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Abstract: Epilepsy is characterized by recurrent seizures originating from any four brain lobes. It includes focal seizures with symptoms of alterations
in consciousness and cognitive impairments, including memory and language difficulties. It must be radiologically identified by proper diagnosis and
course of therapy. However, a visual inspection of images may not always yield an accurate interpretation from radiologists, necessitating AI-assisted
methods. The computer-vision-based radiological methods are used to enhance the treatment of epilepsy by image bio-markers and deep learning
algorithms. These methods are used to predict disease progression and treatment. It specifies the focus of the research on epilepsy detection using
new U-transfer reinforced Gaussian network (U-TRGN) classification models. These models used for lateralization and localization of brain
activity in this process. This study gives the idea of preoperative findings of different imaging modalities and postoperative findings of
Electroencephalography (EEG) data analysis. The data have been pre-processed through normalization, smoothing, and noise removal techniques.
The data are then classified using U-TRGN, after feature selection by kernel convolutional analysis. The performance metrics are evaluated
through the training accuracy, validation accuracy, precision, dice coefficient, and area under a region of the convergence curve. The proposed
technique attained an accuracy of 97.04%, precision of 94.12%, dice coefficient of 2.96%, and AUC of 99.56%, which is better than the existing
methods, and it will be a baseline for upcoming studies.
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1. Introduction

The epilepsy is a neurological disorder and a non-communicable
disease (Chang et al., 2023). The abnormality occurs, when the
electrical activity of brain disrupts a part or entire body with sudden
seizures. Around 60 million people worldwide suffer from a variety of
epileptic seizures. These epilepsies affect static memory and cognitive
abilities that can make serious brain injury to the patient. The patient
experiences trouble in normal communication with society, which
leads to the humiliation and absence of fitting societal position. They
are treated by different modalities and also by using MRI-guided
stereotactic laser interstitial thermal therapy (Kang et al., 2016). Thus,
early recognition of epileptic seizures can help patients to lead quality
life. Treatment procedures are carried by checking the neuroimaging
modalities and case history (Sakashita et al., 2023; Sinclair et al.,
2022). EEG data can provide valuable insights into the lateralization
and localization of brain activity of the patients. Lateralization shows
either the left or right hemisphere of the brain activities. In the context
of epilepsy detection, lateralization can help determine which
hemisphere of the brain is primarily affected by abnormal electrical
activity. Localization refers to the specific brain regions or areas that
are involved in epileptic seizures. The various diagnostic tests include
electrocorticography (ECoG), magnetoencephalography, positron
emission tomography (PET), single-photon emission computed
tomography, functional MRI (fMRI), and functional near-infrared
spectroscopy methods (Garcia-Ramos et al., 2022). The abnormalities

are widespread throughout the brain, and to identify the brain region
by manual annotation of individual scans gives 5–10% error. The
86% of affected cases were overlooked, according to the earlier study
(Akrami et al., 2022). For instance, one-third of healthy adults have
unilaterally enlarged temporal horns and aberrant hippocampal
signaling visible on fluid-attenuated inversion recovery (Flair) and
T2-weighted imaging. Convolutional neural networks (CNNs) are a
group of profound learning method, which gives better execution of
features and characters in the dataset. A machine learning (ML)
classifier of support vector machine (SVM), deep belief network
(DBN), k-nearest neighbor (KNN), random forest (RF), deep neural
network (DNN), and U-transfer-reinforced Gaussian network
(U-TRGN) could be used to solve this issue. The classifier models have
a bunch of processing methods, and the results of detecting epilepsy
support to minimize the medical procedure. The classification models,
which give hidden or obscure factors in data, may provide more
accurate outcomes compared to the old statistical methods (Meng et al.,
2023). The postoperative seizure control imaging investigations offer
predictions of individual patient outcomes and relationship across entire
cohorts and give significant advancement in personalized patient care.
This study explains the classification models used to detect abnormal
brain activity patterns through lateralization and localization information
and achieve higher accuracy in detecting and localizing epileptic seizures.

2. Literature Review

The cognitive deterioration can occur in 70–80% of cases, and this
is influenced by various epilepsy-related features (Sayed et al., 2023).
Long-term epilepsy-associated tumors are typically low-grade, slowly*Corresponding author: Jayanthi Vajiram, Vellore Institute of Technology,
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growing tumors located in the cortex, and they primarily affect young
patients with family medical histories of epilepsy (Aronica, 2015).
Epilepsy gives noticeable effects on behavior and cognitive abilities.
Evidence proves that epilepsy can also impact behavior as observed
through structured interviews assessing through five-factor model of
personality test (Elbeh et al., 2021). Studies of epilepsy proved with
sleep disturbances using the trail making test (Al-Malt et al., 2020).
Correlations between changes in neuropsychological test scores and
brain metabolism have been explored using statistical parametric
mapping, which indicates metabolic changes by the Boston Naming
Test (Güvenç et al., 2018). Volumetric MRI identifies epilepsy
progression of brain atrophy (Abdelgawad et al., 2021). The single-
voxel spectroscopy has been used to compare children with different
seizure types and to differentiate patients with intractable and non-
intractable epilepsy (Faheem et al., 2020). To diagnose and categorize
the epilepsy, ML techniques give effective analysis of discriminative
characteristics generated from brain pictures, with SVMs classifiers on
the MRI data (Luckett et al., 2022) and diffusion tensor imaging
(DTI) data of individuals with mesial temporal lobe epilepsy (Wang
et al., 2022a). Quantitative relaxometry and DTI data were used with
SVM (Qu et al., 2022) to enhance the identification of temporal lobe
epilepsy. The CNN classifier is used for histopathological assessment
of WSI images to recognize different subtypes of focal cortical
dysplasia with hyperplasia in epilepsy cases (Vorndran et al., 2023).
The nocturnal frontal lobe epilepsy was analyzed with two-
dimensional self-organizing maps, which are used to cluster the data
into seizure and non-seizure patterns (Pisano et al., 2020). The
XAI4EEG system of data under time constraints significantly reduced
the time needed to validate predictions and improved interpretability
compared to SHAP feature contribution plots (Raab et al., 2023). The
SVM classifier detects epileptic seizures in long-term EEG data
(Raghu et al., 2020). EEG signals offer a solution for seizure
prevention by classification performance scores of accuracies, Area
Under the receiver operating characteristic curve AUC-ROC curve,
sensitivity, and specificity (Glory et al., 2021). The signal was
analyzed to extract features for a classifier detecting activation and
quiescent phases. The classifier’s output was then applied to a finite
state machine for cyclic alternating pattern method. The classifiers
were tested using a sequential feature selection algorithm and principal
component analysis (Mendonça et al., 2022). The two decision forest
classifiers, SysFor and Forest CERN, were applied to an ECoG brain
dataset. The results showed that these classifiers significantly reduced
seizure detection time while maintaining high accuracy. Additionally,
they were able to identify the specific region of the brain most
affected by seizures. FCM (fuzzy c-mean) and SVM methods were
used to create an image segmentation method by combining the two
preceding algorithms and testing its efficacy in a brain image with
high bias and noise. Ontology-based heterogeneous feature detection
with classifiers models also gives better results. The dataset from
Temple University School of Medicine analyzed by six pre-trained
models, namely Alex Net, GoogLeNet, Inception-v3, ResNet18,
VGG16, and VGG19, was used for seizure classifications (Dang
et al., 2022; Siddiqui et al., 2019). Deep Convolutional Neural
Network (DCLNN) model was used to analyze the resection cavities
on postsurgical epilepsy patient dataset (Kang et al., 2022). Diffusion
kurtosis tensor was used to identify the epilepsy (Zhang et al., 2022).
A comprehensive analysis of 190 studies revealed a growing
preference for using CNNs along with time-frequency decomposition
method images. EEG signals with their subjective interpretation can
sometimes result in misdiagnosis. To address this issue, this research
paper introduces a deep learning model for seizure detection. The
model employs a two-dimensional representation of EEG features and
exhibits excellent scalability in neural networks. It demonstrates high

applicability and accuracy in classifying seizures (Ahmad et al., 2022;
Debicki, 2017; Miltiadous et al., 2023; Xiong et al., 2021). Microglial
TRPV1 has been found to have a role in neuroinflammatory reactions,
associated with seizures. Researchers have proposed a Takagi–
Sugeno–Kang fuzzy system framework to classify epilepsy data,
which can aid the treatment planning. Algorithm called MVTL-LSR,
based on multi-view transfer learning, has been proposed to study
epileptic EEG signals and enhance AI-assisted recognition of epilepsy.
The SECNN-LSTM algorithm has shown effectiveness in predicting
EEG signals related to epilepsy, leading to improved recognition rates
for the disease. The prompt removal of artifacts from EEG signals is
crucial to preserve the original signal features and ensure robust
classification for accurate epilepsy detection by Google Net, VGG16,
and Alex Net models with k-fold cross-validation. The earlier study
used the OAOFS-DBNECD technique, which transformed the signals
into a.csv format. For the design of the epilepsy EEG analysis model,
an auto ML algorithm was utilized, which automatically generated a
model based on the input data (Alotaibi et al., 2021; Bayrak et al.,
2020; Beatrice & Meena, 2022; Cheng et al., 2023; Cherukuvada &
Kayalvizhi, 2023; Hu et al., 2023; Liu et al., 2022; Naseem et al.,
2021; Wang et al., 2022b; Wang et al., 2023).

2.1. Theoretical framework

2.1.1. Imaging modalities used in epilepsy cases
The epilepsy studies were analyzed at the Cerebrum Imaging

Centre using preoperative MRI data. This suggests that the center is
using MRI scans to study epilepsy cases before the patients undergo
surgery. This type of study can help identify abnormalities or
specific regions in the brain that contribute to epileptic seizures.

The data acquisition and imaging setup were used at the Imaging
Center. This included 3 T Siemens Magnetom Prisma-Fit furnished
with a 64-channel head curl. Following a T1-weighted (T1w)
structural scan, participants underwent resting-state fMRI (rs-fMRI)
and multi-shell diffusion-weighted imaging (DWI). In addition, two
spin-echo images were taken to correct individual rs-fMRI scan
distortion. Two T1w checks with indistinguishable boundaries were
obtained with a 3D charge arranged fast inclination reverberation
succession (MP-fury; 0.8 mm isotropic voxels, lattice= 320 × 320,
224 sagittal cuts, (repetition time) TR= 2300 ms, (echo time)
TE= 3.14 ms, TI= 900 ms, flip point= 9°, iPAT= 2, halfway
Fourier= 6/8). Before being submitted for further processing, both
T1w scans were visually examined to ensure that there was minimal
head movement. qT1 relaxometry information was gained utilizing a
3D-MP2RAGE grouping (0.8 mm isotropic voxels, 240 sagittal cuts,
TR= 5000 ms, TE= 2.9 ms, TI 1= 940 ms, T1 2= 2830 ms, flip
point 1= 4°, flip point 2= 5°, iPAT= 3, data transfer capacity= 270
Hz/px, reverberation dividing= 7.2 ms, halfway Fourier= 6/8). We
joined two reversal pictures for qT1 planning to limit aversion to B1
inhomogeneities and improve intra- and between-subject reliability.
To obtain DWI data, a 2D spin-echo echo-planar imaging sequence
with multi-band acceleration was used. The image sequence
consisted of three shells with b-values of 300, 700, and 2000 s/mm2

and 10, 40, and 90 diffusion weighting directions per shell (1.6 mm
isotropic voxels, TR= 3500 ms, TE= 64.40 ms, flip angle= 90°,
refocusing flip angle= 180°, FOV = b0 pictures obtained backward
stage encoding bearing are likewise accommodated mutilation
adjustment of DWI examines. One 7 min rs-fMRI examine was
gained utilizing multiband sped up 2D-intense reverberation planar
imaging (3 mm isotropic voxels, TR= 600 ms, TE= 30 ms, flip
point= 52°, FOV= 240 × 240 mm2, cut thickness= 3 mm, mb
factor= 6, reverberation separating= 0.54 ms). Members were told
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to keep their eyes open, take a gander at an obsession cross, and not nod
off. To correct for distortion in the rs-fMRI scans, we also include two
spin-echo images encoded in reverse phase (TR= 4029 ms, TE= 48
ms, flip angle= 90°, FOV= 240 240 mm2, echo spacing= 0.54 ms,
phase encoding = AP/PA, bandwidth= 2084 Hz/Px). The timing
difference between slices was adjusted after the scans were checked
for significant head movement (more than 3 mm or 3°). The images
were realigned to the middle slice after being spatially normalized to
the MNI template. The automated anatomical labeling atlas (23),
used to segment the brain into 116 regions, includes 90 regions in
the cerebrum and 26 regions in the cerebellum. These region of
interest (ROIs) were used as nodes in the construction of the resting-
state functional network. The comprehensive imaging protocol that
comes with this data release contains the number of parameters used
in the acquisition.

Fluoro-deoxyglucose positron emission tomography (FDP-PET)
imaging set up for Epilepsy detection typically use the radiotracer, is a
radioactive form of glucose that is injected into the patient’s
bloodstream, tracer travels through the body and is taken up by
brain active cells of higher glucose metabolism, than scanning,
imaging and analysis was captured.

2.1.2. Isotopes used in PET scans
Table 1 shows the isotopes used in the PET scans. X-ray and CT

scanning parameters give the slice thickness, scan range, and radiation
dose and acquire a series of 2D images in axial, coronal, or sagittal
planes. The X-ray beam rotates around the patient; capturing
multiple images from different angles scan gives the detailed
anatomical images of the brain, they may not always be sufficient
for detecting certain types of epileptic activity. Additional imaging
modalities with EEG are required in initial stage of epilepsy
detection. CT scans help to identify epilepsy-related abnormalities or
other brain lesions by very low range of 7–10% proved by NIH
studies. Cyclin-dependent kinase-like 5 (CDKL5) genetic variation
that leads to the development of epileptic encephalopathy was
recognized on 2004 as shown in Figure 2.

EEG mainly used for the early stage and surgical stage of epilepsy
detection. In cases where medications fail to adequately control seizures,
it leads to surgery. EEG is used to precisely locate the seizure foci or the
specific area in the brain responsible for generating seizures. This helps to
perform surgical procedures to remove or disconnect the seizure focus.
The different imaging modalities help to compare the epilepsy
symptoms and surgical intervention.

Figure 1
Different imaging modalities were used to map hypometabolism in epilepsy patients before surgery. This included (A) magnetic
resonance imaging (MRI) and (B) post-operative X-ray images. (C) Preoperative and postoperative MRIs were segmented and

subtracted (shown in red) to determine the volume of removed tissue. (D) MRI registration was done for FDG-PET imaging to assess
hypometabolism. (E) Comparison of hypometabolism was made with healthy controls (shown in green). (F) The resection area

overlaid with hypometabolism (highlighted in green-light green) helped determine the extent of resected hypometabolism profiles

Table 1
Isotopes used in PET scans

Isotype 11C 13N 15O 18F 68Ga 64Cu 52Mn 55Co 9Zr 82Rb

Half-life 20 min 10 min 2 min 110 min 67.81 min 12.7 h 5.6 day 17.5 h 78.4 h 1.3 min

Figure 2
The genetic variant leads to epilepsy
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3. Research Methodology

3.1. Dataset details

The original dataset consists of 500 individuals, eachwith 4097 data
points representing brain activity recorded over 23.6 s. The data are
divided into 23 chunks, with each chunk containing 178 data points
for 1 s. The last column of each chunk represents the label, with
values ranging from 1 to 5 representing different conditions. The
dataset has the captured image on 5 ways or class like eyes open,
eyes closed, healthy brain area, area with a tumor and area with
seizure activity. Class 1 represents recordings of seizure activity, while
classes 2–5 represent non-seizure conditions (eyes open, eyes closed,
healthy brain area, and area with a tumor). (https://archive.ics.uci.edu/
dataset/388/epileptic+seizure+recognition).

The input vector {1, 2, 3, 4, 5} has a column called “y,” which
represents the categories of the 178-dimensional input vector. This
column provides information about the patient’s eyes being open or
closed, tumor location, and seizure activity. To streamline the multi-
classification task, the different classes {2, 3, 4, 5} were grouped as 0,
denoting “not epileptic seizure,” while class {1} was kept as 1,
representing an “epileptic seizure.” This approach can also aid in
pinpointing the localization and lateralization of brain activity during
seizures, offering insights into the specific brain regions implicated in
epilepsy. It can also be used to localize and lateralize the brain activity
during seizures to better understand the specific regions of the brain
involved in epilepsy. This information is valuable for treatment
planning of epilepsy.

Figure 3 includes the following components: EEG data acquisition,
pre-process to remove artifacts and noise, higher-level features selection
based on time domain series, and kernel convolutional analysis (KCA)
algorithm was applied to identify the most informative features for
epilepsy characteristics. The selected SVM, DBN, KNN, RF, DNN,
and KA-U-TRGN classifier models are unique approaches of learning
patterns and making epilepsy predictions based on the extracted
features. After the parameters are evaluated by model integration and
fusion, the final prediction by displaying graphical representations
helps for medical intervention.

3.2. Feature selection using kernel analysis (KCA)

In feature selection using kernel analysis (KCA), the mean is
computed for each feature in the image by iterating through each
feature and then subtracted from each feature vector to eliminate bias
and center the data around zero. The covariance matrix is used to
measure the relationship between different features in the dataset. The
eigenvalue decomposition is performed to find the eigenvectors and
eigenvalues of the covariance matrix. The eigenvectors represent the
directions in which the data vary the most, while the eigenvalues
correspond to the variance. The top k eigenvectors are selected
corresponding to the largest eigenvalues. These eigenvectors capture
the most important features and can be used for dimensionality
reduction. The dataset is projected onto the selected eigenvectors to
obtain the reduced dimensional representation. This can be done by

taking the dot product of the centered dataset and the selected
eigenvectors. To obtain the reconstructed data from original dataset,
first need to multiply the selected eigenvectors by the corresponding
eigenvalues and then add back the mean value that was subtracted
during PCA (principal component analysis) transformation. This
reconstructed dataset represents the original dataset in a reduced
feature space. By reducing the dimensionality, improves the efficiency
and effectiveness of the model. Finally, the performance of the feature
selection is evaluated using a performance metric of choice, such as
classification accuracy or mean squared error. The selected features
can be used for further analysis or modeling tasks.

Assuming a dataset C with dimensions N and d, we first get
sample mean mj of the j-th feature as Equation (1)

mj ¼
1
N

XN
i¼1

C i; jð Þ (1)

Following that, we determine zero-mean dataset B as Equation (2)

B ¼ C � emT (2)

In this case, e stands for a N by 1 vector containing only ones. The Z
covariance matrix is constructed in the third step as shown in
Equation (3).

Z ¼ B�B
N � 1

(3)

Fourth, the eigendecomposition expression for the covariance matrix
Z is given by Equation (4)

Z ¼ XYX�1 (4)

Here, Y stands for eigenvalue matrix, which is also a diagonal matrix,
and X stands for the eigenvector matrix given in Equation (5).

Y ¼
Y 1; 1ð Þ

Y 2; 2ð Þ
. .
.

Y d; dð Þ

2
6664

3
7775 (5)

Fifth, X and Y are rearranged to make the eigenvalue decrease as
shown in Equation (6).

Y 1; 1ð Þ � Y 2; 2ð Þ � � � � � Y d; dð Þ (6)

The sixth step is to determine the total variance for each eigenvector
by Equation (7)

G kð Þ ¼
Xk
i¼1

Y i; ið Þ

G ¼ G 1ð ÞG 2ð Þ � � �G dð Þ½ � (7)

Figure 3
The system model of epilepsy classification and detection
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Seventh, assuming T to be the threshold, we choose L* to satisfy
given in Equation (8).

L� ¼ arg min L j G Lð Þ
G dð Þ � T

� �
(8)

Themost crucial principal component for Lwas produced. Kernel PCA
(KPCA), a potent PCA version, has been presented by researchers as a
solution to this issue. The KPCA uses the identical implementation as
PCAwith the exception of moving dataset C into a higher-dimensional
space. There were two KPCAs examined. Polynomial kernel PCA
(PKPCA), for example, is defined as Equation (9)

k x; y j PKPCAð Þ ¼ ½a x � yð Þ þ b�c (9)

where a, b, and c are the kernel parameters. RBF kernel PCA (RKPCA)
is the alternative given by Equation (10).

k x; y j RKPCAð Þ ¼ exp � jjx � yjj2
d2

� �
(10)

where d represents the scaling factor. In this section, CNN parameters,
layers, and structure are discussed. A CNN typically consists of three
main layers: convolutional, pooling, and fully connected. It convolves
the input image to make different component maps, and the network
goes through two stages of training. In feed-forward step, input
images are taken, each neuron’s input and parameters are combined
using a dot product, and a convolution operator is used in each
layer. Network output is compared to desired output utilizing a loss
function and error rate before back propagation stage, which begins
with error. This is repeated for a sufficient number of images. In
order to preserve the same output size, zero-padding is applied to the
input data. This is done consistently across all the convolutional
layers in this study. By adding zeros to the information framework,
the resulting grid size 4 × 4 remains unchanged. This ensures
consistency in the structure of the neural network and supports
image processing.

Initialization of weight: Network convergence can be accelerated
with the right initial weights. The literature has presented a variety of
weight initialization strategies. After examining the effects of various
initializers, this study found that the “He” initializer with a normal
distribution provides the best performance.

Function of activation: For the most part, a nonlinear
administrator or enactment capability is utilized in profound
establishments after convolutions. Presence of this capability
model in correlation with a direct method is given in Equation (11).

relu xð Þ ¼ x if x � 0
0 if x < 0

�
(11)

LeakyReLU, as stated in Equation (12), has frequently outperformed
ReLU. When the function is not in use, it permits a tiny, non-zero
gradient.

leaky ReLU xð Þ ¼ x if x � 0
ax if x < 0

�
(12)

A= typically 0.3. The accuracy of classification and training speed have
been improved by exponential linear units (ELUs). ELU accepts
negative values, which enables it to more efficiently normalize mean
unit activations toward zero than batch normalization as shown in
Equation (13).

ELUðxÞ ¼ x if x � 0
a ex � 1ð Þ if x < 0

��
(13)

a= 1. Additionally, the effectiveness of the developing networks is
evaluated when scaled exponential linear unit (SELU) activation
function is present. The SELU is created by giving the ELU a little
twist. Given below in Equation (14) are the equivalent equations for
these functions, with a= 1.6732 and l= 1.0507.

SELUðxÞ ¼ λ
x if x � 0
aex � α if x < 0

�
(14)

Pooling:When a convolutional layer is followed by a pooling layer, size
of feature maps and number of parameters in network are reduced,
resulting in lower computational costs. Because of adjoining pixels
in computations, pooling layers are invariant to little changes. Max-
pooling is one of the most widely utilized pooling strategies.

Regularization: Creation of amethod that is effective not onlywith
training data but also with new entries is the primary challenge in ML.
For deep learning, a number of regularization strategies have been
proposed. Dropout, a powerful but cost-effective computational
regularization technique, is used in this paper. During the training
phase, it randomly removes some of fully connected layer’s nodes to
prevent over-fitting. Then again, dropout is considered as a group
technique, since it gives various organizations during preparing.

Dietary function: The choice of loss function that should be
minimized is one of the most crucial aspects of designing a DNN.
Typically, the categorical cross-entropy function (H), which was
used in this case, is shown in Equation (15).

H p; qð Þ ¼ �
X
x

p xð Þln q xð Þð Þ (15)

Algorithm of KCCA:

INPUT: Dataset
RESULT: The identification of neurological disorders is based on
a number of factors.

Load the brain image dataset in the proposed model
Pre-processing is used to remove undesined noise from a dataset.
Select features of pre-processed image
for each epoch in epoch Number do
for each bunch in balchised do
y 0= model(feanires).
loss = crossEntropy (y, y 0)
whilet < Maximum number of iterations)
Adjust the revitalization velocities and positions to come up with
new solutions.

if r > sy)
At randiam, choose a solution from the best solutions.
Create a local solution that is close to the best-selected option.
end if
if r < bi & f(xi) < f(Gbest))
Increase si and decrease bi
end if
Rate the hats and identify the current Gbest
end while
acco:
b* Acc = max(b* Acc, acc);
Return
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A CNN typically consists of three main layers: convolutional,
pooling, and fully connected. It convolves the input image to make
different component maps, and the network goes through two stages
of training. In feed-forward step, input images are taken, each
neuron’s input and parameters are combined using a dot product,
and a convolution operator is used in each layer. Network output is
compared to desired output utilizing a loss function and error rate
before back propagation stage, which begins with error. This is
repeated for a sufficient number of images. In order to preserve the
same output size, zero-padding is applied to the input data. This is
done consistently across all the convolutional layers in this study. By
adding zeros to the information framework, the resulting grid size 4
× 4 remains unchanged. This ensures consistency in the structure of
the neural network and supports image processing.

3.3. Classification using proposed U-TRGN

A fully connectedCNNcalledU-Net is used for effective semantic
segmentation. The U-Net DNN can be used for a wide range of
analytical tasks. This is especially helpful in medical imaging. The
U-Net design depends on an auto-encoder network, and it will
duplicate its contributions to its results. U-Net contains two ways, a
compression way (encoder) and a symmetric growing way
(decoder). Transposed convolutions are used in the decoder path,
allowing for precise localization. U-Net was initially intended for
572 × 572 pixels; it very well may be effectively altered to work
with any image aspect. A few stacked convolutional layers are
highlighted from the images, as shown in Figure. 3.

In this approach, the U-TRGN are used for classification. The
U-TRGN model is a combination of transfer learning and
reinforcement learning (RL) techniques. First, the model used to
extract features from the data. Next, the model applies a feature
selection technique KCA to select the most relevant features from
the UNet model output. KCCA is a statistical method that finds
linear combinations of variables that have maximum correlation
with the target variable. Once the features are selected, the
U-TRGN model is trained and provides an effective way to
classify data by extracting relevant features using the UNet model,
selecting the most informative features through KCA, and
optimizing the classifier model. This approach combines the
strengths of transfer learning, and feature selection, to achieve
accurate and efficient classification of data as explained in Figure 4.

The efficient algorithm makes RL possible. The classification
challenge necessitates the sequential decision-making. The algorithm
of a multi-featured approach and a multilayer perceptron neural

network is used in this study. The class labels of image are
converted into source vector representation. The reward function
depends on the state and action rather than the class. In each RL
formulation, the agent is an intuitive but formalized concept that acts
in different states and receives specific rewards. The recommended
set of actions that maximizes the overall expected cumulative reward
received. Consequently, the ideal strategy for the specialist to follow.
This scenario is defined by an image volume and a scalar number
that shows whether prior class prediction (epilepsy vs. normal) was
accurate. This prediction’s accuracy is shown by pred_corr. It is
described by Equation (16)

pred corr ¼ 1; if prediction is correct
0; if prediction is wrong:

�

pred corr � δa;lXC (16)

where δ is the Kronecker delta function given by Equation (17).

s ¼ M; pred corrf g; (17)

In order to streamline the 3D convolutional backpropagation process
and ensure consistent matrix sizes, the x and y plane of the original
images were resized to 64 × 64 pixels. Additionally, to standardize
the depth dimension, extra slices of 64 × 64 pixels were added to
the bottom of the images with varying numbers of cuts (ranging
from 28 to 36). This adjustment ensured that all images had a
uniform z-axis length of 36 tomahawks. In essence, this is padding
in z-direction. Two possible actions, a1 and a2, are simply prediction
of whether image M is normal or epilepsy containing as shown in
Equation (18),

A ¼ a1
a2

� �
¼ 0

1

� �
¼ predict normal

predict epilepsy

� �
(18)

Rewards are given for accurate class predictions: +1 for correct
predictions and −1 for incorrect predictions. The reward r can be
defined in terms of prediction accuracy, pred_corr by Equation (19):

r ¼ �1; if pred corr ¼ 0
þ1; if pred corr ¼ 1:

�
(19)

In RL, the action-value function, indicated by Q (s, a), is a crucial
element. An “episode” is a collection of states where an agent
restarts in a different state. Action-value function shows the
anticipated cumulative reward if, after doing action, a predetermined
process for choosing actions is followed until the end of the episode.

Figure 4
U-TRAN architecture for the image classification model

Artificial Intelligence and Applications Vol. 00 Iss. 00 2024

06



The Q-value represents the expected total reward that will be obtained
when taking a specific action in a specific state, based on a given policy
is defined by Equation (20):

Qπ s; að Þ ¼ Eπ Rt j st ¼ s; at ¼ af g

¼ Eπ
X1
k¼0

γkrtþkþ1 j st ¼ s; at ¼ a

( )
(20)

where ERt|st = s, at = an is expectation for Rt upon choosing action an
in-state s and subsequently choosing actions in accordance with, and Rt
is total cumulative reward commencing at time t. The weighting of
“instant gratification” versus “delayed gratification” is represented by
the discount factor of 0.99. By maximizing it, the action-value
function is crucial and, eventually arriving the desired behavior,
leads to an accurate image class prediction. Two-node output depicts
the two possible action-values, Q (s, a1) and Q (s, a2), that can be
obtained by acting on state s in either of two different ways as
shown in Equation (21).

p xð Þ ¼
XK
j¼1

πjp x; θj
� �

; j ¼ 1; . . . ;K:

p xð Þ ¼
XC
c¼1

πcfc x j θð Þ (21)

Mixture model has a vector of parameters, θ ¼ θ1; . . . ; θk;π1; . . .πkf g.
Hidden variables are treated as a latent variable, or Z, in mixture

models. It accepts numbers 1 through K as a discrete set that satisfies
the conditions zkε 0; 1f g and

P
zzk ¼ 1. A conditional distribution

p (x | z) and a marginal distribution p (z) are how we define the joint
distribution p (x, z) given by Equation (22).

p z; xð Þ ¼ p zð Þp x j zð Þ

p zk ¼ 1ð Þ ¼ πk (22)

Adefinition of probability density function of X is given in Equation (23)

p x j µk;Σkð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π Σ�1j j

p exp � 1
2

x � µxð ÞΣ�1
x x � µxð ÞT

� �

fc x j µc;Σcð Þ ¼ 1

ð2πÞd2 Σcj j12 exp � 1
2

x� µcð ÞtΣ�1
c x� µcð Þ

� �
(23)

A linear superposition of Gaussians is utilized to represent a Gaussian
mixture distribution in the form by Equation (24),

p xð Þ ¼
XK
k¼1

πkp x j µk;Σkð Þ

π̂c ¼
nc
n
;

µ̂c ¼
1
nc

X
f jyi¼cf g

xi

Σ̂c ¼
1

nc � 1ð Þ
X
ijy;¼cf g

xi � µcð Þ xi � µcð Þt (24)

Given a certain value of z, conditional distribution of x is now aGaussian
by Equation (25):

p x j zk ¼ 1ð Þ ¼ p x j µk;Σkð Þ

p x j zð Þ ¼
YK
k¼1

p x j µk;Σkð Þk (25)

By adding joint distribution of all possible states of z, one can obtain the
marginal distribution of x given in Equation (26).

p xð Þ ¼
X
z

p zð Þp x j zð Þ ¼
XK
k¼1

πkp x j µk;Σkð Þ (26)

The “posterior probability” on a mixture component for a certain data
vector is a significant derived quantity by Equation (27):

γ zkð Þ � p zk ¼ 1 j xð Þ ¼ p zk ¼ 1ð Þp x j zk ¼ 1ð ÞP
K
j¼1 p zj ¼ 1

� �
p x j zj ¼ 1
� �

¼ πkp x j µk;Σkð ÞP
K
j¼1 πjp x j µj;Σj

� � (27)

To maximize theQ value (s, a) in order to maximize the overall cumu-
lative benefit, we select the action that corresponds to the highest Q
value. The argmax(Q) function is used to find the actionwith the largest
probability prediction class. The deep Q network (DQN) is utilized to
estimate the function forQt(a). It employs 3x3 kernels with a stride of 2
and padding, resulting in the same filter sizes as before. Q(s, a) repre-
sents the value function for action a in state S, and is updated using a
learning rate of 0.01 and batch size of 16 with mean squared error. The
DQN loss is calculated as the difference between the output Q values
(QDQN) and the target Q values (Q target). The output Q values are
computed through a forward pass: Q(t)DQN = FDQN(st) of the
DQN. To ensure that theQDQN is as universally applicable as possible,
batches of transitions of size n batch are randomly selected from the
replay memory T during DQN training. This allows for extensive
and evenly distributed sampling of states and surroundings. The testing
is conducted for 300 episodes, each consisting of five consecutive steps,
starting from a randomly selected initial state.

3.4. Performance analysis

The recommended approach is executed on a Windows 10 center
i7-4710MQ computer chip running at 2.5 GHz (8 central processors),
with 8 GB of Slam and 1 GB of committed illustrations handling unit
memory. All experiments are performed on a personal computer with
Intel Core i5 GH z processor and 8.00 GBRAM,Nvidia. The proposed
method is implemented in Python 3.6.5.

The confusion matrix was analyzed in terms of true and false
positives and negatives. Accuracy was calculated by dividing the
total number of correct predictions (true positives + true negatives)
by the total number of samples (positives + negatives). The dice
score was used to measure the number of true positives as well as
false positives.

Accuracy ¼ TPþTNð Þ
TPþFPþTNþFNð Þ ; Precision ¼ TPð Þ

TPþFPð Þ ;Recall ¼ TPð Þ
TPþFNð Þ ;

DSC ¼ 2 X\Yj j
Xj jþ Yj j ¼ 2TP

2TPþFNþFP ¼ 2 Precision�Recall
PrecisionþRecall :
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The performance was evaluated by randomized method of “train and
test” approach. The classification results for the training and test data
sets are evaluated by confusion matrix in Figure 4 (a), (b). This
shows the actual and predicted class for detection of epilepsy for
training and test dataset. Based on this confusion matrix, the
precision recall curve is obtained by training and testing dataset for
this actual and predicted class of epilepsy detection as shown in
Figure 5 has the convergence of fitness over iteration, Figure 6 has
training and testing accuracy and loss, Figure 7 explains confusion
matrix, and Figures 8 and 9 show the ROC and PR curve is
analyzed based on this confusion matrix.

The above Table 2 shows training and testing dataset based on
proposed analysis in terms of accuracy. Accuracy is used to evaluate
the overall performance by classified instances out of the total
instances. A higher accuracy gives better model performance, and
dice coefficient gives the similarity between two set of data (0 or 1).
A higher precision value gives a low false positive rate. AUC
assessed by binary classification method.

ThePrecision,Dice coefficient,AUC:Here, the proposed technique
attained accuracy of 97.39%, precision of 94.81%, dice coefficient of

2.61, and AUC of 99.52% for training dataset; for testing dataset,
proposed technique with different classifier models has attained
accuracy of 97.04%, precision of 94.12%, dice coefficient of 2.96%,
and AUC of 99.56% as shown in Figures 10 and 11.

Table 3 shows analysis based on training and testing dataset.
Existing techniques compared are SVM, DBM, KNN, RF, and
DNN with proposed model. Proposed technique attained accuracy
of 97.04%, precision of 94.12%, dice coefficient of 2.96%, and
AUC of 99.56%.

Figure 5
Convergence of fitness over 25-iteration and 5-KCCA agents

Figure 6
Training and testing accuracy and loss

Table 2
Proposed analysis based on training and testing dataset

Metrics Training results in % Testing results in %

Accuracy 97.39 97.04
Precision 94.81 94.12
Dice coefficient 2.61 2.96
AUC 99.52 99.56
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Figure 7
Confusion matrix

Figure 8
ROC curve

Figure 9
PR curve of epilepsy

Table 3
Comparative analysis based on existing and proposed analysis

Metrics SVM DBM KNN RF DNN Proposed-KA-U-TRGN

Accuracy 86.34 87.77 90.23 93.45 95.21 97.04
Precision 84.12 83.56 88.78 91.91 93.84 94.12
Dice coefficient 10.2 9.12 7.32 4.86 4.23 2.96
AUC 91.89 93.22 96.83 97.45 98.43 99.56
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Figure 10
Comparison graph on different classifiers models

Figure 11
Comparison graph on different performance levels
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Recent studies have demonstrated the effectiveness of utilizing deep
feature maps from convolutional neural networks for anomaly detection in
EEGsignals.By combining these featuremapswith shallowclassifiers and
implementing dimensionality reduction through PCA, researchers have
successfully identified preictal and interictal segments in epilepsy
patients. This approach eliminates the need for manual feature
extraction and has shown promising results, achieving a sensitivity of
82% and a low false prediction rate of 0.19 on epilepsy datasets.
Furthermore, a deep learning system has been developed to
automatically detect and differentiate spontaneous seizures in EEG data.
By recognizing biologically meaningful features in the data, this system
achieves high performance and interpretability. Additionally, a deep
network model based on ResNet theory and LSTM has been successful
in classifying seizure types from EEG trials, outperforming other
models with an impressive F1-score of 97.4%. Moreover, AI and IoT-
based approaches have been explored for seizure detection, highlighting
emerging opportunities and future research directions in this area.
A comprehensive overview of different modalities for seizure detection,
along with discussions on the detection processes and a novel UTRGN
deep learning model enhancing performance, has been presented in
recent research. Additionally, classification models such as RF and
MLP have been shown to achieve high accuracies of 97. (Alalayah
et al., 2023; Alshaya & Hussain, 2023; Ein Shoka et al., 2023; Ibrahim
et al., 2023; Statsenko et al., 2023; Zeng et al., 2023).

4. Conclusion

The proposed technique in epilepsy detection aids in selecting the 

processed brain signal using kernel convolutional component analysis 

(KCA) and the selected features are classified using U-TRGN.
Choosing the most relevant clinical variables could improve classifier 
performance and reduce dimensionality in small sample with specific 

characteristics, through the elimination of irrelevant features to 

increase the performance. These selected features are likely influenced 

by the decision to undergo surgery, with reduced predictor variables.
In the combination of PET and X-ray features, the indicator variables 

offer limited information about the temporal areas of hypometabolism.
The precise physical locations of excisions within the hippocampus,
amygdala piriform cortex complex, and entorhinal cortex have been 

found to have a significant correlation with seizure outcomes. If these 

areas are targeted for surgical intervention, there is a noticeable impact 
on reducing epileptic seizures. AI models are used to identify specific 

anatomical brain regions in order to optimize surgical strategies and 

enhance patient outcomes.
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