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Abstract: Lightweight Single Image Super Resolution has seen many advances in recent times. Transformer-based methods
have achieved great improvements over CNN-based methods. This is mainly driven by the transformer's ability to effectively
model long-range dependencies and retain textures in images. However, these transformer-based approaches have many
parameters and are computationally expensive during inference. In this work, we propose SWIFT, a hybrid of transformers and
Fast Fourier Convolutions (FFC) for Lightweight Single Image Super Resolution. We designed a novel Dual Spectrum
Frequency Block (DSFB) that processes features in both the spatial domain and the Fourier domain. DSFB allows us to
effectively maintain global context in features and extract high-frequency information. Additionally, to mitigate the frequency
erasing nature of transformers, we introduce SwinV2+ transformers that use attention scaling to promote high-frequency
information. Experimental results on popular benchmarking datasets show that SWIFT outperforms state-of-the-art transformer-
based methods in the realm of lightweight SISR, using 34% fewer parameters and being up to 60% faster during inference.
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1. Introduction

Image Super Resolution is a low-level computer vision task that involves generating a high-resolution image from a low-
resolution image. This domain has become an active area of research in the computer vision community. Several models have
been proposed (Ledig et al., 2017; Lim et al., 2017; Wang et al., 2018; Zhang et al., 2018a; Zhang et al., 2018b; Fritsche et al.,
2019; Zhang et al. 2018c; Li et al., 2019; Han et al., 2021; Zhang et al., 2021a; Zhang et al., 2021b) that address this task by
using Convolutional Neural Networks (CNNs). However, these CNN-based models work well when the size of the model is large
and requires many training examples to produce decent results. Convolution based methods concentrate on careful network
designs, such as residual connections (Ledig et al., 2017; Lim et al., 2017), and dense networks (Timofte et al., 2015; Dabov et al.,
2007; Gu et al., 2012). These models perform significantly compared to traditional upsampling methods, such as bicubic or
bilinear interpolation. However, these models do not scale very well when applied to larger images. This is because convolutions
work on local interactions which makes them less effective in modeling long-range dependencies. As a result, these models are
not able to effectively maintain the global context while generating large high-resolution images.

With the introduction of transformers in (Vaswani et al., 2017), and Vision Transformers (Dosovitskiy et al., 2020)
showing great success in high-level computer vision tasks, several works have been proposed that make use of transformers in
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low-level vision tasks. Transformer models employ a self-attention mechanism that helps the models to capture global context
effectively and perform better in wide range of vision problems (Carion et al., 2020; Han et al., 2021; Arnab et al., 2021; Esser et
al., 2021). To make transformers work with images, images are split into patches which are processed independently. This causes
some artifacts around the borders of each patch. To mitigate this, the patches are usually overlapped but, this introduces extra
computational overhead.

Figure 1
Comparison of model parameters VS PSNR scores of popular image SRmethods on Manga109 for x4 scale

A recent work SwinIR (Liang et al., 2021) proposed a transformer-based model that outperforms all the previous state-of-
the-art methods in image super-resolution. SwinIR uses Swin transformers (Liu et al., 2021) which makes use of window
attention to reduce complexity of attention computation on large images. This overcomes the major drawback of CNNs by being
able to process images of larger sizes. Another notable model is ESRT (Lu et al., 2022) which uses a hybrid of CNNs and
transformers to achieve results close to SwinIR using fewer computations. In order to increase the receptive field of convolutions,
Chi et al. (2020) proposes a Fast Fourier Convolution module. FFC converts the feature maps from the spatial domain to Fourier
domain. This allows the model to capture global context without the need for an expensive self-attention module. SwinFIR
proposed by Zhang et al. (2022), improved on SwinIR by employing the Fast Fourier Convolution (FFC). SwinFIR (Zhang et al.,
2022) makes use of SFB (Spatial Fourier Block) on top of SwinIR and obtains state-of-the-art results in the field of image super-
resolution.

Recently, the focus has shifted more towards efficient and lightweight methods for image super-resolution as shown in
Figure 1. Typically, it is achieved by reducing model parameters, adopting re-parameterizable blocks and carefully tuning model
architectures. Several methods (Hui et al., 2019; Wang et al., 2020; Ahn et al., 2018; Gu et al., 2012; Li et al., 2021; Zhao et al.,
2020) have been proposed over the years. However, the main challenge in choosing efficiency is that these methods often
sacrifice on the quality of the reconstructed image. In this work, we propose SWIFT, a hybrid of transformers and fast Fourier
convolutions, for lightweight single image super resolution. Our method consists of three modules: a feature extraction module
(FE), a high-frequency extraction module (HFE), and a parameter-efficient upsampling module for image reconstruction. In this
work, we design a novel Dual Spectrum Frequency Block (DSFB) that uses Fast Fourier Convolutions as proposed by Chi et al.
(2020) for extracting features in Fourier domain and shared ARFB layers (Lu et al., 2022) to extract features from the spatial
domain. The combination of processing features in both the spatial domain and the Fourier domain allows DSFB to effectively
model long-range dependencies and extract rich high-frequency information from features. Additionally, to overcome the
frequency-erasing nature of transformers, we introduce SwinV2+ transformers that modify the attention mechanism in SwinV2
transformers by using attention scaling to promote high-frequency information. Our method SWIFT achieves 0.10 ~ 0.20 dB
improvement in PSNR scores compared to other methods in Lightweight Single Image Super Resolution. Our method has the
lowest model size (by using ~34% less parameters) and is upto 60% faster in inference compared to previous transformer-based
methods.
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2. Literature Review

In recent times, image super-resolution is an actively researched topic. Numerous models have evolved over the years fueled
by the rapid advancements in deep learning technology. SRCNN (Dong et al., 2015) was the first to introduce CNN to the field of
image super-resolution. Its simple network consisted of just three convolution layers. VDSR (Kim et al., 2016) improved upon
this by using a deeper network to enable the model to converge faster. EDSR (Lim et al., 2017) removed some unnecessary
modules in VDSR to make the model more efficient, this enabled the model to have a large number of parameters. HAN (Niu et
al., 2020), SAN (Dai et al., 2019) further extends the usage of attention mechanisms to map interdependencies and enhance the
expression and correlation of feature learning. CSNLN (Mei et al., 2020) proposed a Non local attention module that can give
additional weight to features from all scales. NLSA (Mei et al., 2021) developed a sparse representation of Non-Local Operations,
preserving the robustness of the operations while being extremely efficient.

The limitation of a small receptive field in CNNs has overcome by the introduction of self-attention mechanisms in
transformers (Vaswani et al., 2017). ViT (Dosovitskiy et al., 2020) was the first transformer model which proved that
transformers tend to work well on image tasks as well. IPT (Chen et al., 2021) leveraged the power of transformers to pre-train a
transformer model for the underlying visual task in the feature mapping stage relying on large model size of more than 100
million parameters and huge datasets containing well over a million images. SwinIR (Liang et al., 2021) proposed a transformer-
based model by making use of Swin transformers (Liu et al., 2021) that are stacked together. HAT (Chen et al., 2022) developed
a model that combines channel attention, overlapping cross-attention, and self-attention to achieve great results but has a model
size of ~40 million parameters. Further SwinFIR (Zhang et al., 2022) proposes the Spatial Frequency Block (SFB) that uses
Fourier transformations to extract comprehensively detailed and stable features. LaMa (Suvorov et al., 2022) proposes a new
network focused on using FFC on image restoration problems. Inspired by these papers we propose SWIFT, a hybrid of
transformers and FFC, that tackles the problems of limited receptive field in CNN and to better model the long-range
dependencies.

3. Research Methodology

3.1. Model design

The model architecture for SWIFT is shown in Figure 2. The architecture consists of three modules: the feature extraction
(FE) module, high frequency extraction module consisting of stacked FSTBs, and a parameter efficient upsampling module for
image reconstruction.

The low-resolution (LR) images are first passed to the feature extraction module, containing a single convolution layer.
This module extracts low-frequency details from raw input images and converts the input dimensions to a higher dimensional
space, making it suitable for feature extraction at deeper layers. Let ��� ∈ ��×�×��� be the input raw LR images to FE module
where �,� and ��� are height, width and channels respectively, the FE module can be represented as:

 �0 = ��� ��� ,

where ��� · consists of a single 3x3 convolution layer for extracting features maps from the LR input image ���, and �0
is the output features containing low-frequency information.

The feature maps �0 extracted by the FE module are then passed to the high-frequency extraction module that consists of
several stacked Fourier-Swin Transformer Blocks (FSTBs). These FSTBs specialize in extracting high-frequency information
from the low-frequency feature maps �0 which helps to generate powerful feature representations. Additionally, a parameter-
efficient convolution layer is used at the end of high-frequency extraction module. The convolution operation is used to perform
additional processing on the high-frequency features extracted before passing them to the upsampling module for image
reconstruction. The high-frequency extraction can be module can be represented as:

���� = ���� �0 ,
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Figure 2
SWIFT architecture for lightweight image super resolution

where the output feature maps ����  ∈  ℝ�×�×�  consists of rich information that helps the upsampler to perform better
image reconstruction.

Finally, a parameter-efficient upsampling module is used for upsampling the features maps to the HR size. This module
consists of a convolution layer and parameter-efficient Pixel Shuffle Upsampling layers (Shi et al., 2016) that takes in the feature
maps �0 , extracted by FE module, and the high features ���� as input and upsamples to the desired scales. The parameter-
efficient upsampling module can be represented as:

��� = ��� �0 + ���� ,

where ���  ∈  ℝ�×�×��� is the super-resolved image generated by the upsampling module ���.

3.2. Fourier-Swin Transformer Block

The design of our novel Fourier-Swin Transformer Block (FSTB) is shown in Figure 2. Each FSTB consists of a series of
SwinV2+ Transformer Layers followed by a series of Dual Spectrum Frequency Blocks (DSFBs). The number of SwinV2+
transformers and DSFBs can be configured based on the model type. A parameter-efficient convolution layer is used at the end of
each FSTB to add the inductive bias back, which helps the model learn better features.

Let the number of SwinV2+ transformers and DSFBs be represented by � and �, respectively, in the �-th FSTB, and let ��,0
represent the input feature maps. The operation performed by the FSTB can be represented as:

��,� = ������2�,�+ ��,�−1 ,            �  =  1,2, …,�,
��,� = ������,� ��,�−1 ,           �  =  1,2, …, �,

��,��� = ������ ��,� + ��,0,

where ������2�,�+ · is the �-th SwinV2+ Transformer in the �-th FSTB and ������,� · is the �-th Dual Spectrum Frequency

Block in the �-th FSTB. A residual connection is used in each FSTB, which helps to aggregate features on different levels and
propagate features directly to the high-quality image reconstruction, adding to the stability and faster convergence of the model.
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SwinV2+ Transformer. SwinV2 Transformer proposed in Liu et al. (2022) builds upon the original Swin Transformer (Liu et
al., 2021) by altering the shifted window self-attention mechanism to enhance the model’s capacity and window resolution. The
modified attention module in SwinV2 uses scaled cosine attention between keys and queries. This helps in reducing the influence
of attention heads on few pixel pairs in features that was present when using dot product between keys and queries. Another
noticeable change in SwinV2 Transformers is the use of post-normalization in place of pre-normalization. Post-normalization
decreases the average feature variance in deeper layers which in turn increases the numerical stability of the model during
training. SwinV2 Transformer further enhances the Swin Transformer by using a log-spaced continuous relative position bias
which helps the model to generalize to higher input resolutions.

However, the self-attention module in these transformers predominantly acts as a low pass filter (Wang et al., 2022), which
erases the high-frequency information which makes the model lose its expressiveness at deeper layers. Using the methods
proposed in Wang et al. (2022), we modify the self-attention module of SwinV2 Transformer by adding AttnScale. In AttnScale,
the self-attention matrix is decomposed into two sub-matrices: a high-pass filter and a low-pass filter, and a trainable parameter is
introduced to rescale the high-pass filter to match the magnitude of the low-pass filter. This makes the self-attention module
behave as an all-pass filter which helps in preserving more high-frequency information. In this work, we call this modified
transformer as SwinV2+ Transformer. Let � be the attention scores of SwinV2+ Transformer, the operation performed by
AttnScale can be represented as:

��� =
1
�
11�,

��� = � − ���,
Â = ��� + � + 1 ∗ ���,

where λ is the rescaling parameter and 11� is the largest possible low-pass filter. Subtracting the largest possible low-pass
filter ��� from the attention scores � gives the high-pass component ��� of �. The rescaling parameter λ is initialized to zero and
is jointly tuned by other network parameters during training. Computing AttnScale is relatively lightweight and adds minimal
parameter overhead to the window attention module.

3.3. Dual Spectrum Frequency Block

The design of our novel Dual Spectrum Frequency Block (DSFB) is as shown in Figure 2(b). Each DSFB consists of two
branches, one that processes information in the Fourier domain and the other in the image domain. The input ��,� ∈ ��×�×� is
split into two halves along the channels. The first half is passed to the first branch, while the second half is passed to the second
branch.

3.3.1. Processing in fourier domain

The first branch of DSFB takes the input ��,� ∈ �
�×�×�� , where ��,� is the feature maps of the last SwinV2+ transformer

layer in the �-th FSTB. Inspired by the success of Fast Fourier Convolutions in image inpainting tasks (Suvorov et al., 2022), we
apply the Fast Fourier convolutions (FFC) in image super resolution. The features ��,� are passed through an FFC layer,
succeeded by Batch Normalization and ReLU activation. The FFC operation increases the receptive field and allows the model to
preserve the global context better. The FFC layer applies a Fast Fourier transform (FFT) along the channels, converting the
feature maps from the spatial domain to the Fourier domain. The feature maps in the Fourier domain comprise of both low and
high frequencies present in the spatial feature maps. The FFC splits the channels into two branches: a local branch that uses
traditional convolutions to extract information in the spatial domain, and a global branch that uses real FFT to account for the
global context. The FFC operation is comprised of the following steps: Let ��� ∈ ��×�×� be the input to FFC layer. Real FFT2d
is applied to ��� which converts as:

��� = ���� ���2� ���
���  ∈  ℝ�×�×� ⟶  ���  ∈  ℂ�×

�
2×�,



Artificial Intelligence and Applications Vol. XX Iss. XX yyyy

______________________________________________________________________________

6

Since convolution can operate on real values, FFC converts the above complex tensor to real by concatenating the real and
imaginary parts. This conversion converts:

���  ∈  ℂ�×
�
2×�  ⟶  ���  ∈  ℝ�×

�
2×2�,

A 1 x 1 convolution followed by Batch Normalization and ReLU activation is applied on the above feature maps. This
operation operates on feature maps that are represented in the Fourier domain. FFC layer then applies Inverse Real FFT2d to
convert the feature maps back to the spatial domain and can be represented as:

���  ∈  ℝ�×
�
2×2�  ⟶  ���  ∈  ℂ�×

�
2×�

���� = ������� ���2� ���
���  ∈  ℂ�×

�
2×�  ⟶  ����  ∈  ℝ�×�×�

Results in Suvorov et al. (2022), show that FFC works very well on images that have repeated structures and patterns and
preserve the global context while being efficient during training and inference.

3.3.2. Processing in the spatial domain

The second branch of DSFB takes in input ��,� ∈ �
�×�×�� , where ��,� is the feature maps of the last SwinV2+ transformer

layer in the �-th FSTB. This branch extracts information in the spatial domain. The feature maps are passed through a pooling
layer that extracts the average intensities in the input. The features are then passed through a series of weight-shared Adaptive
Residual Feature Blocks (ARFBs) (Lu et al., 2022), which adaptively select and scale features, helping the model to propagate
high-frequency details. A skip connection is added after the ARFB layers to stabilize training and improve gradient flow. A 1x1
convolution is then applied to the features for additional processing.

3.3.3. Merging both branches using SCAM

We use Stereo Cross Attention Module (SCAM) (Chu et al., 2022) to merge both the branches into a single branch. SCAM
allows the model to selectively combine features from two branches using the attention mechanism. The output of SCAM is then
concatenated along channel dimension to output a single branch.

4. Results and Discussions

4.1. Datasets and evaluation metrics

In this work, we use the DIV2K dataset (Timofte et al., 2017) for training. The DIV2K dataset comprises of 800 high-
resolution (HR) images, and the corresponding low-resolution (LR) images are generated through bicubic downsampling from
the HR images. To evaluate the performance of the model, we use five widely-used benchmark datasets: Set5 (Bevilacqua et al.,
2012), Set14 (Zedye et al., 2012), BSD100 (Martin et al., 2001), Urban100 (Huang et al., 2015), and Manga109 (Matsui et al.,
2001). We use PSNR and SSIM metrics to quantitatively evaluate the performance of the SR images.

4.2. Experimental setup

4.2.1. Training setting

We randomly crop LR images of size 64 x 64 as inputs to the model. Data augmentations, like random rotations, random
vertical and horizontal flips, and RGB channel shuffling, are used to increase the training data. We use the Adam optimizer with
�1 = 0.9 and �2 = 0.99, and the �1 loss function for training. The initial learning rate is set to 2� − 4, and it is reduced by 50%
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at [384000, 534000, 584000, 609000] iterations. Model was trained for a total of 700,000 iterations. We use PyTorch for building
models, and all training is performed using one NVIDIA Tesla A100 GPU.

4.2.2. Implementation details

In SWIFT, we set the number of FSTB to be 4. Inside each FSTB, we use 2 SwinV2+ transformer layers and 2 DSFB layers.
Model channel count is set to 64. We use a window size of 8 and number of attention heads is set to 8 in each SwinV2+
transformer layer. In DSFB, we set the number of shared ARFB to 5. The convolution layer at the end of each FSTB is
implemented as three 3 x 3 convolutions followed by PReLU activation.

4.3. Results on lightweight image SR

In this work, we focus primarily on the task of lightweight image super-resolution. Table 1 shows the quantitative
comparisons between the proposed SWIFT and eight well-known methods such as CARN (Ahn et al., 2018), IMDN (Hui et al.,
2019), ESRT (Lu et al., 2022), PAN (Zhao et al., 2020), LAPAR (Li et al., 2020), LatticeNet (Luo et al., 2020) and SwinIR
(Liang et al., 2021). In keeping comparisons fair, the models selected have model sizes similar to that of our proposed method
and the models have been trained using only the DIV2K training set.

From the table, it can be seen that SWIFT outperforms other famous state-of-the-art methods like SwinIR, LatticeNet, and
LAPAR. SWIFT achieves higher scores in both PSNR and SSIM metrics on most benchmarking datasets while being the
smallest model in terms of model parameters. SWIFT uses 33.55% fewer parameters compared to the previous best SwinIR. The
proposed SWIFT architecture allows models to be smaller and run faster during inference. Methods like PAN have much lesser
parameters compared to SWIFT however, the consequence of reducing parameters is that these methods tend to score less in both
PSNR and SSIM metrics. PAN scores ~0.6 dB less than SWIFT in PSNR on Urban100 (x2). The maximum PSNR gain achieved
by SWIFT over the previous best SwinIR method is ~0.20 dB in Manga109 for x3 scale.

In Figure 3, we provide the visual comparisons between SWIFT and other lightweight models on x4 scale. It is evident from
the output of SWIFT that our proposed architecture effectively extracts high-quality features from LR images and uses them to
reconstruct SR images with good details.

Table 1
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Quantitative comparison of state-of-the-art methods in lightweight image SR on popular benchmarking datasets.
Red and blue indicate top two results

Figure 3
Qualitative comparisons of various methods in lightweight image SR on Set14 and Urban100 datasets for x4 scale

Table 2
Impact of increasing channel count on Set5 (×4) scores
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The quality of reconstructed images produced by SWIFT is on par with that of EDT (Li et al., 2021) output. EDT uses additional
datasets and pretraining on ImageNet (Deng et al., 2009) (consists of ~1.3M images) to obtain higher PSNR and SSIM scores.
SWIFT uses only 800 training images from DIV2K for training and achieves similar results qualitatively.

4.4. Ablation studies and discussions

For the ablation study, we train SWIFT on DIV2K (Timofte et al., 2017) datasets and evaluate how each component of the
model affects the performance of SR images.

4.4.1. Impact of channel number

Table 2 shows the number of channels used for model training directly impacts the scores obtained by the model. Most
lightweight models, like ESRT (Lu et al., 2022), LAPAR (Li et al., 2020), use 32 channels. This decreases the number of
parameters in the model, but it sacrifices on both PSNR and SSIM scores. Increasing the channels to 64, increases the parameters
drastically and will make the model no longer applicable to lightweight SR. Keeping this in mind, we design SWIFT to work
with 64 channels and have fewer parameters than most lightweight models that use 32 channels. Increasing channels further
increases the performance of the model but this extra performance diminishes gradually.

Figure 4
Impact of number of FSTB layers in SWIFT on Set5 (×2) scores

4.4.2. Impact of number of FSTB, SwinV2+ and DSFB

Results in Figure 4 shows a noticeable positive correlation between the number of FSTB in the model and the PSNR scores
obtained. However, using more FSTB in the model increases both parameters and inference time. For the purpose of lightweight
SR, SWIFT uses 4 FSTB blocks. The number of SwinV2+ transformer layers and DSFB inside FSTB also tends to affect PSNR
scores. In our experiments, an equal number of SwinV2+ and DSFB tend to perform better than other configurations. More
specifically, for lightweight SR, we set the number of SwinV2+ and DSFB to be 2 and 2 respectively. To have a smaller model,
we found that using 4 FSTB each with 2 SwinV2+ and 2 DSFB gave the model enough capacity to learn better while staying low
on parameters.
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4.4.3. Impact of datasets and training patch size

CNN-based models often tend to use DIV2K (Timofte et al., 2017) for image SR. Recently, several methods have been
proposed that train models on more images by combining images from DIV2K (Timofte et al., 2017) and Flickr2K (Wang et al.,
2019) datasets called the DF2K dataset. As there are more training examples, it is expected that models trained on DF2K dataset
achieve better scores in PSNR and SSIM metrics as shown in Table 3. However, to keep a fair model comparison, we train
SWIFT only on the DIV2K dataset. Models like SwinFIR (Zhang et al., 2022) and IPT (Chen et al., 2021) pre-train the models
on ImageNet (Deng et al., 2009) dataset and then finetune it for DIV2K and DF2K datasets. These models, although they
outperform most other models, they tend to require a lot of resources for training. With respect to the training patch size, as
shown in Figure 5, training on larger patch size (64 x 64 instead of traditional 48 x 48) tends to allow the model to converge
better and perform better in both PSNR and SSIM scores.

Figure 5
Impact of training patch size on Set5 (×2) scores

Table 3
Impact of different training datasets on Set5 (×4) scores

Table 4
Study of each component in DSFB on Set5 (×2)

4.4.4. Study of components in DSFB
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DSFB is an important component of SWIFT as it is capable of extracting high-frequency information during feature
extraction. Table 4, shows the contribution of each component in DSFB. In the table, ARFB and FFC indicate the spatial branch
and Fourier branch respectively. According to Cases 1 and 2, we observe that the model scores less in PSNR scores when only
one of the two branches in DSFB is used. Case 3 shows that model performs better in PSNR scores when both branches are used
together for feature extraction. Case 4 shows that using SCAM (Chu et al., 2022) in DSFB gives a gain of ~0.05 dB in PSNR
scores as it helps to combine features from both branches effectively. Although SCAM is traditionally used in stereo image
super-resolution, using SCAM in our architecture helps SWIFT to score higher in both PSNR and SSIM metrics.

4.5. Comparisons with latest SwinIR advancements

Since the introduction of SwinIR (Liang et al., 2021), several improvements have been proposed, namely SwinFIR (Zhang
et al., 2022) and Swin2SR (Conde et al., 2023). SwinFIR proposes Spatial Frequency Blocks (SFB) that use Fourier
transformation to capture global context. The DSFB in SWIFT uses Fast Fourier Convolutions (Chi et al., 2020) to extract high-
frequency information while maintaining global context in feature maps. The SFB in SwinFIR just applies Fourier transformation
and a few convolution operations to extract features. The comparison between SWIFT and SwinFIR is shown in Table 5.
SwinFIR uses advanced techniques such as feature ensembles, ImageNet pretraining, and finetuning on the DIV2K dataset.
Comparing SWIFT and SwinFIR is not fair as SwinFIR has been pre-trained on large datasets and the lack of a public codebase
for SwinFIR inhibits us from performing comparisons on inference time and model size.

Table 5
Comparison of SWIFT with advances in SwinIR architecture for ×2 scale

Swin2SR improves over SwinIR by using SwinV2 transformers while keeping the overall architecture similar to SwinIR.
Similar to SwinFIR, Swin2SR uses additional datasets such as a combination of DIV2K and Flickr2K (Wang et al., 2019) for
training. SWIFT uses 800 training images from DIV2K dataset and achieves scores closer to Swin2SR. Swin2SR uses ~68%
more parameters compared to SWIFT but gains ~0.06 dB in PSNR score for BSD100 (Martin et al., 2001) dataset and takes 84%
longer during inference (Table 6).

4.6. Comparisons on computational costs

A detailed comparison of inference times for state-of-the-art methods have been shown in Table 6. From the table, it is
evident that SWIFT has the lowest inference time across all the benchmarking datasets compared to other transformer-based
methods like SwinIR (Liang et al., 2021), ESRT (Lu et al., 2022) and Swin2SR (Conde et al., 2023). SWIFT consistently
achieves fast inference time for images of smaller size as present in benchmarking datasets like Set5 (Bevilacqua et al., 2012),
Set14 (Zeyde et al., 2012) and BSD100 (Martin et al., 2001).

Table 6
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Comparison of inference time of popular methods on benchmarking datasets for x4 scale. The▼ symbol
indicates improvement and▲ symbol indicates deterioration of inference time compared to the reference model.
The reference model used for comparisons for is indicated by * (asterisks). Inference for all models were carried

out on NVIDIA RTX 3080 GPU

However, in DIV2K Validation (Timofte et al., 2017), Urban100 (Huang et al., 2015) and Manga109 (Matsui et al., 2001),
where the images are comparatively larger, inference using SWIFT is much faster compared to other transformer-based methods.
More specifically, SWIFT is ~53.3% faster on average in inference time compared to the SwinIR method. Inference can also be
carried out by recursively dividing images into smaller patches and stitching the model predictions on individual patches to
reconstruct the SR image. This method is useful for models like ESRT (Lu et al., 2022), which are efficient for small input
images (64x64) but are computationally expensive to run when the size of input images are large (256x256). Our method easily
scales to larger image sizes and can run efficiently on both the types of inference methods. To compare various models on model
size and computational complexities, we report the total number of parameters and multiply-accumulate operations, evaluated on
an input of size 1280x720 for x4 scale.

5. Limitations

Although SWIFT is designed to be smaller and capable of running faster at inference compared to other transformer-based

methods, CNN-based methods like CARN (Ahn et al., 2018) and IMDN (Hui et al., 2019) still run much faster than SWIFT. This
difference in speed is mainly because CNN-based methods can leverage hardware acceleration on modern GPUs. The presence of
optimized convolution kernels in hardware allows for significantly faster convolution operations. While CNN-based models may
have faster inference times, their performance is limited by their reliance on local receptive fields. They lack the ability to
effectively model long-range dependencies and struggle to preserve fine textures compared to transformer-based methods like
SwinIR (Liang et al., 2021) and ESRT (Lu et al., 2022). This limitation is evident from the qualitative results presented in Figure
3. To address the challenge of long-range dependencies, SWIFT utilizes FFC instead of traditional convolutions. By
incorporating Fourier convolutions, SWIFT mitigates the limitations of local receptive fields and enables the modeling of global
context. Additionally, SWIFT leverages the SwinV2+ Transformer, which enhances its ability to map textures effectively. With
the increasing popularity of transformer based architectures, modern accelerators such as NVIDIA H100, provide hardware
support for running transformers. Presence of such hardware support can provide inference closer to CNN-based methods.

6. Conclusion

In this work, we introduce SWIFT, a hybrid model consisting of transformers and Fast Fourier Convolutions, for
lightweight single image super resolution. We design a new block called Dual Spectrum Frequency Block (DSFB) that extracts
high-frequency information by processing features in both the spatial domain and the Fourier domain. DSFB effectively models
the long-range dependencies in feature maps while staying low on parameters. Additionally, we also extend transformers to
promote high-frequency information with the usage of SwinV2+ transformers. Experimental results show that SWIFT achieves
state-of-the-art results on popular benchmarking datasets in lightweight SISR. SWIFT architecture allows models to be smaller in
terms of a total number of model parameters and offers faster inference compared to other transformer-based lightweight image
super-resolution methods.
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