the previous iteration are denoted as θk�1, and the subsequent
operations are executed.

• Step 4: Take the derivative of the logarithm of the objective function
at the point θk�1, and update the vector γk to γk þ 1

2
d log p θf g

dθ θk�1j .

• Step 5: Utilize momentum to update the sampled specimens γk

to γk þ 1
2 2 d log p θf g

dθ θk�1j .

For each update obtained in Step 3, denote the resultant θk�1 as
the newly generated sample θk, utilizing min 1; rf g as the probabi-
listic selection criterion θk. If it falls within the specified range, θk
becomes the new sample; otherwise, the new sample is set to

θk�1. Set r as r ¼ p θkð Þp γkð Þ
p θk�1ð Þp γk�1ð Þ .

When our objective function is defined with a posterior
distribution, referencing, we can compute d log p θ Xff g

dθ as
d log p θf g

dθ þ d log p Xjθf g
dθ � d log p Xf g

dθ (Villani & Villani, 2009), which
d log p Xf g

dθ ¼ 0 signifies that in the calculation of the logarithmic dis-
tribution function of the posterior distribution, there is no need to
evaluate intricate integrals p Xf g. Similarly, in the aforementioned
step g, the probability r calculation again circumvents the need for
cumbersome integrals. Consequently, when employing HMC, it is
only necessary to compute the prior distribution p θf g and the data
distribution pdata X θjf g.

3.1.5. Maximum Likelihood Estimation (MLE), Maximum A
Posteriori (MAP), and iterative posterior sampling

In the traditional process of using GANs for prediction, MLE is
commonly employed. MLE, a method from classical frequentist
statistics, estimates parameter values by maximizing the likelihood
function. It is simple, intuitive, and frequently used, but its drawback
lies in the absence of consideration for prior information. Therefore,
in the theoretical framework of Bayesian statistics, the concept of
prior knowledge is introduced, and parameter estimation is carried
out by maximizing the posterior probability, known as MAP
estimation. However, both MLE and MAP provide point estimates
for parameters, and as a result, they may not effectively capture
diverse and rich probability distributions of weather scenarios during
the simulation process.

Hence, the proposed approach in this paper is based on the
HMC algorithm for iterative posterior sampling. By iteratively
sampling p θD θGjð Þ and p θG θDjð Þ at each step, approximate posterior
samples for θG and θD can be obtained in the limit, thereby approxi-
mating the entire posterior distribution. The posterior distribution is
extensive and multimodal, allowing for comprehensive learning of
the complete data distribution characteristics of real weather scenar-
ios. This approach enables a complete, high-precision simulation of
weather scenarios.

3.1.6. Model training
For each set of weather scenario datasetsX ¼ xif gmi¼1, there are a

total of m variables, each of which follows a distribution
xi � pdata xif g. It should be noted that the distribution function
pdata xif g is unknown and challenging to physically model. Our objec-
tive is to draw samples frommnoise variables znoisei � p znoiseif gmi¼1 that
follow Gaussian distributions. UsingML techniques, we aim to train a
network so that the generated data samples adhere to a certain distri-
bution pdata.

The proposedBGAN theory in this paper employs a convolutional
neural network (CNN) as the architecture for both the discriminator and
generator networks, as illustrated in Figure 1. The neural networks
execute a sequence of convolutional and deconvolutional operations
to extract data features. Specifically, the probability of the Bayesian
posterior distribution enhances the network weights of both the
generator and the discriminator. The steps for this enhancement
process are as follows:
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• Step 1: Acquire historical samples of weather variable scenarios.
The weather variables in this paper encompass outdoor ambient
temperature and total solar irradiance. For each set of weather
scenario datasets xif gmi¼1, there arem variables, each of which fol-
lows a distribution xi � pdata xif g.

• Step 2: Conduct normalization processing and generate scenario
sample data X for training the learning network.

• Step 3: Initialize the generator and discriminator networks’ learning
rate and weight parameters, denoted as θG and θD, respectively.

• Step 4: Utilize noise znoise as input for training the generator network.
Initially, keep the generator network fixed. Generate a new data sce-
nario distributionG znoisei ; θGð Þ. Simultaneously, train the discrimina-
tor network D along with X and update weight parameters θD. The
discriminator network assesses and optimizes. Subsequently, keep
the discriminator network fixed, continue training the generator net-
work G, and update weight parameters θG. Output discernment of
any class originating from the real data distribution xi.

• Step 5: Continuously optimize both components, ultimately
yielding a vast array of multi-class weather scenarios.

3.2. SML model for distributed energy planning in
industrial park

According to the University of California, Berkeley, statistical
learning, also known as SML, is a complex discipline. It draws
upon various areas of knowledge, including probability theory,
statistics, approximation theory, convex analysis, algorithmic
complexity theory, and ML (Fu et al., 2020). Statistics relies on
complex and rigorous mathematical reasoning, focuses on models,
and emphasizes the interpretability of models. ML, on the other
hand, is algorithm-oriented, prioritizes predictive results, and
provides models with good controllability and scalability. The
effective integration of statistical knowledge and ML makes SML a
more powerful tool. Hence, in this paper, we propose an industrial
park distributed energy stochastic opportunity-constrained planning
model based on SML, as depicted in Figure 2.

A sound programming model is often more effective than a
proficient solver. The degree of similarity between stochastic models
and real-world situations significantly impacts the accuracy of
solving stochastic planning problems using SML-based stochastic
planning models. In this context, the paper’s objective is not to
enhance planning algorithms but to utilize a probabilistic constraint
to ensure that the distributed energy generation characteristics satisfy
a certain confidence threshold. Specifically, this is manifested by
employing Chebyshev’s inequality for probabilistic constraints. This
approach, while reducing the conservatism of planning models, also
to some extent ensures the controllability of planning and operational
costs for industrial park-integrated energy systems.

3.2.1. Objective function
This paper’s planning and design aim tominimize the total cost of

construction and operational expenses for an industrial park’s
integrated distributed energy system. Additionally, it takes into
account the cost incurred due to the load that cannot be supplied by
each region during the heating season (Chen et al., 2021).
Therefore, the objective function is as follows:

min f ¼ CB þ CO þ CVð Þ (8)

where CB, CO, and CV represent construction cost in planning, oper-
ating cost, and unserved load cost, respectively.

a. Construction Cost in Planning CB

The construction cost in planning encompasses the sum of costs
for CCHP units, heating residual heat boilers, electric chillers,
rooftop PV systems, and distributed energy storage systems, as
shown below:

CB ¼
X

Q2ΨCCHP

CCCHP
Q xCCHPQ þ

X
Q2ΨWH

CWHB
Q xWHB

Q þX
Q2ΨAC

CAC
Q xACQ þ

X
Q2ΨPV

CPV
Q xPVQ þ

X
Q2ΨESS

CESS
Q xESSQ

(9)

Figure 1
Schematic diagram of BGAN network architecture
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where CCCHP
Q , CWHB

Q , CAC
Q , CPV

Q , and CESS
Q represent the costs of the

selected unit configurations Q for CCHP units, residual heat boilers,
electric chillers, rooftop PV systems, and distributed energy storage
systems in the industrial park areas, respectively. xCCHPQ , xWHB

Q , xPVQ ,
and xESSQ are 0–1 decision variables, with 1 indicating that the cost is
considered. Due to their relatively small power capacity, electric
chillers xACQ are treated as continuous variables in this paper.

b. Operating Cost CO

The operating costs during the planning period are divided into
three categories: first, the fuel costs for CCHP; second, the electricity
purchasing costs from the grid during the planning period for the
industrial park; and third, the maintenance, management, and
depreciation costs of distributed energy equipment. The
mathematical formula is as follows:

CO ¼
X
n

n
1þ ið Þn

X
µs MGASVFUEL þMSUBqSUBE þMOð Þ

� �
(10)

MO ¼ MCCHPqCCHPE þMPVqPVE þMACqACE þMESSqESSE (11)

VFUEL ¼ P
Q2ΨCCHP

j

VCCHP
j;Q þ P

Q2ΨWHB
j

VWHB
j;Q (12)

where n represents the planning year, i is the discount rate,
P
n

n
1þið Þn

denotes the total net present value of annual operating costs, MGAS

stands for the gas price, MSUB represents the electricity price from
the grid for the industrial park, MCCHP, MPV, MAC, and MESS, respec-
tively, denote the operation and depreciation costs of the CCHP system,
distributed PV system, electric chiller system, and distributed energy
storage system, with units in CNY/kW. VFUEL represents the total fuel
consumptionwithin the industrial park area per unit of time, comprising
two components: the fuel consumption from the residual heat boiler
VWHB
j;Q and the fuel consumption from the CCHP unit VCCHP

j;Q . qSUBE

represents the power demand of the original substationwithin the indus-
trial park area, and µs signifies the proportion of each scenario within
the planning period. qCCHPE , qPVE , qACE , and qESSE distributions represent the
power loads for the industrial park’s CCHP system, distributed PV sys-
tem, electric refrigeration and air conditioning, and distributed energy
storage system, respectively.

c. Unserved Load Cost CV

CV ¼ MV
P

r (13)

where MV represents the unserved load cost coefficient, typically
set at a high value to prevent load shedding during operation.
r denotes the amount of load that cannot be supplied within the
industrial park area.

3.2.2. Constraint conditions

1) Load Balance Constraint

Due to meteorological factors, the demand for various types of
loads in the industrial park varies significantly in different seasons.
This paper considers dividing the required balanced loads into three
categories: electricity, cooling, and heating. During the heating
season, CHP systems and gas boilers supply heat loads to user
terminals, ensuring a balance between electricity and heat loads.
The heating season typically spans from mid-November to mid-
March. During the cooling season, cooling loads are met through
electric air conditioning and lithium bromide absorption chillers.
During this period, there is a balance between electricity and
cooling loads. The cooling season typically spans from mid-June
to mid-September. In the transitional periods, which fall outside
the heating and cooling seasons, the load requirements are
primarily related to electricity, as the seasonal variations in the
industrial park are relatively small during these times (Chen
et al., 2021).

Figure 2
Figure of the SML-based stochastic planning model for industrial parks
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a. Electricity Load Balance

r þ qSUBE þ qPVE ¼ E þ qACE � qCCHPE þ qESSE (14)

where E represents the power of electricity load within the industrial
park area.

b. Thermal Load Balance

qloadH ¼ qCCHPH þ qWHB
H (15)

qCCHPH ¼ qICEH þ qLMAWHC
H (16)

where qloadH represents the demand for thermal load power within the
industrial park area, and while qCCHPH and qGLH , respectively, indicate
the heating loads supplied by the CCHP unit and the residual heat
boiler within the industrial park area. qCCHPH , qWHB

H , qICEH , and
qLMAWHC
H , respectively, represent the heating loads for the CCHP unit,
waste heat boiler, air conditioning, and lithium bromide absorption
chiller unit within the industrial park region.

c. Cooling Load Balance

qloadC ¼ qCCHPC þ qACC (17)

qCCHPC ¼ qLMAWHC
C (18)

where qloadC represents the demand for cooling load power within the
industrial park area, while qCCHPC and qACC , respectively, indicate the
cooling loads supplied by the CCHP unit and the electric chiller
within the industrial park area. qCCHPC , qACC , and qLMAWHC

C distributions
represent the cooling loads for the CCHP unit, electric refrigeration
and air conditioning, and lithium bromide absorption chiller unit
within the industrial park region.

2) Distributed Energy Generation Constraint

a. Gas Internal Combustion Engine

The operational range constraint for the gas internal combustion
engine in the CCHP system isP

Q2ΨCCHP

xCCHPQ qCCHPmin;Q � qCCHPE � P
Q2ΨCCHP

xCCHPQ qCCHPmax;Q (19)

where qCCHPmax;Q and qCCHPmin;Q, respectively, represent the upper and lower
limits of the active power output of the internal combustion engine.

b. Lithium Bromide Absorption Chiller

The construction constraint for the lithium bromide absorption
chiller is

qLMAWHC
H;min � qLMAWHC

H � qLMAWHC
H;max (20)

qLMAWHC
C;min � qLMAWHC

C � qLMAWHC
C;max (21)

qR � qGAS þ qWA (22)

where qLMAWHC
H;max and qLMAWHC

C;max , respectively, represent the maximum
heating/cooling capacity of the lithium bromide absorption chiller,
while qLMAWHC

H;min and qLMAWHC
C;min , respectively, represent the minimum

heating/cooling capacity. Equation (22) states that the sum of the usa-
ble heat values from the internal combustion engine’s exhaust gases
and cylinder liner water should be greater than or equal to the waste
heat used for heating/cooling in the lithium bromide absorption
chiller. qWA, qGAS, and qR, respectively, represent the recoverable
waste heat from jacket water and exhaust gases of internal combus-
tion engines, as well as the recoverable waste heat utilized for heat-
ing/cooling by the lithium bromide absorption chiller unit.

c. Heating Residual Heat Boiler

The operational range constraint for the heating residual heat
boiler is P

Q2ΨWHB

xWHB
Q qWHB

min;Q � qWHB
H � P

Q2ΨWHB

xWHB
Q qWHB

max;Q (23)

where qWHB
min;Q and qWHB

max;Q, respectively, represent the maximum and
minimum heating capacity of the heating residual heat boiler.

d. Distributed Rooftop PV Generation System

For the random variable:

Pr
P

Q2ΨPV

xPVQ qPVmin;Q � qPVE � P
Q2ΨPV

xPVQ qPVmax;Q

( )
� β (24)

where qPVmin;Q and qPVmax;Q, respectively represent, the upper and lower
limits of the active power outputs of the distributed rooftop PV gen-
eration system.

e. Distributed Energy Storage Model

The power limits for charging and discharging of electrical
energy storage can be expressed as follows:

0 � qESSdis;char ið Þ � qESSmax (25)

SOCmin � SOC ið Þ � SOCmax (26)

qESSdis ið Þ qESSchar ið Þ¼ 0 (27)

where qESSdis;char represents the upper limit of the power for charging
and discharging in an energy storage system, with separate limits
for charging and discharging, qESSdis and qESSchar represent the charging
and discharging of the energy storage system, and qESSmax represents
the maximum power of the energy storage system. SOCmin and
SOCmax, respectively, represent the upper and lower limits of the
energy storage capacity. Equation (27) represents the complemen-
tary constraint for electrical energy storage, which limits that at
the same moment, energy storage can only be charged or discharged.

f. Electric Chiller System

The total investment for the electric chiller system needs to
exceed the cooling load demand under extreme scenarios in the
industrial park. Therefore,

xAC � QAC (28)
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where xAC and QAC, respectively, represent the total investment for
the electric chiller system and the cooling load demand under
extreme scenarios in the industrial park.

3.2.3. Equivalence transformation of chance constraints
It is evident that in the stochastic planning model for the

industrial park’s distributed energy, both the objective function
and the decision variables within the constraints involve random
quantities. Likely, the constraints involving random variables may
not hold within a certain range of values. Therefore, this paper
transforms the mathematical problem involving random variables
into an opportunity-constrained planning model. This is achieved
by adjusting the confidence level to ensure that the constraints are
satisfied (Chen et al., 2021).

min f
s:t: Pr f � f

� � � α

s:t: Pr qmin � qE � qmaxf g � β

Equationð8Þeð28Þ

8>>>><>>>>: (29)

where Prfg represents the probability of an event occurring; f̄ is the
minimum value that the objective function f takes on when the con-
fidence threshold is α; and β signifies the confidence threshold at
which the constraints on CCHP system output and distributed PV
output are met, with β belonging to the range [0,1].
qmin � qE � qmax represents a random variable, specifically the
upper and lower constraints on the output of distributed energy
resources.

In this section, we use the Chebyshev’s inequality to transform
the opportunity-constrained planning into a deterministic planning
(Yan et al., 2021). The mathematical equations are as follows:

Pr qE � E qEð Þj j � εf g � 1� E2 qEð Þ
ε2

(30)

where E qEð Þ and E2 qEð Þ represent the expectation and variance of the
random variable, which is the distributed energy output, respectively.
ε is any positive number.

Combining the upper and lower bounds constraints on
distributed energy output, Formula (30) can be transformed into:

Pr qmin � qE � qmaxf g � 1� E2 qEð Þ þ E qEð Þ � qmaxþqmin

2

	 

2

qmax�qmin

2

� �
2 (31)

It should be noted that the constraints derived from the Chebyshev’s
inequality are, in principle, conservative and primarily involve
mathematical expectations and variances (Fu et al., 2020). From
Chebyshev’s inequality, it can be inferred that the variance of a
random variable constrains the distance of the variable itself from
its expectation. As ε decreases, the accuracy of the computed result
gradually increases. In this section, Chebyshev’s inequality is used
for constraint conditions, not the objective function. This is because
if the objective function is subject to too many constraints, its eco-
nomic efficiency will be reduced. For the safety constraints on the
upper and lower limits of distributed energy generation, if they sat-
isfy conservative conditions, they must also satisfy safety constraints
under worst-case conditions. Conservative safety constraints, while
reducing feasible solutions, do not directly compromise the overall
applicability of the planning solution.

4. Experimental Results

4.1. Simulation results and analysis based on
BGAN for weather scenarios

4.1.1. Training progress
The data collection for this paper mainly originates from

sources such as the Guangzhou Meteorological Station (N23°10,
E113°20) data, NASA data, and Meteonorm data. The scenario
data cover 31 years, with a sampling point resolution of 5 min.
Therefore, there are a total of 105120 × 2 × 31 points for solar
radiation and temperature. Due to the nature of simulating weather
scenarios using BGAN, the purpose is to have the input Gaussian
white noise learn the probability distribution characteristics of real
weather random variables. The output is a probability distribution
that closely approximates the actual weather scenarios. Evaluation
of the training results is done through statistical metrics and t-
SNE, eliminating the need for cross-validation data splitting or a
separate validation set to assess the model’s accuracy.

This paper employs a CNN to construct the BGAN. The
generator network consists of two parts. The generator for noise
input employs a 5-layer deconvolutional network. The generator
for input weather data samples utilizes a 5-layer network, with the
first three layers being convolutional layers and the last two layers
being deconvolutional layers. The discriminator network employs
a 6-layer convolutional network, with the final layer being fully
connected. All convolutional network filters have a size of 5 × 5.
Table 1 lists the sizes used in all networks. The sigmoid activation
function was applied, along with L2 regularization.

The convergence of the discriminator network’s loss function is
depicted in Figure 3. Before iteration 15200, the blue curve exhibits
fluctuation and instability. However, after iteration 15200, the curve
starts to converge and becomes stable. It is evident that at this point,
the training of the BGAN is converging. The total number of
iterations is 40255, and the final BGAN achieves satisfactory
training, laying the foundation for weather scenario generation.

The judgment outputs of the discriminator network for real scene
data and generated data from the generator network are illustrated in
Figure 4. Initially, the blue and green curves do not overlap, exhibiting
significant differences with one curve up and the other down. As the
number of iterations increases, both curves fluctuate between [0.3,
0.35], start to overlap, and gradually become indistinguishable. The
reason for this phenomenon is that in the initial stages of the
experiment, the generator network produces samples with
noticeable differences from real weather scenarios due to being fed
noise input. As a result, the discriminator network can easily
distinguish them. However, as the network training progresses, the
generated samples gradually become more realistic, narrowing the
gap between them and real weather scenarios. When the number of

Table 1
BGAN model architecture

Generator network

Noise input Scene data input Discriminator network

4 × 4 × 1024 64 × 64 × 3 64 × 64 × 3
8 × 8 × 512 32 × 32 × 128 32 × 32 × 128
16 × 16 × 256 16 × 16 × 256 16 × 16 × 256
32 × 32 × 128 32 × 32 × 128 8 × 8 × 512
64 × 64 × 3 64 × 64 × 3 4 × 4 × 1024
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iterations reaches around 16000, the real and generated scenarios
become indistinguishable from the discriminator network. The loss
function of the discriminative network, which is the Wasserstein
distance, gradually converges to near zero. Once the network
training reaches a stable state, the simulated weather scenarios
become diverse and abundant, resulting in a large collection of
varied weather scenario data.

4.1.2. Validation of effectiveness
Todemonstrate the effectiveness of BGAN in simulatingweather

scenarios, this paper utilized real solar radiation and temperature data.
Weather scenes for 1 year were randomly selected from both training
and testing datasets. These scenarios were then compared with
statistical metrics based on copula (Wang et al., 2020), GAN (Zhu
et al., 2022), and Time-series Dense Encoder (Das et al., 2023)
theories. The comparison results are shown in Table 2. BGAN
generated the lowest values in MAE and RMSE measurements,
indicating high simulation accuracy and minimal simulation error.

Furthermore, the highest R2 result for BGAN suggests strong
interpretability and applicability to weather scenario datasets. These
results validate the accuracy and effectiveness of the proposed
BGAN algorithm in simulating weather scenarios.

Using historical scene data based on actual inputs, this paper
also compares the cumulative distribution functions of copula-
based, GAN-generated, and BGAN-generated scenarios from a
probability distribution perspective. This comparison is depicted
in Figures 5 and 6. The blue and red curves show similar trends
across the entire interval, while the green and purple curves
exhibit consistency only in the final segment of the interval. From
this analysis, it can be concluded that copula-based and GAN-
generated scenarios capture the local features of temperature and
solar radiation scenarios, while BGAN maps the overall
characteristics of real weather scenarios. As a result, the
performance of BGAN is superior to copula and GAN methods.

4.1.3. Diversity validation
In a single plot, the visualization of all real weather data

sequences, along with copula, GAN, and BGAN-generated scenario
data, using t-SNE distribution is shown in Figures 7 and 8. In the
figures, the purple dots are more concentrated compared to
the blue, green, and yellow dots. There are more clusters formed by
the purple dots, and they significantly overlap with the red dot
region. The coverage is the highest, and the distance is very close.

Figure 3
Discriminator network loss function plot

Figure 4
Discriminator network output plot

Table 2
Comparison of statistical metrics for different simulation

methods

Simulation methods MAE RMSE R2

Copula 12.3127 12.2482 1.3577
GAN 10.1843 11.1931 1.3082
TiDE 9.8215 11.3339 1.2118
BGAN 9.7658 10.6640 1.7444

Figure 5
Comparison of weather temperature based on real, GAN, and

BGAN
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This indicates that the diversity of scenario results from BGAN is
enhanced, and their similarity to real scenarios is higher than the
scenario results from copula and GAN.

4.2. Results of chance-constrained planning

4.2.1. Planning results
This study takes the Mingzhu Industrial Park in Conghua,

Guangzhou as an example. The lower heating value of fuel is
32.967 MJ/m3 with a price of 3.23 CNY/m3. The heating
coefficient of the absorption chiller is 0.9. The average price of
electricity from the external grid in the industrial park is 0.9923
CNY/kWh. The total planning period is set to 10 years, and the
annual operating cost discount rate is set to 5%. The cost
coefficient of load shedding is 1 × 106 CNY/MW.

Within the planning model, all constraints on the output
characteristics of distributed energy resources are set at the same
confidence level. The stochastic planning costs at different
confidence levels are calculated, as depicted in Figure 9, with
specific configuration cost results presented in Table 3.

From Figure 9, it can be observed that as the confidence
threshold increases, construction and operation of the industrial
park-integrated energy system exhibit a trend of initially
increasing, then decreasing, and then increasing again as the
confidence threshold increases. When the confidence threshold is
0.90, the lowest total cost for the construction and operation
planning of the industrial park’s comprehensive energy system is
5.479 × 106 million CNY. From Table 3, it can be observed that
in terms of planning and construction, when the confidence level
is 0.95, the lowest construction cost is 1.63 × 105 million CNY.
In terms of operational costs, the expenditure on external
electricity procurement for the park has decreased by 5.91%. This
indicates that the utilization of all distributed energy equipment
increases with the rise of the confidence threshold. The CCHP
system’s cooling function can replace a portion of electric air
conditioning, and its heating function can substitute for a portion
of gas boiler heating. The distributed rooftop PV system and

Figure 6
Comparison of solar radiation based on real, GAN, and BGAN

Figure 7
Dimensionality reduction visualization of weather temperature

Figure 8
Dimensionality reduction visualization of weather scenarios

Figure 9
Cost of integrated energy system planning for industrial park at

different confidence levels
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distributed energy storage also contribute to electricity generation
and storage to some extent. In terms of operational planning,
when the confidence level is 0.90, the lowest operational cost is
5.31 × 106 million CNY. As the confidence level increases from
0.90 to 1.0, the operating costs have increased by 1.50%. This is
due to the increased electrical, heating, and cooling load levels
that the industrial park needs to meet. Therefore, as the total
capacity of the integrated energy system continues to increase, it
imposes excessive pressure on the business expenses during the
planning period.

Regarding the results of the stochastic chance-constrained
planning outlined above, the following conclusions can be drawn:

i). The industrial park’s investment, planning, construction, and
operational costs exhibit an initial increase followed by a
decrease as the confidence threshold increases. This
phenomenon can be attributed to the alignment between the
confidence threshold and the load balance requirements of the
system. Higher confidence thresholds correspond to more
stringent load balance requirements, leading to increased costs.
The total cost reaches its minimum value when the confidence
threshold is 0.9.

ii). In the planning and construction of industrial parks, the cost of
idle operation reflects the reliability of the power supply
system. By adjusting the confidence threshold, the system
ensures that each complex scenario involving heating
periods, cooling periods, and transition periods meets both
economic and safety requirements during operation.

iii). From a national perspective, the improvement of integrated
energy configuration efficiency aims to avoid energy wastage.
However, for energy supply providers in park construction,
considering energy configuration efficiency ultimately serves
the purpose of return on investment. According to Fu et al.
(2020) and Shen et al. (2016), the overall cost of park
planning and operation has decreased. This reduction reflects
the benefits brought about by using probability constraints to
restrict the output characteristics of distributed energy to meet
confidence thresholds, impacting equipment selection and
capacity configuration. It signifies an improvement in energy
configuration efficiency.

4.2.2. Sensitivity analysis
For the comprehensive energy system in the industrial park, the

performance fluctuations of the CCHP system’s parameters and
variations in gas prices will impact the economic feasibility of the
park’s planning results. Therefore, in this section, under the
current stochastic planning outcomes, sensitivity analysis is
conducted on various parameters. Specifically, the impact of a
10% fluctuation in both directions for each parameter is discussed
at a confidence level of 0.9. This analysis aims to assess the
influence on the industrial park’s planning and construction costs,
operational planning costs, and overall costs.

1) Results of Sensitivity Analysis on CCHP Unit Performance
Parameters

Sensitivity analysis was conducted on the performance parameters
of the CCHP unit, namely αICE, αGAS, αWA, βICE, βGAS, and βWA. The
results are presented in Table 4.

This table shows that the parameter with the most significant
impact on the planning results is the linear coefficient of CCHP
electricity generation output, denoted as αGAS and αGAS. When these
parameters are decreased by 10%, the 10-year planning, construc-
tion, and operational total cost for the industrial park amount to
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540.26 billion CNY, resulting in an investment cost decrease of
approximately 1.39%.

2) Results of Sensitivity Analysis on Gas Price Parameter

In this study, the initial purchase price of gas was set at 3.23
CNY/m3. Due to the significant fluctuations in gas prices, a sensitivity
analysis was conducted on gas prices. The results are presented in
Table 5. As observed from the table, gas prices also considerably
impact the industrial park’s overall economic feasibility. A 20%
decrease in gas price can lead to a 0.36% reduction in overall costs.

5. Conclusion

Energy and the environment have become bottlenecks
constraining the sustainable development of the national economy.
Industrial parks are concentrated areas of energy consumption,
leading to a transformation in energy utilization toward refinement,
decentralization, and sustainability, in response to the high demand
for energy such as cooling, heating, and electricity from clustered
industries. However, the output of distributed energy is influenced
by weather conditions, exhibiting strong randomness and volatility.
Moreover, with abundant and diverse monitoring data, potentially
valuable operational scenario information may not be effectively
conveyed to the park planning decision-makers. This can result in an
imprudent allocation of distributed energy capacities within the

integrated energy system, thereby subjecting the industrial park’s
power balance to significant pressure and posing new challenges to
energy reliability and economic viability. Therefore, this study
comprehensively considers the energy demands for electricity,
heating, and cooling loads during the industrial park planning
process, along with the forecast of renewable energy. It applies the
principles of SML to the process of random planning for distributed
energy. As a result, a planning method with stochastic opportunities
is proposed. The detailed conclusions are as follows:

(1) A method is proposed for simulating and generating weather
scenarios using BGAN. In contrast to traditional methods for
simulating weather scenes, this paper introduces the principles of
SML. Leveraging the characteristics of the posterior distribution
in Bayesian theory, the method optimizes the weight parameters
of the GAN using the posterior distribution, obtaining a
probability distribution that better approximates real weather
scenarios. The BGAN method takes advantage of the
feedforward properties of ML neural networks. Its operability
depends on the characteristics of the data model, making it easy
to operate without the need for sampling or manual annotation
of data, ensuring computational efficiency in solving SML
problems. The improvement of the genetic algorithm based on
complete probability inference is a fusion of probability theory
and ML. During training, Wasserstein distance is used to assess
the distance between the probability distribution pG xf g and real
data pdata xf g, ensuring the representativeness of all-weather sce-
nario categories during the training process. The dynamic gradient
HMCalgorithm is employed for network training, replacing the tra-
ditional stochastic gradient descent algorithm. This simplifies the
training process while ensuring the stability of training conver-
gence. Simulation results indicate that the BGAN method exhibits
higher accuracy and partitioning performance. The method effec-
tively conveys accurate and comprehensive scenario results to plan-
ning decision-makers, meeting the engineering requirements of
distributed energy planning considering SML in industrial parks.

(2) A distributed energy stochastic planning model for industrial parks
considering SML has been proposed. The model analyzes the
construction and operational costs of industrial park planning.
The considered energy supply alternatives include CCHP
systems, district heating residual heat boilers, distributed rooftop
PV systems, electric refrigeration and air conditioning systems,
and distributed energy storage. In the model, the complex
operational scenarios of the integrated energy system are divided
into heating, cooling, and transition periods during the planning
phase, considering the balance of electricity, heating, and
cooling. The Chebyshev’s inequality is employed to
probabilistically constrain the output characteristics of distributed
energy devices to meet a certain confidence threshold.

Simulation results demonstrate that with an increasing
confidence threshold, the total cost of planning, construction, and
operation exhibits an initial increase followed by a decrease and
then an increase again. When the confidence threshold is set at
0.90, the construction and operational planning total cost for the
industrial park’s comprehensive energy system is minimized,
yielding the optimal economic benefit. All three scenarios’
economic and safety requirements—heating, cooling, and
transition—are met by flexibly adjusting the confidence threshold
during system operation. Additionally, CCHP unit performance
parameters and gas prices also impact the park’s planning
outcomes, necessitating careful consideration of these parameters
during unit selection.

Table 4
Sensitivity analysis of CCHP unit performance parameters

(Unit: 100 million CNY)

Parameter
variations

Construction
investment

Operating
costs

Total
costs

Fluctuation
percentage (%)

0 16.94 530.92 547.86 0
αICE+10% 16.98 535.36 552.34 0.82
αICE−10% 16.86 527.22 544.08 −0.69
βICE+10% 16.92 531.24 548.16 0.05
βICE−10% 16.93 523.56 540.49 −1.35
αGAS+10% 16.89 533.42 550.38 0.46
αGAS−10% 16.96 523.37 540.26 −1.39
βGAS+10% 16.93 523.88 540.81 −1.29
βGAS−10% 16.93 531.91 548.84 0.18
αWA+10% 16.9 530.52 547.42 −0.08
αWA−10% 16.95 524.27 541.22 −1.21
βWA+10% 16.92 530.87 547.79 −0.01
βWA−10% 16.93 523.92 540.85 −1.28

Table 5
Sensitivity analysis of gas price parameter

(Unit: 100 million CNY)

Parameter
variation

Planning and
construction
investment

Operating
costs

Total
costs

Fluctuation
percentage

(%)

None 16.94 530.92 547.86 0
MGAS+10% 16.95 533.54 550.47 0.48
MGAS+20% 17.04 536.41 553.45 1.02
MGAS−10% 16.93 530.26 547.19 −0.12
MGAS−20% 16.91 528.97 545.88 −0.36
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