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Abstract: The implementation of deep learning (DL) in computer-aided engineering (CAE) can significantly improve the accuracy and efficiency
of simulating 3D vehicle wheels under real-world conditions. While traditional CAE methods can be time-consuming and computationally
expensive, DL can reduce simulation time and development cycles across all industries. This work explores the role of DL and artificial
intelligence in virtual manufacturing and CAE and investigates how they can be used to improve the accuracy and efficiency of simulations
for 3D vehicle wheels. DL models can learn the complex relationships between different wheel design parameters, such as tire load
distribution, stress distribution, and fatigue life. Once trained, these models can be embedded into CAE software, allowing for faster and more
accurate simulations of wheel performance. This interdisciplinary study uses various DL techniques, including convolutional neural networks,
generative adversarial networks, and recurrent neural networks, to create a more efficient and accurate relationship between CAD modeling
and CAE simulation. The research aims to leverage the potential of DL models to automate 3D CAD design, accurately predict CAE results,
and provide in-depth explanations and verifications. The benefits of this research are expected to extend to the automotive industry’s pursuit
of more robust and resilient wheel designs. By streamlining the product development process from conceptual design to engineering
performance evaluation, this study has the potential to revolutionize the automotive industry’s product development cycle.
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1. Introduction

The automotive industry stands on the brink of transformation as it
endeavors to design and manufacture vehicles that meet ever-evolving
real-world challenges. Among the critical components subjected to
rigorous scrutiny are vehicle wheels, which must endure diverse and
complex conditions ranging from varying terrains to extreme
temperatures. Traditional computer-aided engineering (CAE)
methods have long been employed to simulate and optimize wheel
designs. However, the demands of real-world conditions necessitate
an innovative approach. Shortening product lifecycles and increasing
customer demands are forcing manufacturers to increase the
efficiency and effectiveness of their product development process to
stay competitive in an increasingly global setting. The effectiveness
of current-day product development is hampered by the availability
of real-world data that allows the deduction of comprehensive
customer requirements (Smeets et al., 2023).

In this study,we present 3Dwheels and evaluate them through deep
learning (DL) to find feasible conceptual designs in the early design
phase; based on DL models that can replace the 3D finite element

analysis (FEA) of the aluminum road wheel impact test used in real-
world product development processes, the complex and changing
driving environments not only affect the operating requirements of
automatic wheel loader but also threaten its driving safety (Shi et al.,
2020). According to Nahata and Othman (2023), their study is to
replace the 3D FEA process for strength and stiffness analysis, which
requires high computational cost, to provide the impact performance
of a wheel design in the conceptual design stage (Akande et al.,
2024). 3D vehicle wheel models must be accurate enough to capture
the complex behavior of the wheel under real-time conditions. This
includes factors such as tire deformation, contact with the road
surface, and the effects of suspension and steering, thereby reducing
the time required for wheel development. Synthetic 3D wheel data
were generated through the 3D wheel CAD automation process (Jang
et al., 2022) using 2D disk-view images (spoke designs) and rim
cross-sections, and the impact performance results were collected
through FEA shear stress simulation. Hence, using this mechanism,
we constructed a real-time prediction model that predicts the
magnitude of the maximum von Mises stress, the corresponding
location, and the overall stress distribution of the 2D disk view.

CAE has been in existence for over half a century and is a mature
engineering simulation technology (Hu et al., 2023). However, it is
largely still used in the early design phase with limited synergies
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between design and engineering, production, manufacturing,
deployment, maintenance, and retirement/recycling. This work
outlines what machine learning (ML) and artificial intelligence (AI)
are in the context of virtual manufacturing and CAE, and how DL
models can shorten the simulation lifecycle dramatically across all
industries (Liu et al., 2023). DL methods still have several
limitations, for example, the assumption that lab-training (source
domain) and real-testing (target domain) data follow the same
feature distribution may not be practical in the real world (Del Pero
et al., 2020). Although we expect to see rapid growth in the
application of these methodologies in the next few years, some key
success factors need to be taken care of before AI/DL can be
democratized for usage by all design engineers using CAE. It can
also be the connector between all of the data silos in the virtual and
real world of modern product design, production, and manufacturing.

AI is remarkably flexible in understanding viewpoint changes due
to the visual cortex supporting the perception of 3D structure (Mallis
et al., 2023). In contrast, most of the computer vision models that
learn visual representation from a pool of 2D images often fail to
generalize over novel camera viewpoints. Recently, the vision
architectures have shifted toward convolution-free architectures,
visual transformers, which operate on tokens derived from image
patches (Wu et al., 2021). However, these transformers do not
perform explicit operations to learn viewpoint-agnostic representation
for visual understanding, as in convolutions. In which, a 3D Token
Representation Layer (3DTRL) estimates the 3D positional
information of the visual tokens and leverages it for learning
viewpoint-agnostic representations. The key elements of 3DTRL
include a pseudo-depth estimator and a learned camera matrix to
impose geometric transformations on the tokens. These enable
3DTRL to recover the 3D positional information of the tokens from
2D patches. In practice, 3DTRL is easily plugged into a transformer.

Another study proposed a generative design approach for the
optimization of lattice structures in 3D printing by Mao et al. (2022).
The approach used a combination of convolutional neural networks
(CNNs) and reinforcement learning (RL) to generate lattice
structures that met specific requirements for strength, stiffness, and
weight. The study showed that the use of DL in generative design
can improve the performance of 3D objects while reducing the need
for manual allowance in the design procedure. In the context of 3D
conceptual wheels, several findings have explored and enhanced the
use of generative design techniques to improve the concept and
evaluation of wheels. Studies by Mao et al. (2022) and Wang et al.
(2019) introduce a design from a generative approach to be used
with the optimization of vehicle wheel structure using a combination
of CNNs and genetic algorithms. The approach was applied to the
design of a racing wheel, where it was able to generate a diverse
range of designs that met predefined criteria for weight, stiffness,
and aerodynamics. The study showed that the use of generative
design techniques can significantly improve the efficiency and
effectiveness of the wheel design process (Jaafra et al., 2019; Masci
et al., 2011; Regassa Hunde & Debebe Woldeyohannes, 2022).

Studies by Ahmed et al. (2016), Regenwetter et al. (2022), and
Toptas (2020) proposed a generative design approach for the
optimization of wheel geometry using a combination of generative
adversarial networks (GANs) and RL. The approach was applied to
the design of a mountain bike wheel, where it was able to generate
a range of designs that met predefined criteria for strength,
stiffness, and weight. The study showed that the use of generative
design techniques can improve the performance of wheels while
reducing the need for manual intervention in the design process.
According to Nahata and Othman (2023), autonomous vehicles are
at the forefront of future transportation solutions, but their success

hinges on reliable perception. This review paper surveys image
processing and sensor fusion techniques vital for ensuring vehicle
safety and efficiency. This paper focuses on object detection,
recognition, tracking, and scene comprehension via computer vision
and ML methodologies. This paper explores challenges within the
field, such as robustness in adverse weather conditions, the demand
for real-time processing, and the integration of complex sensor data.

The proposed architecture employs three primary DL methods:
CNN, autoencoder, and knowledge from transferring data. With the
tremendous progress of CNNs in vision-based tasks, CNN-based
object detection methods have attracted a significant amount of
attention in traffic surveillance. For instance, You Only Look Once
(YOLO) and its variants, due to their impressive performance in
real-time multi-object detection, get very popular in high-resolution
traffic monitoring scenarios (Bai et al. 2023). Deep neural networks
(DNNs) with CNN are mostly used to create concept models of
engineering issues also supervised learning, as described in the
previous study. CNNs, in particular, have excellent iteration to
detect pictures and shapes and are extensively employed in sectors
where computer vision is used (Otto & Mandorli, 2018). CNNs
have become increasingly important, as they can be used to create
different models that accomplish a variety of tasks (Otto &
Mandorli, 2018). The foundational architecture of CNNs emulates
the human visual processing capability, harnessing hierarchical data
features to perceive, categorize, and assimilate the environmental
milieu (Nahata & Othman, 2023).

DNNs are typically employed for minimizing the layout in
unsupervised learning (Angrish et al., 2021; Kim et al., 2022). High-
dimensional input data can be compressed by autoencoders into a
low-dimensional latent space. The input layer and output layer sizes
are identical in the autoencoder architecture. The networks that
compress input data into latent space are referred to as encoders, and
decoders restore the latent space to the output data. For
dimensionality reduction of CAD data, we employed a convolutional
autoencoder that only has a convolutional and pooling layer. Hadj-
Attou et al. (2023) propose two hybrid DL models for the
classification of road surface anomalies: (1) CNN combined with
gated recurrent units (GRU) and (2) CNN-long short-term memory
(LSTM) that combines CNN and LSTM. In addition, with novel
data labeling technique based on TCP/IP sockets enables the labeling
of data in real-time using a smartphone application. Furthermore, a
combination of Fourier and wavelet transform is used as input to
train the classifier models, and the CNN-GRU achieved better
performance compared to the CNN-LSTM model.

RL is a type of ML that involves evaluating an agent to make a
conclusion based on trial and error in an environment. In the context of
CAD/CAE systems, RL can be used to optimize the design of 3D
objects based on predefined objectives. Some previous studies have
explored the application of RL in CAD/CAE systems, including the
design of car components (wheels), airplane wings, and buildings
(Barbieri & Muzzupappa, 2022; Jaafra et al., 2019). One study by
Wu et al. (2018) provides a RL-based strategy for the modeling of
airfoils using a CAD/CAE system. The method involved training
an agent to generate airfoils based on the objectives of lift and drag
coefficients. The study found that the RL-based method was
effective in generating airfoils that met the specified objectives and
outperformed traditional optimization methods. Another study by
Jang et al. (2022) introduced an RL-based method for the design of
truss mechanics using a CAD/CAE system. The method involved
training an agent to generate truss structures that were both
structurally sound and had low mass (Wu et al., 2021). The study
found that the RL-based method was effective in generating truss
structures that met both objectives and outperformed traditional
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optimization methods (Hu et al., 2023). The algorithm trains and tests
the YOLOv5s model using the self-created automotive wheel surface
defect dataset, which contains four kinds of defects: linear, dotted,
sludge, and pinhole (Xia et al., 2023).

The integration of DL-based algorithms into CAE represents a
paradigm shift in the field of automotive engineering. DL, a subset of
AI, has demonstrated remarkable capabilities in image and data
analysis, natural language processing, and pattern recognition.
Extending these capabilities to the realm of CAE (Liu et al.,
2023), particularly for simulating 3D vehicle wheels, offers the
promise of unprecedented accuracy and efficiency. With pressure
to bring new products to market faster and more cost-effectively,
manufacturers need to implement rigorous systems-design
processes that accommodate the complexities of developing multi-
disciplinary systems using high-fidelity virtual prototypes, or
“Digital Twins,” at the core of the development process. This will
not be achieved without challenges, but the AI models exist today
to overcome the last decade’s obstacles and connect the “digital
thread” of a product with feedback loops that yield cost savings
and higher levels of productivity and innovation with real-world
validation that makes quality inherent (Smeets et al., 2023).

This research explores the implementation of DL techniques
within CAE systems to model and simulate 3D vehicle wheels under
real-world conditions. By leveraging DNNs, CNNs, and GANs, this
study aims to develop a framework that automates the generation of
3D CAD models, predicts CAE results with precision, and provides
a detailed explanation of the underlying engineering performance.
By focusing on a specific and critical component of a vehicle’s
design, this research aims to contribute to advancements in
automotive engineering and the industry’s product development
process. This study extends the current body of knowledge regarding
the fusion of DL and CAE through the development of a DL-driven
CAD/CAE framework for 3D conceptual design. Additionally, it
investigates the profound influence of DL on CAE, yielding valuable
insights into the potential of this innovative approach. In addition,
the emergence of AI in CAE simulations and recent advancements
in DL techniques confirm the timeliness and relevance of this research.

2. Methodology

The generated 3D wheel data were used as input data for CAE
automation and DL. The stiffness values obtained through CAE
automation were used as label data for DL. The DL was used to
predict each stiffness by converting 3D wheel CAD data in
Figure 1 into voxel data and using corresponding rim stiffness and
disk stiffness values as label data. The third step is the design
evaluation and trade-off analysis. On-line surveys were conducted

on customers and designers, and the preferences and performance
of the evaluated wheels were compared.

2.1. Deep CAE framework

The goal is to develop a DL model that assesses the engineering
performance of a 3D CADmodel using 2D designs to provide data and
3D CAE simulation results as output (Phase 1–3). Using the proposed
framework in Figure 2, we may produce and evaluate the numerous
conceptual designs at the start of the product development process
(Yu et al., 2020). The outline of stages of the proposed algorithm is
as follows:

• Phase 1. CAE Automation: This phase records CAE simulation
results utilizing the 3D CAD files acquired for the 3D wheel
model, this involves using a CAE tool to simulate the behavior of
the vehicle under a variety of conditions. In this work, the modal
estimation determined the normal frequency of the lateral feature;
the outcomes were preserved as information with labels that could
be utilized for DL. Altair Sim-Lab and Ansys Fluent 2023 which
was used to perform the CAE (Nahata & Othman, 2023).

• Phase 2. Transferring knowledge: To predict the results of the CAE
experiment, the labeled data consist of input data, which represents
the conditions of the simulation, and output data, which represents
the behavior of the 3D vehicle wheel under those conditions and the
co-simulation involves coupling theDLmodelwith a CAE tool (Del
Pero et al., 2020). The CAE tool is used to simulate the behavior of
the vehicle, and the DL model is used to predict the behavior of the
3D vehicle wheel under the simulated conditions with a replacement
model constructed in this phase utilizing CNN and transfer learning
techniques. The DL algorithm determines the natural frequency and
mass as outcomes using the 2Dwheel architecture as a starting point.
In this work, information enhancement and transfer neural networks
have been used to get around the challenge of restricted information
by integrating a DNN with the modulator of a neural autoencoder,
which was trained in a CAD model.

• Phase 3. Evaluation and graphical representation: At this level,
CAD/CAE engineers may see and clarify DL outcomes,
permitting them to get just emerging views while evaluating the
accuracy of their results. The relationship between the wheel
form and frequency variation may be examined by observing the
latent region generated during Phase 2 in two coordinates. Grad-
class activation map (CAM) could additionally identify the wheel
form that has an important impact on the frequency that is normal.

3. Result and Discussion

3.1. 3D vehicle wheel performance iteration
(Phase 1 – 3)

3.1.1. CAE digitalization (Phase 1)
CAE digitalization is the process of converting engineering and

design data into digital format, using computer-aided design (CAD)
and other software tools. This digital data can then be used for
various purposes, such as simulation, analysis, and visualization.
CAE digitalization can help to improve the efficiency and accuracy
of engineering and design processes and can also provide insights
that can help to improve the quality of the product. The main
advantage of CAE digitalization is the ability to quickly and easily
analyze different design options and configurations, without the
need for physical prototypes. The static stress analysis of the wheel
is carried out in Figure 3 to determine the strength and the stiffness

Figure 1
Iterations of wheels created automatically in 3D CAD
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of the material in which the maximum angle on curves is 60, the
adjacent mesh ratio is 1.5, the maximum aspect ratio is 10, and the
minimum element size is 20.

In this project, an analysis of modalities in the free-free mode to
evaluate the wheel’s engineering performance is used. CAE simulation
was used to determine the frequency distribution and mode geometries.
Notably, as illustrated by the following equation, the natural frequency
has a direct relationship to structural flexibility and an inverse
correlation to mass.

f ¼ 1
2π

ffiffiffiffi
k
m

r
; (1)

where f denotes natural frequency, k stiffness, andmmass. As a result,
manufacturers contemplate the lowest possible level of stiffness for
every option as an aesthetic requirement when developing a wheel,
based on the association with stiffness for each mode and highway
sounds. The free-free model analysis was carried out. Six

solid-body forms featuring the lowest frequency were used in the
unstructured 3D model, as were three conversion modes along the x
and y axes and three tilt modes across the three axes. A negative
frequency took place commencing with the seventh mode. Figure 4
illustrates the wheel mode shapes. Modes 7 and 8 correspond to
the circumference mode 1, while modes 9 and 10 correspond to the
rim mode 2. Mode 11 represents the spoke lateral mode, while
modes 12 and 13 represent the rim mode 3. To study the
manufacturing efficiency of the spoke, the natural frequency of
mode 11 (laterally) was extracted from the modeling. Based on the
weight and natural frequency, the stiffness was then calculated
using Equation (4). The equation takes into account the relationship
between the mass and stiffness of the object and can be used to
determine its manufacturing efficiency. This revised text is easier to
understand and clearly explains the steps taken in the study to
analyze the manufacturing efficiency of the spoke. The simulation
results for the first 13 modes of the 3D vehicle wheel are presented
in Table 1. Mode 11 (the lateral mode of the spoke) has the lowest
frequency and highest stiffness, which makes it a critical mode to
consider in the design of the wheel for lateral loads. Using the
modeling technique, the mass of the wheel can be calculated, and
the stiffness can be determined from the natural frequency and
mass using Equation (4).

3.1.2. Implications of the simulation results
The simulation results show that the spoke lateral mode (mode

11) has the lowest frequency and highest stiffness. This means that
the wheel is most susceptible to deformation in this mode. When
designing the wheel, it is important to ensure that the spokes are
strong enough to withstand the lateral loads that the wheel will
experience. The simulation results also show that the mass of the
wheel has a significant impact on the stiffness of the wheel. A
lighter wheel will be more flexible than a heavier wheel. When
designing the wheel, it is important to consider the weight

Figure 2
CAE deep learning framework

Figure 3
CAE deep learning framework
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requirements of the vehicle and to choose materials that are strong
and lightweight.

Based on the simulation results, the following recommendations
are made:

• The spokes of the wheel should be designed to be strong enough to
withstand the lateral loads that the wheel will experience.

• The wheel should be made from materials that are strong and
lightweight.

• The wheel should be designed to minimize the mass of the spokes,
while still maintaining the required stiffness.

By following these recommendations, it is possible to design a 3D
vehicle wheel that is both strong and lightweight. The broader
feature of Autodesk Fusion 360 is applied for CAE standardization.
Figure 4 illustrates the concept of the modal testing strategy. After
uploading the 3D CAD model, a dynamic FEM netting (second-
order tetrahedral mesh) is created. The mesh thickness should not be

more than 6 mm. We used the material-related characteristics of a
Hyundai benchmark aluminum wheel, which has the following
computed metrics: 68900 MPa Young’s modulus, 0.33 Poisson’s
ratio, 2.7E-06 kg/mm3 density, and 0.001 shear modulus in Table 2.
As a result of CAE technology, 1,000 files were created. The
programmed analyzing method recorded the input 2D wheel
depiction, frequency (mode 11), and mass in doubles as neural
network training data.

3.2. Acquisition of learning (stage 2)

In Phase 2, DL evolved, which anticipated what was learned
from modal examination and predicted the mass of the 3D CAD
design using just a 2D layout. As part of the data setup, the data
were supplemented and expanded; also, assigned learning and
aggregation procedures, which included the preset convolutional
autoencoder and DNN, were employed to address the issue of
missing information.

3.2.1. Acquisition of learning (stage 2)
To avoid overfitting, the data were augmented by rotating the

1006-wheel layouts from Phase 3 ten times by 70° and inverting

Figure 4
An example of 3D model analysis and the results

Table 1
Simulation result table

Mode
Frequency

(Hz)
Stiffness
(N/m)

Mass
(kg) Implications

7 50.2 12,550 10.0 Circumference
mode 1

8 51.0 12,750 10.1 Circumference
mode 1

9 55.5 15,375 10.2 Rim mode 2
10 56.2 15,550 10.3 Rim mode 2
11 60.0 16,500 10.4 Spoke lateral mode
12 65.0 18,250 10.5 Rim mode 3
13 66.0 18,450 10.6 Rim mode 3

Table 2
Characteristics of a Hyundai benchmark aluminum wheel

Density 2.7E-06 kg/mm^3

Young’s modulus 68900 MPa
Poisson’s ratio 0.33
Yield strength 275 MPa
Ultimate tensile strength 310 MPa
Thermal conductivity 0.23 W/(mm C)
Thermal expansion coefficient 2.36E-05/C
Specific heat 897 J/(kg C)
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them left and right. As a result, 10,060 observations were utilized in
conditioning. Because implementing the left and right flicks had little
impact on the modal calculation or mass result, the final result
figures, mode frequency range, and mass were equivalent. The 10
boosted designs serve as distinct input variables for DL, with the
resultant variables (labels) being indistinguishable.

Moreover, 90% of the 10,050 observations were employed as a
learning set, with the remaining 20% used for authorization. Although
an innovative concept that does not exist in stores and was developed
via a computerized design process was utilized for the validation and
training phases, 98-wheel images that were offered by the
manufacturer’s company were used for the test set. This was done
to see if the trained algorithm could foresee the manufacturer’s real-
world data. The test set’s harmonics and mass parameters were
obtained using Phase 1, similar to the preliminary data.

yscae ¼
y � ymin

ymax � ymin
(2)

In this work, the development of four distinct designs aligns with
Table 3 to establish the optimal structure while investigating how
transferable development and aggregation influence effectiveness.

In addition, TL_VGG18 is an equation that mixes applied
knowledge with a programmed VGG18 (Mallis et al., 2023). Drag
learning acts as a strategy to teach a domain that lacks data by
exporting the beforehand DNN model from a subject with sufficient
data. It is also one of the most preferred techniques in DL given that
it is capable of exceptional precision notwithstanding limited
information (Rios et al., 2021). Furthermore, TL_CAE is an example
model used in the present research that transforms the dimension and
development of the convolutional autoencoder model pre-trained
with 188,218 data in 2D disk view, adds every layer to be connected
as a regressor, and adjustments alongside 12,080 information
gathered from the modal estimation result. The DL framework that
was used in this dissertation is portrayed in Figure 4. Even though
we employed amplification, the total volume of modal results of
analysis (label) was 1,080, making it little but expected to improve
efficacy using an encoder pre-trained with 188,218 samples (a large
number).

The freshly added regressor component has been constructed up
of 7 altogether related tiers. The entire network in a particular layer
links to all any additional nodes in the following levels in full
connectivity to make extrapolation assessments and aid in
discovering the broader connection between its features. The
number of entirely associated strata was calculated via trial and
error. Compared to TL_CAE with one FC layer, TL_CAE with
seven FC layers improved the root mean squared error (RMSE)
and mean absolute percent error (MAPE) by around 10% and 8%,
respectively. It underwent training with the Adam optimizer,

utilizing an acquisition rate of 0.004, a decay rate of 0.002, and a
batch size of 268. Timely stuttering a methodology for eliminating
excessive fitting while building a simulation was implemented. If
the percentage of errors on the test dataset is higher than the
previous evaluation, indicating that the machine learning accuracy
has not improved despite the expanded dataset, the promptly
halting rules will terminate further development

Last but not least, as demonstrated in Figure 6 the very last
design TL_CAE_Ensemble was formed by the collective
proximity. The collective technique has the added advantages of
minimizing overloading and minimizing skew variance in
regression challenges (Dauphin et al., 2023). It is a procedure for
harmonizing predictions by integrating various frameworks into
one comprehensive framework. The averages of 9 periodicity
forecasting conclusions and 5 mass forecasting outcomes were
employed in our collection framework. The frequency forecasting
algorithm took 20 min to be developed on 4 GPUs (GTX 1050)
simultaneously.

3.2.2. Testing
Two restrictions, the RMSE and the MAPE, were chosen to

gauge the efficacy of the model for forecasting. They are
formatted in the following format:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

X
n
i¼1

ðbyi � yiÞ2
r

(3)

MAPE ¼ 100
n

X
n
i¼1

byi � yi
:

yi

����
���� (4)

The projected worth is byi, the ground-based value of reality is yi, and
the quantity of observations is n. Table 4 illustrates the effectiveness
conclusions of the 4 models being trained. When juxtaposed with
TL_VGG18, TL_CAEhad improvedRMSEandMAPE. The findings
showed how the recommended convolutional-autoencoder-based ML
transfer approach operated satisfactorily. Also, the ultimate frame-
work, TL_CAE_Ensemble, has the strongest forecasting outcomes
in both RMSE andMAPE (Liu et al., 2023). As displayed in Figure 6,
the shortcomings of testing and test instances of each of the three sys-
tems are presented as graphs. The model’s precision improves as the
variance reaches “0”. The results therefore validated the implications
of lateral instruction and collectives.

By determining the degree of rigidity relative to anticipated
frequency and mass using the proposed DNN framework, we can
examine an enormous amount of developed wheel perceptions or
innovative theoretical concepts. On a typical basis, it requires 0.86
s to analyze a wheel notion on an operating system that uses an
NVIDIA TITAN Xp 5.0 GB GPU. The aforementioned design
provides multiple benefits when using multiple GPUs for parallel

Table 3
Four topologies for deep data analysis

Parameters The synopsis

CNN An algorithm that exclusively utilizes a CNN regressor lacks transferable learning (added seven completely
interconnected surfaces, four max-pooling pooled sections, and five convolution layer combinations, i.e., the
identical layout as the convolutional autoencoder’s encoder)

TL_VGG18 An algorithm that incorporates learning through transfer by applying VGG18 (on the ImageNet sample)
TL_CAE Figure 5 demonstrates an arrangement that incorporates the transfer of knowledge utilizing the previously trained

convolutional autoencoder algorithm
TL_CAE_Alignment A simulation employs the combined TL_CAE and prepares nine frequency simulations and five weight estimates

using the average-out view as illustrated in Figure (6)
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processing. Figure 7 is a prime instance of selecting the wheels in the
test set in the sequence of maximum toughness. An automaker
establishes its unique stiffness norm and undesirable vehicles can
be eliminated on the basis of this measurement. Above modal
investigation, many engineering benchmarks ought to be taken
into account, and alternates between effectiveness may be
developed (Huang et al., 2022; Nahata & Othman, 2023).

The designermay pick a design concept alternative to workwith
in the phase of comprehensive design upon considering the
analysis’s outcomes.

3.3.1. Evaluation and graphical representation (Phase 3)
This part discusses the visual representations and DL outputs

obtained by the proposed structure, as well as the technique
utilized to ensure the data dependability.

3.3.2. The relationships within capabilities, engineering, and
technological effectiveness

As shown in Figure 8, a graphical representation was utilized to
evaluate if the results of the modality analysis, that is the
engineering effectiveness, can be communicated through wheel form
features. T-SNE was used to insert the 1026 wheels utilized in Phase
1’s modal analysis into the latent space and display them on a plane
in two dimensions. Furthermore, the amplitude of each wheel’s
intrinsic frequency value is colored. Using K-means, the probability
value was divided into 10 categories. Frequencies that are higher are
portrayed in red, whereas smaller ones are depicted in blue.

Figure 6
Collective algorithm for TL_CAE (TL_CAE_Ensemble)

Figure 5
Transferring knowledge by employing a convolutional autoencoder (TL_CAE)

Table 4
An analysis of the effects of frequency indifferent with mass forecast measures: frequency (Hz), mass (kg)

Set of workouts Inspection set Evaluation set

Approach

Frequency Mass Frequency Mass Frequency Mass

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

CNN 15.0 1.08 0.20 0.65 15.30 1.48 0.05 0.54 22.70 4.00 0.42 1.68
TL_VGG18 4.00 0.63 0.34 1.56 6.65 0.80 0.34 1.68 21.56 1.65 0.25 0.85
TL_CAE 9.46 0.97 0.23 0.65 12.11 0.45 0.05 0.56 20.00 1.46 0.15 0.60
TL_CAE_Ensemble 6.95 0.08 0.39 0.68 9.64 0.86 0.78 0.53 13.63 0.69 0.25 0.89
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Figure 8 demonstrates the creation of wheels in the latent space
with equal natural frequencies, which incorporates the wheel shape.
The disk-view version of the wheel was shown to be strongly related
to laterally modal recurrence. Figure 9 shows the gathered instance
wheels from each frequency group, and the findings reveal that the
greater the spoke, the more intense the frequency.

This graphic representation permits the logical examination of
essential layout components as well as the choice between
collections of outstanding durability designs. It also allows you to

graphically evaluate the quality of CAD/CAE outcomes and gain
knowledge regarding higher-quality designs.

3.3.3. Grad-CAM
It was challenging to express AI’s enhanced prediction abilities.

A CNN model that has been constructed has a set of preferences and
weights. According to Williams et al. (2019), the extent and weight
of these biases cannot explain how particular aspects of the wheel
design impact natural frequencies. As a result, the importance of

Figure 7
Wheel design possibilities in an ascending hierarchy of flexibility (from left to right)

Figure 8
Graphical representation of latent space with surface mode frequency

Figure 9
Wheel concept of each surface mode resonance group
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eXplainable AI (XAI) research is expanding. Grad-CAM (Lee et al.,
2022), a common XAI technology, has been integrated into the
proposed framework, allowing CAD/CAE experts to make exact
judgments based on DL results.

A CAM can be utilized to depict crucial areas of input data
(pictures) that have a significant impact on the CNN algorithm’s
segmentation outcome (Ye et al., 2022; Yeo et al., 2021). A CAM
is constructed by integrating the pooling of global averages
(GAP), an FC layer, and a soft maximum to the mapping of
features produced by the ultimate convolutional structure. The FC
layer’s weight establishes the significance of any given feature
map to the desired subclass label. The CAM can be displayed
using a heat map by multiplying the individual feature maps by
weights and bringing them together. The CAM has a flaw needing
GAP to be established to the CNN construction before the
simulation can be learned again. Grad-CAM, on the contrary
tandem, does not require modifications to the CNN design. Grad-
CAM, as opposed to FC layer weights, exploits variations created
by reverse propagation.

Grad-CAM had been proposed for the sorting problem;
nonetheless, in this study, the adaption corresponds to the
extrapolation situation. The LGradCAM analysis rating
calculation is as follows:

LGrad�CAM ¼ ReLUðΣkakAkÞ; (5)

where ak = 1
z

P
i

P
j
@y
@Ak

ij

Ak
ij indicates the parameters related to i rows and j columns of

the k-th feature map, and ak is the GAP result of the partial derivative
of y by Ak

ij. After nearly collective ak together with the feature map
Ak, the ReLU functionality was used to attain Grad-CAM, which can
showcase necessary areas in the pictures. Figure 10 depicts the
graphical representation outputs obtained by including Grad-CAM

into the TL_CAE model. From the ten frequency groups
displayed in Figure 8, ten sample wheels were discovered, and the
Grad-CAM for each wheel is shown as a heatmap in the third row
of Figure 9. The layered image in Figure 10's 2nd column
illustrates the jointly utilized region of the 2D wheel and the
Grad-CAM. The outcomes identify the center region of the wheel
was a significant point (shown in red) that influenced the
periodicity value. The number of repetitions appears to grow as
the center is occupied. This is caused by the reality that in the
lateral mode form, the most deformation took place at the very
middle of the wheel (see Figure 4). Grad-CAM showed that DL
observations might clarify the theoretical basis of the lateral mode
form while simultaneously guaranteeing precise estimates.
Monitoring wheel condition plays a deterministic role in the
overall safety and economy of an automobile (Vasan et al., 2023).

4. Conclusion

This research introduces a CAD/CAE framework that leverages
DL during the initial design phase. This system is capable of rapidly
generating a large volume of accessible 3D CAD datasets and
efficiently assessing their engineering viability. During the
conceptual design stage, industrial engineers and designers can
create multiple 3D CAD models using the proposed structure and
evaluate their engineering performance with AI, thereby exploring
feasible conceptual design prospects for the subsequent detailed
design phase. Furthermore, for a 2D disk-view architecture, the
suggested DL technique can predict CAE outcomes, offering
industrial designers’ immediate feedback on the engineering
performance of their two-dimensional concept designs. The proposed
research follows a multi-step approach. Initially, DL is applied to 3D
data input through voxel and point network preprocessing. Secondly,
DL models are employed in various CAE scenarios during the
design evaluation phase to predict both regression and unpredictable

Figure 10
Outcomes of Grad-CAM for frequency of surface model
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outcomes. Thirdly, the research aims to develop a design methodology
that incorporates aesthetic considerations based on client preference
data. Fourthly, manufacturing constraints are factored in, with a
focus on dimension analysis in 3D designs. Fifthly, addressing out-
of-plane stiffness becomes crucial in 2D design. Finally, the ultimate
goal is to establish a 3D generative design approach that is
independent of 2D images. Despite the advancements made in this
research, it is essential to acknowledge a current limitation. The
application of DL in CAE, while promising, requires large amounts
of labeled data and significant computational resources for training
and inference. This limitation may hinder its immediate practical
implementation, especially for industries with limited access to
extensive datasets and computing power. DL model can only predict
the behavior of the 3D vehicle wheel under the conditions that it
was trained on. If the DL model is not trained on a specific set of
conditions, it may not be able to accurately predict the behavior of
the 3D vehicle wheel under those conditions.
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