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Toward Faster and Efficient Lightweight
Image Super-Resolution Using Transformers
and Fourier Convolutions
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Abstract: Lightweight single-image super-resolution has seen many advances in recent times. Transformer-based methods have achieved
great improvements over convolutional neural network-based methods. This is mainly driven by the transformer’s ability to effectively model
long-range dependencies and retain textures in images. However, these transformer-based approaches have many parameters and are
computationally expensive during inference. In this work, we propose SWIFT, a hybrid of transformers and fast Fourier convolutions
(FFC) for lightweight single-image super-resolution. We designed a novel dual spectrum frequency block (DSFB) that processes features
in both the spatial domain and the Fourier domain. DSFB allows us to effectively maintain global context in features and extract high-
frequency information. Additionally, to mitigate the frequency-erasing nature of transformers, we introduce SwinV2+ transformers that
use attention scaling to promote high-frequency information. Experimental results on popular benchmarking datasets show that SWIFT
outperforms state-of-the-art transformer-based methods in the realm of lightweight SISR, using 34% fewer parameters and being up to
60% faster during inference.
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1. Introduction

Image super-resolution is a low-level computer vision task
that involves generating a high-resolution (HR) image from a
low-resolution (LR) image. This domain has become an active
area of research in the computer vision community. Several
models have been proposed [1–6] that address this task by using
convolutional neural networks (CNNs). However, these CNN-
based models work well when the size of the model is large and
requires many training examples to produce decent results.
Convolution-based methods concentrate on careful network designs,
such as residual connections [2, 4] and dense networks [7, 8]. These
models perform significantly compared to traditional upsampling
methods, such as bicubic or bilinear interpolation. However, these
models do not scale very well when applied to larger images. This
is because convolutions work on local interactions which makes
them less effective in modeling long-range dependencies. As a
result, these models are not able to effectively maintain the global
context while generating large HR images.

With the introduction of transformers in reference [9] and vision
transformers [10] showing great success in high-level computer vision
tasks, several works have been proposed that make use of transformers
in low-level vision tasks. Transformer models employ a self-attention
mechanism that helps the models to capture global context
effectively and perform better in wide range of vision problems

[1, 11–13]. To make transformers work with images, images
are split into patches which are processed independently. This
causes some artifacts around the borders of each patch. To
mitigate this, the patches are usually overlapped, but this
introduces extra computational overhead.

A recent work on SwinIR [14] proposed a transformer-based
model that outperforms all the previous state-of-the-art methods in
image super-resolution. SwinIR uses Swin transformers [15]
which makes use of window attention to reduce complexity of
attention computation on large images. This overcomes the major
drawback of CNNs by being able to process images of larger
sizes. Another notable model is ESRT [16] which uses a hybrid of
CNNs and transformers to achieve results close to SwinIR using
fewer computations. In order to increase the receptive field of
convolutions, Chi et al. [17] propose a fast Fourier convolution
(FFC) module. FFC converts the feature maps from the spatial
domain to Fourier domain. This allows the model to capture
global context without the need for an expensive self-attention
module. SwinFIR proposed by Zhang et al. [18] improved on
SwinIR by employing the FFC. SwinFIR [18] makes use of
Spatial Frequency Block (SFB) on top of SwinIR and obtains
state-of-the-art results in the field of image super-resolution.

Recently, the focus has shifted more toward efficient and
lightweight methods for image super-resolution as shown in
Figure 1. Typically, it is achieved by reducing model parameters,
adopting re-parameterizable blocks, and carefully tuning model
architectures. Several methods [8, 19–23] have been proposed
over the years. However, the main challenge in choosing
efficiency is that these methods often sacrifice on the quality of
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the reconstructed image. In this work, we propose SWIFT, a hybrid
of transformers and FFCs, for lightweight single-image super-
resolution. Our method consists of three modules: a feature
extraction module (FE), a high-frequency extraction module
(HFE), and a parameter-efficient upsampling module for image
reconstruction. In this work, we design a novel dual spectrum
frequency block (DSFB) that uses FFCs as proposed by Chi
et al. [17] for extracting features in Fourier domain and shared
adaptive residual feature blocks (ARFB) layers [16] to extract
features from the spatial domain. The combination of processing
features in both the spatial domain and the Fourier domain
allows DSFB to effectively model long-range dependencies and
extract rich high-frequency information from features. Additionally,
to overcome the frequency-erasing nature of transformers, we
introduce SwinV2+ transformers that modify the attention
mechanism in SwinV2 transformers by using attention scaling to
promote high-frequency information. Our method SWIFT
achieves 0.10 ∼ 0.20 dB improvement in PSNR scores compared
to other methods in lightweight single-image super-resolution. Our
method has the lowest model size (by using ∼34% less
parameters) and is upto 60% faster in inference compared to
previous transformer-based methods.

2. Literature Review

In recent times, image super-resolution is an actively researched
topic. Numerous models have evolved over the years fueled by the
rapid advancements in deep learning technology. SRCNN [24] was
the first to introduce CNN to the field of image super-resolution. Its
simple network consisted of just three convolution layers. VDSR
[25] improved upon this by using a deeper network to enable the
model to converge faster. EDSR [4] removed some unnecessary
modules in VDSR to make the model more efficient, and this
enabled the model to have a large number of parameters. HAN
[26] and SAN [27] further extend the usage of attention
mechanisms to map interdependencies and enhance the expression
and correlation of feature learning. CSNLN [28] proposed a non-
local attention module that can give additional weight to features
from all scales. NLSA [29] developed a sparse representation of
non-local operations, preserving the robustness of the operations
while being extremely efficient.

The limitation of a small receptive field in CNNs has been
overcome by the introduction of self-attention mechanisms in
transformers [9]. ViT [10] was the first transformer model which
proved that transformers tend to work well on image tasks as
well. IPT [30] leveraged the power of transformers to pre-train a
transformer model for the underlying visual task in the feature
mapping stage relying on large model size of more than
100 million parameters and huge datasets containing well over a
million images. SwinIR [14] proposed a transformer-based model
by making use of Swin transformers [15] that are stacked
together. HAT [31] developed a model that combines channel
attention, overlapping cross-attention, and self-attention to achieve
great results but has a model size of ∼40 million parameters.
Further SwinFIR [18] proposes the spatial frequency block (SFB)
that uses Fourier transformations to extract comprehensively
detailed and stable features. LaMa [32] proposes a new network
focused on using FFC on image restoration problems. Inspired by
these papers, we propose SWIFT, a hybrid of transformers and
FFC, that tackles the problems of limited receptive field in CNN
and to better model the long-range dependencies.

3. Research Methodology

3.1. Model design

The model architecture for SWIFT is shown in Figure 2. The
architecture consists of three modules: the FE module, HFE
module consisting of stacked FSTBs, and a parameter-efficient
upsampling module for image reconstruction.

The LR images are first passed to the feature extraction module,
containing a single convolution layer. This module extracts low-
frequency details from raw input images and converts the input
dimensions to a higher dimensional space, making it suitable for
feature extraction at deeper layers. Let ILR 2 RH�W�Cin be the input
raw LR images to FEmodule whereH,W; and Cin are height, width,
and channels, respectively, and the FE module can be represented as
shown in Equation (1):

F0 ¼ HFE ILRð Þ; (1)

where HFE �ð Þ consists of a single 3 × 3 convolution layer for
extracting feature maps from the LR input image ILR and F0 is the
output features containing low-frequency information.

The feature maps F0 extracted by the FEmodule are then passed
to the HFE module that consists of several stacked Fourier-Swin
transformer blocks (FSTBs). These FSTBs specialize in extracting
high-frequency information from the low-frequency feature maps
F0 which helps to generate powerful feature representations. Addi-
tionally, a parameter-efficient convolution layer is used at the end of
HFE module. The convolution operation is used to perform addi-
tional processing on the high-frequency features extracted before
passing them to the upsampling module for image reconstruction.
TheHFE can bemodule can be represented as shown in Equation (2):

FHFE ¼ HHFE F0ð Þ; (2)

where the output feature maps FHFE 2 RH�W�C consist of rich infor-
mation that helps theupsampler toperformbetter image reconstruction.

Finally, a parameter-efficient upsampling module is used for
upsampling the features maps to the HR size. This module
consists of a convolution layer and parameter-efficient pixel
shuffle upsampling layers [33] that takes in the feature maps F0,

Figure 1
Comparison of model parameter VS PSNR scores of popular

image SR methods on Manga109 for ×4 scale
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extracted by FE module, and the high features FHFE as input and
upsamples to the desired scales. The parameter-efficient upsampling
module can be represented as shown in Equation (3):

ISR ¼ HUP F0 þ FHFEð Þ; (3)

where ISR 2 RH�W�Cin is the super-resolved image generated by the
upsampling module HUP.

3.2. FSTB

The design of our novel FSTB is shown in Figure 2. Each FSTB
consists of a series of SwinV2+ transformer layers followed by a
series of DSFBs. The number of SwinV2+ transformers and
DSFBs can be configured based on the model type. A parameter-
efficient convolution layer is used at the end of each FSTB to add
the inductive bias back, which helps the model learn better features.

Let the number of SwinV2+ transformers and DSFBs be
represented by M and N, respectively, in the i-th FSTB, and let
Fi;0 represent the input feature maps. The operation performed by
the FSTB can be represented as shown in Equation (4):

Fi;j ¼ HSwinV2þi;j
Fi;j�1

� �
; j ¼ 1; 2; . . . ;M;

Fi;k ¼ HDSFBi;k
Fi;k�1

� �
; k ¼ 1; 2; . . . ;N; (4)

Fi;out ¼ Hconvi Fi;N
� �þ Fi;0;

where HSwinV2þi;j
�ð Þ is the j-th SwinV2+ transformer in the

i-th FSTB and HDSFBi;k
�ð Þ is the k-th DSFB in the i-th FSTB. A

residual connection is used in each FSTB, which helps to aggregate
features on different levels and propagate features directly to the
high-quality image reconstruction, adding to the stability and faster
convergence of the model.

SwinV2+ transformer. SwinV2 transformer proposed in Liu
et al. [34] builds upon the original Swin transformer [15] by
altering the shifted window self-attention mechanism to enhance
the model’s capacity and window resolution. The modified
attention module in SwinV2 uses scaled cosine attention between

keys and queries. This helps in reducing the influence of attention
heads on few pixel pairs in features that was present when using
dot product between keys and queries. Another noticeable change
in SwinV2 transformers is the use of post-normalization in place
of pre-normalization. Post-normalization decreases the average
feature variance in deeper layers which in turn increases the
numerical stability of the model during training. SwinV2
transformer further enhances the Swin transformer by using a log-
spaced continuous relative position bias which helps the model to
generalize to higher input resolutions.

However, the self-attention module in these transformers
predominantly acts as a low-pass filter [35], which erases the
high-frequency information which makes the model lose its
expressiveness at deeper layers. Using the methods proposed in
Wang et al. [35], we modify the self-attention module of SwinV2
transformer by adding AttnScale. In AttnScale, the self-attention
matrix is decomposed into two sub-matrices: a high-pass filter and
a low-pass filter, and a trainable parameter is introduced to rescale
the high-pass filter to match the magnitude of the low-pass filter.
This makes the self-attention module behave as an all-pass filter
which helps in preserving more high-frequency information. In
this work, we call this modified transformer as SwinV2+

transformer. Let A be the attention scores of SwinV2+ transformer,
and the operation performed by AttnScale can be represented as
shown in Equation (5):

ALP ¼ 1
n
11T ;

AHP ¼ A� ALP; (5)

Â ¼ ALP þ λþ 1ð Þ�AHP;

where λ is the rescaling parameter and 11T is the largest possible low-
pass filter. Subtracting the largest possible low-pass filter ALP from
the attention scores A gives the high-pass component AHP of A. The
rescaling parameter λ is initialized to zero and is jointly tuned by
other network parameters during training. Computing
AttnScale is relatively lightweight and adds minimal parameter over-
head to the window attention module.

Figure 2
SWIFT architecture for lightweight image super-resolution

Residual Frequency Block (RFB)SwinV2
+

 Transformer Layer

+

C
on

v

FS
TB

FS
TB

FS
TB

FS
TB

C
on

v

+

C
on

v

Sw
in

V2
+

Sw
in

V2
+

R
FB

R
FB

 +

M
S

A

M
L
P

L
a

y
e

r 
N

o
rm

L
a

y
e

r 
N

o
rm

 +

A
tt

n
 S

c
a

le

A
v
g

P
o

o
l

A
R

F
B

A
R

F
B

A
R

F
B

+

C
o

n
c
a

t

+

B
ili

n
e

a
r

. .

R
e

L
U

B
N

F
F

C

S
C

A
M

+

C
on

v

Pi
xe

l S
hu

ffl
e

+ +

C
o

n
v
1x

1

LR

SR

(a) (b)

Artificial Intelligence and Applications Vol. 3 Iss. 2 2025

170



3.3. DSFB

The design of our novel DSFB is shown in Figure 2(b). Each
DSFB consists of two branches, one that processes information in
the Fourier domain and the other in the image domain. The input
Fi;M 2 RH�W�C is split into two halves along the channels. The first
half is passed to the first branch, while the second half is passed to the
second branch.

3.3.1. Processing in Fourier domain
The first branch of DSFB takes the input Fi;M 2 RH�W�C

2 ,
where Fi;M is the feature maps of the last SwinV2+ transformer layer
in the i-th FSTB. Inspired by the success of FFCs in image inpainting
tasks [32], we apply the FFC in image super-resolution. The features
Fi;M are passed through an FFC layer, succeeded by batch normali-
zation and ReLU activation. The FFC operation increases the recep-
tive field and allows the model to preserve the global context better.
The FFC layer applies a fast Fourier transform (FFT) along the
channels, converting the feature maps from the spatial domain to
the Fourier domain. The feature maps in the Fourier domain com-
prise of both low and high frequencies present in the spatial feature
maps. The FFC splits the channels into two branches: a local branch
that uses traditional convolutions to extract information in the spatial
domain and a global branch that uses real FFT to account for the
global context. The FFC operation is comprised of the following
steps: Let Fin 2 RH�W�C be the input to FFC layer. Real FFT2d is
applied to Fin which converts as shown in Equation (6):

Fin ¼ Real FFT2d Finð Þ

Fin 2 RH�W�C ! Fin 2 CH�W
2�C; (6)

Since convolution can operate on real values, FFC converts the
above complex tensor to real by concatenating the real and imaginary
parts. This conversion converts as shown in Equation (7):

Fin 2 CH�W
2�C ! Fin 2 RH�W

2�2C; (7)

A 1 × 1 convolution followed by batch normalization and ReLU
activation is applied on the above feature maps. This operation operates
on feature maps that are represented in the Fourier domain. FFC layer
then applies Inverse Real FFT2d to convert the feature maps back to the
spatial domain and can be represented as shown in Equation (8):

Fin 2 RH�W
2�2C ! Fin 2 CH�W

2�C

Fout ¼ Inverse FFT2d Finð Þ (8)

Fin 2 CH�W
2�C ! Fout 2 RH�W�C

Results in Suvorov et al. [32] show that FFCworks very well on
images that have repeated structures and patterns and preserve the
global context while being efficient during training and inference.

3.3.2. Processing in the spatial domain
The second branch of DSFB takes in input Fi;M 2 RH�W�C

2 ,
where Fi;M is the feature maps of the last SwinV2+ transformer layer
in the i-th FSTB. This branch extracts information in the spatial
domain. The feature maps are passed through a pooling layer that
extracts the average intensities in the input. The features are then
passed through a series of weight-shared ARFBs [16], which adap-
tively select and scale features, helping the model to propagate high-
frequency details. A skip connection is added after the ARFB layers

to stabilize training and improve gradient flow. A 1 × 1 convolution
is then applied to the features for additional processing.

3.3.3. Merging both branches using stereo cross attention
module (SCAM)

We use SCAM [36] to merge both the branches into a single
branch. SCAM allows the model to selectively combine features
from two branches using the attention mechanism. The output of
SCAM is then concatenated along channel dimension to output a
single branch.

4. Results and Discussions

4.1. Datasets and evaluation metrics

In this work, we use the DIV2K dataset [37] for training. The
DIV2K dataset comprises of 800 HR images, and the corresponding
LR images are generated through bicubic downsampling from the
HR images. To evaluate the performance of the model, we use
five widely used benchmark datasets: Set5 [38], Set14 [39],
BSD100 [40], Urban100 [41], and Manga109 [42]. We use PSNR
and SSIM metrics to quantitatively evaluate the performance of
the SR images.

4.2. Experimental setup

4.2.1. Training setting
We randomly crop LR images of size 64 × 64 as inputs to the

model. Data augmentations, like random rotations, random vertical
and horizontal flips, and RGB channel shuffling, are used to increase
the training data. We use the Adam optimizer with β1 ¼ 0:9 and
β2 ¼ 0:99 and the L1 loss function for training. The initial learning
rate is set to 2e� 4, and it is reduced by 50% at [384000, 534000,
584000, 609000] iterations. Model was trained for a total of
700,000 iterations. We use PyTorch for building models, and all
training is performed using one NVIDIA Tesla A100 GPU.

4.2.2. Implementation details
In SWIFT, we set the number of FSTB to be 4. Inside each

FSTB, we use 2 SwinV2+ transformer layers and 2 DSFB layers.
Model channel count is set to 64. We use a window size of 8, and
number of attention heads is set to 8 in each SwinV2+ transformer
layer. In DSFB, we set the number of shared ARFB to 5. The
convolution layer at the end of each FSTB is implemented as
three 3 × 3 convolutions followed by PReLU activation.

4.3. Results on lightweight image SR

In this work, we focus primarily on the task of lightweight image
super-resolution. Table 1 shows the quantitative comparisons between
the proposed SWIFT and eight well-known methods such as CARN
[19], IMDN [20], ESRT [16], PAN [23], LAPAR [43], LatticeNet
[44], and SwinIR [14]. In keeping comparisons fair, the models
selected have model sizes similar to that of our proposed method and
the models have been trained using only the DIV2K training set.

From the table, it can be seen that SWIFT outperforms other
famous state-of-the-art methods like SwinIR, LatticeNet, and
LAPAR. SWIFT achieves higher scores in both PSNR and SSIM
metrics on most benchmarking datasets while being the smallest
model in terms of model parameters. SWIFT uses 33.55% fewer
parameters compared to the previous best SwinIR. The proposed
SWIFT architecture allows models to be smaller and run faster
during inference. Methods like PAN have much lesser parameters
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compared to SWIFT; however, the consequence of reducing parameters
is that thesemethods tend to score less in both PSNR and SSIMmetrics.
PAN scores∼0.6 dB less than SWIFT in PSNR onUrban100 (×2). The
maximum PSNR gain achieved by SWIFT over the previous best
SwinIR method is ∼0.20 dB in Manga109 for ×3 scale.

In Figure 3, we provide the visual comparisons between SWIFT
and other lightweight models on ×4 scale. It is evident from the
output of SWIFT that our proposed architecture effectively
extracts high-quality features from LR images and uses them to
reconstruct SR images with good details.

The quality of reconstructed images produced by SWIFT is on
par with that of EDT [21] output. EDT uses additional datasets and
pretraining on ImageNet [45] (consists of ∼1.3 M images) to obtain
higher PSNR and SSIM scores. SWIFT uses only 800 training
images from DIV2K for training and achieves similar results
qualitatively.

4.4. Ablation studies and discussions

For the ablation study, we train SWIFT on DIV2K [37] datasets
and evaluate how each component of the model affects the
performance of SR images.

4.4.1. Impact of channel number
Table 2 shows the number of channels used for model training

directly impacts the scores obtained by the model. Most lightweight

models, like ESRT [16], LAPAR [43], use 32 channels. This
decreases the number of parameters in the model, but it sacrifices
on both PSNR and SSIM scores. Increasing the channels to
64 increases the parameters drastically and will make the model no
longer applicable to lightweight SR. Keeping this in mind, we design
SWIFT to work with 64 channels and have fewer parameters than
most lightweight models that use 32 channels. Increasing channels
further increases the performance of the model but this extra
performance diminishes gradually.

4.4.2. Impact of the number of FSTB, SwinV2+ and DSFB
Results in Figure 4 show a noticeable positive correlation

between the number of FSTB in the model and the PSNR scores
obtained. However, using more FSTB in the model increases both
parameters and inference time. For the purpose of lightweight SR,
SWIFT uses 4 FSTB blocks. The number of SwinV2+ transformer
layers and DSFB inside FSTB also tends to affect PSNR scores.
In our experiments, an equal number of SwinV2+ and DSFB tend
to perform better than other configurations. More specifically, for
lightweight SR, we set the number of SwinV2+ and DSFB to be 2
and 2, respectively. To have a smaller model, we found that using
4 FSTB each with 2 SwinV2+ and 2 DSFB gave the model
enough capacity to learn better while staying low on parameters.

4.4.3. Impact of datasets and training patch size
CNN-based models often tend to use DIV2K [37] for image SR.

Recently, several methods have been proposed that train models on
more images by combining images from DIV2K [37] and Flickr2K
[46] datasets called the DF2K dataset. As there are more training
examples, it is expected that models trained on DF2K dataset
achieve better scores in PSNR and SSIM metrics as shown in
Table 3. However, to keep a fair model comparison, we train
SWIFT only on the DIV2K dataset. Models like SwinFIR [18]
and IPT [30] pre-train the models on ImageNet [45] dataset and
then fine-tune it for DIV2K and DF2K datasets. These models,
although they outperform most other models, tend to require a lot

Figure 3
Qualitative comparisons of various methods in lightweight image SR on Set14 and Urban100 datasets for ×4 scale

Table 2
Impact of increasing channel count on Set5 (×4) scores

Model #Channels #Param (×103)

Manga109

PSNR↑ SSIM↑

SWIFT 32 187 30.57 0.9089
64 596 31.06 0.9153
128 2,218 31.54 0.9221
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of resources for training. With respect to the training patch size, as
shown in Figure 5, training on larger patch size (64 × 64 instead of
traditional 48 × 48) tends to allow the model to converge better and
perform better in both PSNR and SSIM scores.

4.4.4. Study of components in DSFB
DSFB is an important component of SWIFT as it is capable of

extracting high-frequency information during feature extraction.
Table 4 shows the contribution of each component in DSFB. In
the table, ARFB and FFC indicate the spatial branch and Fourier
branch, respectively. According to Cases 1 and 2, we observe that
the model scores less in PSNR scores when only one of the two

branches in DSFB is used. Case 3 shows that model performs
better in PSNR scores when both branches are used together for
feature extraction. Case 4 shows that using SCAM [36] in DSFB
gives a gain of ∼0.05 dB in PSNR scores as it helps to combine
features from both branches effectively. Although SCAM is
traditionally used in stereo image super-resolution, using SCAM
in our architecture helps SWIFT to score higher in both PSNR
and SSIM metrics.

4.5. Comparisons with latest SwinIR advancements

Since the introduction of SwinIR [14], several improvements
have been proposed, namely SwinFIR [18] and Swin2SR [47].
SwinFIR proposes SFBs that use Fourier transformation to
capture global context. The DSFB in SWIFT uses FFCs [17] to
extract high-frequency information while maintaining global
context in feature maps. The SFB in SwinFIR just applies
Fourier transformation and a few convolution operations to
extract features. The comparison between SWIFT and SwinFIR
is shown in Table 5. SwinFIR uses advanced techniques such
as feature ensembles, ImageNet pretraining, and fine-tuning on
the DIV2K dataset. Comparing SWIFT and SwinFIR is not fair
as SwinFIR has been pre-trained on large datasets, and the lack

Figure 4
Impact of the number of FSTB layers in SWIFT on Set5 (×2) scores
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Table 3
Impact of different training datasets on Set5 (×4) scores

Model Parameters Dataset

Set5

PSNR " SSIM "
SWIFT 596K DIV2K 32.39 0.8978

DIV2K+Flickr2K 32.43 0.8983

Figure 5
Impact of training patch size on Set5 (×2) scores
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of a public codebase for SwinFIR inhibits us from performing
comparisons on inference time and model size.

Swin2SR improves over SwinIR by using SwinV2
transformers while keeping the overall architecture similar to
SwinIR. Similar to SwinFIR, Swin2SR uses additional datasets
such as a combination of DIV2K and Flickr2K [46] for training.
SWIFT uses 800 training images from DIV2K dataset and
achieves scores closer to Swin2SR. Swin2SR uses ∼68% more
parameters compared to SWIFT but gains ∼0.06 dB in PSNR
score for BSD100 [40] dataset and takes 84% longer during
inference (Table 6).

4.6. Comparisons on computational costs

A detailed comparison of inference times for state-of-the-art
methods has been shown in Table 6. From the table, it is evident
that SWIFT has the lowest inference time across all the
benchmarking datasets compared to other transformer-based
methods like SwinIR [14], ESRT [16], and Swin2SR [47].
SWIFT consistently achieves fast inference time for images of
smaller size as present in benchmarking datasets like Set5 [38],
Set14 [39], and BSD100 [40].

However, in DIV2K Validation [37], Urban100 [41], and
Manga109 [42], where the images are comparatively larger,
inference using SWIFT is much faster compared to other
transformer-based methods. More specifically, SWIFT is ∼53.3%
faster on average in inference time compared to the SwinIR
method. Inference can also be carried out by recursively dividing
images into smaller patches and stitching the model predictions
on individual patches to reconstruct the SR image. This method
is useful for models like ESRT [16], which are efficient for small
input images (64 × 64) but are computationally expensive to run
when the size of input images are large (256 × 256). Our method
easily scales to larger image sizes and can run efficiently on both
types of inference methods. To compare various models on
model size and computational complexities, we report the total
number of parameters and multiply-accumulate operations,
evaluated on an input of size 1280 × 720 for ×4 scale.

Table 5
Comparison of SWIFT with advances in SwinIR architecture

for ×2 scale

Model
#Param BSD100 Urban100

�103ð Þ PSNR " SSIM " PSNR " SSIM "
SwinFIR-T 872 32.38 0.9024 33.14 0.9374
Swin2SR 1000 32.35 0.9024 32.85 0.9349
SWIFT (ours) 579 32.29 0.9012 32.60 0.9328

Table 4
Study of each component in DSFB on Set5 (×2)

Case Index 1 2 3 4

ARFB ✓ ✓ ✓

FFC ✓ ✓ ✓

SCAM ✓

Parameters 462K 482K 544K 579K
PSNR 38.09 dB 38.08 dB 38.11 dB 38:16 dB
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5. Limitations

Although SWIFT is designed to be smaller and capable of
running faster at inference compared to other transformer-based
methods, CNN-based methods like CARN [19] and IMDN [20]
still run much faster than SWIFT. This difference in speed is mainly
because CNN-based methods can leverage hardware acceleration on
modern GPUs. The presence of optimized convolution kernels in
hardware allows for significantly faster convolution operations.
While CNN-based models may have faster inference times, their
performance is limited by their reliance on local receptive fields.
They lack the ability to effectively model long-range dependencies
and struggle to preserve fine textures compared to transformer-based
methods like SwinIR [14] and ESRT [16]. This limitation is evident
from the qualitative results presented in Figure 3. To address the
challenge of long-range dependencies, SWIFT utilizes FFC instead
of traditional convolutions. By incorporating Fourier convolutions,
SWIFT mitigates the limitations of local receptive fields and enables
the modeling of global context. Additionally, SWIFT leverages the
SwinV2+ transformer, which enhances its ability to map textures
effectively. With the increasing popularity of transformer-based
architectures, modern accelerators such as NVIDIA H100 provide
hardware support for running transformers. Presence of such
hardware support can provide inference closer to CNN-based methods.

6. Conclusion

In this work, we introduce SWIFT, a hybrid model consisting of
transformers and FFCs, for lightweight single-image super-
resolution. We design a new block called DSFB that extracts
high-frequency information by processing features in both the
spatial domain and the Fourier domain. DSFB effectively models
the long-range dependencies in feature maps while staying low on
parameters. Additionally, we also extend transformers to promote
high-frequency information with the usage of SwinV2+

transformers. Experimental results show that SWIFT achieves
state-of-the-art results on popular benchmarking datasets in
lightweight SISR. SWIFT architecture allows models to be
smaller in terms of a total number of model parameters and offers
faster inference compared to other transformer-based lightweight
image super-resolution methods.
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