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Abstract: Fisherymeteorology hasmultiple impacts on the fisheries industry, especially inmodern fishery industrial parkswhere renewable energy
is extensively utilized. Therefore, this study developed a comprehensive fishery meteorological information terminal, based on the Android system,
that considers the requirements of fish farming, fishery load, and the characteristics of renewable energy for fisherymeteorology. This terminal aims
to provide convenient and comprehensive information services to aquaculturists actively involved inmodernizing the fisheries industry. The system
consists of twomain subsystems: the fishery subsystem and the weather subsystem. In the fishery subsystem, real-timemonitoring and recording of
fishery meteorology and related parameters can be achieved. In the weather subsystem, the demand for photovoltaic (PV) energy in weather
forecasting is emphasized. A weather prediction model based on long short-term memory (LSTM) is used for hourly weather forecasting. The
model is trained on meteorological station data by default, and users can also upload PV station data to obtain a model trained on such data.
The system can retain two models simultaneously, and when one of the datasets is unavailable, the available data are used to make predictions
on the corresponding model to ensure service stability. Additionally, we conducted experiments to verify the performance loss brought by
deploying the model on the edge using TensorFlow Lite. The results show that when the memory usage is reduced to 1/33 of the original, the
model still retains over 99% of its performance.
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1. Introduction

In the process of aquaculture, due to the dependence of fish growth
on the water environment and the sensitivity of the water environment
to meteorological factors, we can observe some meteorological
uncertainties that bring about uncertainties in the aquaculture
process. Fishery meteorology has significant impacts on various
stages of fish lifecycle in fish farming. For instance, temperature
plays a crucial role in fish hatching rates, as demonstrated by
Fu et al. (2024). Additionally, high temperatures can intensify
bacterial proliferation in the water, leading to increased fish disease
prevalence. Moreover, temperature can influence fish growth by
affecting oxygen levels. Abdel-Tawwab et al. (2019) found that
oxygen levels during fish farming are influenced by multiple
meteorological factors related to fisheries, including temperature,
wind velocity, air pressure, and solar radiation. Insufficient oxygen
levels in the water can be fatal to fish. Accurate monitoring and
forecasting of fishery meteorology are crucial for timely responses to
potential negative impacts. In recent years, researchers have made
efforts to mechanize, automate, and modernize the fisheries industry.
By employing devices such as feeders, pumps, and aerators, fish
production efficiency has been improved, reducing the reliance on

manual labor. However, fishery meteorology still exerts a significant
and undeniable influence on fish farming. For example, although
aerators maintain stable oxygen levels in the water and mitigate the
impact of fishery meteorology, they do not eliminate its effects
entirely. Adjusting the number of aerators indirectly mitigates the
influence of fishery meteorology on the system. Fu and Gou (2023)
pointed out the unique meteorological sensitivity of fishery power
load and formulated an all-encompassing model for power usage in
fishery energy internet, demonstrating the effectiveness of the
proposed model through measurements of electricity consumption
per hectare per year and production per kilogram per year. Ensuring
the proper functioning of these fishery machines is essential for the
healthy growth of fish during the fish farming process. It is evident
that fishery meteorology also impacts fishery load.

With the advancement of technology, modern aquaculture parks
have overcome the limitations of traditional aquaculture in terms of
scale and site by utilizing modern scientific technology and advanced
equipment. However, this process has also introduced many
meteorological sensitivity loads and energy supply methods that are
highly sensitive to meteorological factors, such as photovoltaic (PV)
energy that is temperature and radiation intensity. These newly
introduced loads and energy supply methods are unavoidable for
modern aquaculture to achieve green and efficient goals. Therefore,
researchers focus on studying these meteorological factors that have
a wide impact on modern aquaculture park systems, monitoring and
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recording such aquaculture meteorology, as well as predicting it, to
ensure that current and future aquaculture systems can have
corresponding strategies to cope with uncertainties. Fishery
meteorology greatly influences the efficiency and electricity
generation of PV energy systems, which have gained extensive
adoption in the fisheries industry over the past few years. Fu (2024a)
demonstrated that in fishery- PV complementary projects, high
temperatures have a considerable influence on the performance of
floating PV panels and accelerate their aging. Browne et al. (2015)
highlighted the constraints on PV power generation due to
environmental factors such as temperature and solar radiation.
Moreover, the PV power station environment is highly uncertain, as
temperature, solar radiation, and other factors are influenced by
weather conditions, resulting in significant uncertainty in PV power
output. Zhang et al. (2023) pointed out the instability caused by the
extensive implementation of PV energy, which imposes negative
impacts on the agricultural energy internet due to its intermittent
nature. Fu et al. (2022) emphasized the challenge of planning
distributed renewable energy systems due to the influence of weather
on them. Therefore, accurate weather forecasting is crucial to provide
vital data support for future PV power forecasting and enable
accurate estimation of PV power. Several studies have shown that
weather forecasts provide valuable information for PV power
forecasting. Sgarlato and Ziel (2023) demonstrated that incorporating
weather forecast results as external variables in autoregressive
multivariate linear models can improve forecasting performance,
especially when the autoregressive effect is weak. The accuracy of
meteorological forecasts contributes to effective information for the
model. In the research conducted, numerical weather forecasts were
processed and input into a long short-term memory (LSTM) model
to forecast future output (Li et al., 2023). The results showed that
this approach enhances predictive performance. Browne et al. (2015)
revealed that solar radiation and temperature have a significant
impact on PV power generation, making them the primary factors
affecting electricity production. As a result, particular attention
should be paid to temperature and solar radiation forecasting in
weather forecasts.

To meet the diverse needs of modern fisheries in the context of
the smart grid, and building upon the successful integration of
artificial intelligence technologies with software development
demonstrated in studies, we have undertaken the following work
(Khan Mohd et al., 2023; Mokayed et al., 2023):

(1) Considering the impacts of fishery meteorology on fish farming,
fishery load, and energy supply, as well as the resulting demand
for fishery meteorological information services, we have
developed a fishery meteorological information service terminal
for the fishery energy internet. The terminal consists of two
subsystems: the fishery subsystem and the weather forecasting
subsystem. The fishery subsystem provides basic fish farming
information, real-time monitoring and recording of fishery
meteorology, as well as monitoring and recording of fishery load
affected by fishery meteorology. The weather forecasting
subsystem enables fishery meteorology forecasting, with particular
consideration given to the demand for meteorology in modern
fishery systems, such as the need for temperature and solar
radiation forecasts.

(2) We have trained two sets of deep learning-based forecasting
models, one based on meteorological station data and the
other on PV station data. In cases where data for one set of
models are unavailable, the other set of models can be used to
ensure continuous availability of results.

(3) We have employed the TensorFlow Lite tool to lightweight the
models and deployed them on the Android platform, allowing
users to access them anytime and anywhere from their mobile
devices.

The subsequent content of this paper consists of four main sections.
Section 2 compares similar systems and technologies. Section 3
introduces the technologies employed in our proposed system and
provides demonstrations. Section 4 conducts experiments on the deep
learning models. Finally, Section 5 summarizes the work undertaken
in this study.

2. Related Work

2.1. Other system

We conducted a search on the app marketplace using keywords
such as “weather forecast” and downloaded the top apps, as listed in
Table 1. Our research revealed that these apps are primarily designed
for the general public and provide forecasts for temperature, weather
conditions, wind speed, wind direction, and various weather indices.
However, none of them include forecasting for solar radiation. These
apps typically rely on numerical forecast data or perform post-
processing on such data, with most of the processing and service

Table 1
Similar system (top apps published on the App marketplace)

APP name Brief

Moji (Huawei AppGallery, 2023a) Moji provides precise weather services at the latitude and longitude level based on leading
professional technology and huge meteorological and user data

ZYZhundain (Huawei AppGallery,
2023b)

Accurate Weather supports weather forecast services for over 40,000 townships, providing precise
forecasting for the weather around you

CaiYun (Huawei AppGallery, 2023c) CaiYun provides precise weather services at the latitude and longitude level based on leading
professional technology and huge meteorological and user data

Weather Forecast: Live Weather
(Google Play, 2023a)

Weather Forecast: The Live Weather APP provides current weather observations and detailed
weather forecasts from around the world

Weather: Forecast and Radar Maps
(Google Play, 2023b)

The app is an ideal choice for individuals seeking real-time updates on the most recent weather
conditions

Digital Fisheries (Huawei AppGallery,
2023d)

Digital Fishing can view personal information, navigation profiles, and fishing details, marking the
transition of inshore fishing to digitalization

Smart Fisheries (Huawei AppGallery,
2023e)

Smart Fishery is a software that provides professional services specifically for fishery farming
users, allowing them to view the indicator information of various fishponds and manage and
control the farming equipment
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deployment occurring on the server side. Therefore, the stability of the
service depends on the stability of the servers and network.
Additionally, when the service is disrupted, the apps often overlook
the option to provide forecast results using an alternative approach.
Hence, this study emphasizes the significance of fishery meteorology
in the fisheries industry, and the minimum requirement for obtaining
forecast results is the stable acquisition of sensor data. As long as
historical sensor data related to meteorological parameters are
available, future weather can be predicted, thereby ensuring higher
service stability. Moreover, reducing network transmission can also
help lower power consumption.

Furthermore, we conducted a search on the app marketplace
using keywords such as “fishery” and found that apps in this
category are not commonly available. The relevant apps are also
listed in Table 1. Among them, the “Smart Fishery” app only
provides information on pond water quality and weather forecasts,
focusing on water quality records, input–output records, feeding
records, and similar aspects, without taking into account variables
like the weight of equipment or prevailing weather conditions.

2.2. Deep learning-based approach

Recently, deep learning algorithms have been widely concerned in
many fields (Katkade et al., 2023; Olowolayemo et al., 2023;
Remmelzwaal, 2023), and the research on meteorology is also
gradually deepening (Cao et al., 2022; Yi et al., 2022). Haque et al.
(2021) have used multiple deep learning models to predict future
temperatures and have shown in experiments that the GRU-LSTM
model has the lowest root mean square error (RMSE), while the
convolutional neural network (CNN) has the best computational
performance. Additionally, experiments were conducted on datasets
from multiple locations to demonstrate the robustness of deep learning
models. In forecasting tasks affected by various meteorological
factors, the selection and processing of features are crucial for
forecasting methods based on deep learning. Espinosa et al. (2023)
pointed out that feature selection in methods based on deep learning is
a challenging task. By selecting appropriate features to incorporate
into deep learning models, more knowledge can be provided and
forecasting performance can be improved. Phan et al. (2023)
conducted research on the preprocessing of historical data, including
temperature and irradiance, in a numerical forecast dataset and made
forecasting at an hourly resolution. The experimental results
demonstrated the superior performance of the preprocessed data.
Some studies also focus on weather types, which not only improve
interpretability in modeling but also have a positive impact on the
forecasting results of weather-related variables. Huang et al. (2015)
established different models based on five weather types: sunny, partly

cloudy, cloudy, mostly cloudy with rain, and rainy, for PV power
forecasting, achieving good forecasting results and validating them in
actual PV systems. Using weather forecast data and historical actual
power generation data, they derived a model for forecasting the PV
power output one day in advance. The effectiveness of the proposed
PV grid forecasting model was verified through practical application
in a domestic PV power station with a capacity of 20 kW. Azizi et al.
(2023) found that multiple deep learning models including LSTM and
CNN-LSTM were used to forecast the future temperature and solar
radiation, and the results showed impact of relative humidity on the
model’s forecasting accuracy.

To achieve sufficient early warning and guidance for the safe
scheduling of PV power stations, multiple-step forecasting results are
usually required. Traditional time series forecasting methods may
encounter the problem of error accumulation and increased
complexity in the forecasting process when facing multiple-step
forecasting (Guo et al., 2022). On the other hand, shallow machine
learning methods generally perform well in fitting multiple input
variables to a single forecasting variable, but they may not meet the
requirements of multi-time scale fishery meteorological forecasting.
Deep learning, as an effective method for multivariate and multi-step
forecasting, has stronger fitting capabilities and can adapt to various
input–output scenarios. Moreover, deep learning models usually
have a concise structure, which has attracted widespread attention.
Tran et al. (2021) reviewed several deep learning techniques for
temperature forecasting proposed in the past decade, mainly based
on artificial neural network (ANN) models, including recurrent
neural network (RNN) and LSTM, and the final results indicated
that ANN models can serve as effective tools in temperature
forecasting. Patil et al. (2022) proposed CPSO-LSTM, which
combines deep learning model and optimization algorithm,
improving the accuracy of temperature forecasting. LSTM models
are representative models of weather forecasting, so our system
adopts the LSTM model for forecasting. Table 2 shows the survey
results of deep learning-based weather forecasting in this study.

In summary, to achieve high accuracy in predicting hourly solar
radiation and temperature for the next day, it is necessary to use deep
learning models that can adapt to multivariate inputs and multi-step
outputs. LSTM models are representative models in this category;
therefore, our system adopts the LSTM model for forecasting.

3. Proposed Methodology

3.1. Overall system architecture

There are two subsystems in this system. One is the fishery
subsystem, which primarily provides real-time information on fish

Table 2
Research status of deep learning-based approach

Ref. Deep learning algorithm Input variable

Yi et al. (2022) FusionNet Pollutants, historical weather, and weather forecast
Cao et al. (2022) U-Net Historical precipitation
Haque et al. (2021) LSTM, CNN, GRU, GRU-LSTM

CNN-LSTM
Daily minimum and maximum temperatures

Phan et al. (2023) GRU Temperature, solar radiation, precipitation, wind speed, air pressure, and
relative humidity

Huang et al. (2015) RBFNN The weather forecast for the next day
Tran et al. (2021) RNN, LSTM Precipitation, humidity, wind speed, air pressure, etc.
Patil et al. (2022) CPSO-LSTM Daily minimum and maximum temperatures
Azizi et al. (2023) CNN, GRU, CNN-LSTM, LSTM GHI, air temperature, surface pressure, RH
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farming, the load of the fishery power system, and energy supply
information. The other subsystem is the weather forecasting
subsystem, which not only provides basic meteorological services
but also utilizes LSTM technology deployed on the edge to
deliver stable hourly forecasting for future one-day solar radiation
and temperature. Figure 1 illustrates the main interface and
workflow of the system. The LSTM model is implemented and
trained using the TensorFlow framework and deployed on the
Android system using TensorFlow Lite. Network communication
is supported by the okhttp3 framework.

TensorFlow. A workflow has been provided to efficiently
complete the training and inference process of deep learning
models, enabling easy deployment of models on both server-side
and various edge devices. The training and deployment process
based on TensorFlow is illustrated in Figure 2.

OkHttp3. The widely used third-party library for network
operations in Android development.

TensorFlow Lite. It is a simplification of TensorFlow that enables
TensorFlow model inference on edge devices. It has features such as
lightweight and high performance. Research by Li (2020) indicates
that in the context of mobile speech recognition, it achieves
comparable results while reducing the model size on the edge device
to only 0.00007 times the size of the server-side model, significantly
reducing the model’s footprint. Deploying a model using TensorFlow
Lite involves five steps: The first step is training and saving the
model. In a Python environment, the model is trained using the
TensorFlow framework on a high-performance computer and saved as
a TensorFlow (tf) format model. The second step is format
conversion. The tf format model is converted to the TensorFlow Lite
(tflite) format using the Conversion tool provided by TensorFlow Lite.

Figure 1
APP demo of fishery weather

Figure 2
Flowchart of training of LSTM model
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The third step is importing themodel into an Android project. Themodel
is placed in the assets directory for later use. The fourth step is loading and
using the model. The TensorFlow Lite dependency library is imported,
and the tflite model data are converted into a MappedByteBuffer format.
The TensorFlow Lite Interpreter is used to perform inference on the edge
device.At this point, input data are provided in the format specified by the
model to initiate the inference process. Figure 3 illustrates the deployment
process.

3.2. Fisheries subsystem

After entering the correct username and password in the login
interface as shown in Figure 4, users can access the first page of
the fishery subsystem. This page displays basic information about
the fishponds, including the types and quantities of fish, as well as
medication and mortality statistics. Additionally, it presents various
parameters of the aquaculture environment, such as water quality,

water level, oxygen content, and infiltration rate of the pond soil.
By clicking on the power system option below, users can enter the

second interface, as shown in Figure 5. The top section of this interface
displays the weather type, temperature, and date for the current day.
Below that, users can view various fishery load and energy supply
information. The energy supply information includes the PV output
and the battery availability. The fishery load mainly consists of the
power consumption of the feeding machine, aerator, and recharge

and drainage pump. Among these three types of loads, especially the
latter two are greatly influenced by the environment. Therefore, real-
time monitoring is necessary to detect any issues as early as possible.

For the aerator, temperature affects the oxygen transfer rate, and
cloud cover affects photosynthesis, leading to fluctuations in the oxygen
content in thewater. Thus, it is necessary to adjust the amount of oxygen
provided by the aerator to maintain an appropriate level of oxygen
content.

As for the recharge and drainage pump, it ismainly used tomaintain
thewater level in the fishponds. Thewater level in the ponds is influenced
by factors such as atmospheric pressure, wind speed (which affects
evaporation), precipitation, and soil structure (which affects
infiltration). To meet the growth requirements of the fish, timely
pumping and drainage using the recharge and drainage pump are
needed. During this process, it is important to monitor whether the
energy supply can meet the demand to ensure the system’s safety. An
alarm notification is set at the top of the interface, which turns red
when the power cannot meet the load demand.

3.3. Weather forecasting subsystem

By clicking on the weather type icon at the top of the interface,
users can enter the third interface, as shown in Figure 6. This
interface displays various fishery meteorological parameters
related to fish farming and fishery load, including surface wind
speed, temperature, rainfall, and atmospheric pressure.

Clicking on the weather forecast option within the fisheries
meteorological interface allows access to the weather forecasting
subsystem, as illustrated in Figure 7. The implementation process is
shown in Figure 8, it shows the training process and the internal
processes of the two functions of get data and forecast in the APP.
This system primarily serves two functions: data retrieval and
forecasting. When entering the data retrieval function, you can
choose between meteorological station data and PV station
observation data. The former is obtained through an API provided
by a weather data service provider, while the latter relies on
historical records from complementary meteorological observation
facilities installed at PV stations. The system provides interfaces for
users to submit observation records over the network. It also offers a
file-based data submission option, allowing offline forecasting when
the file format requirements are met. Clicking on the forecasting
option leads to a forecasting type selection interface, where you can
choose between temperature and solar radiation. After making your
selection, you will receive the forecasted results.

This system uses the LSTM model to predict the influential
meteorological factors on PV energy in the fishing industry, mainly
including temperature and solar radiation. LSTM is a deep learning
model first proposed by Hochreiter and Schmidhuber (1997).
Figure 9 shows the structure of the LSTM model. In this system, a

Figure 3
Deployment flowchart

Model(Trained)
Model(in Android 

Project)

Model(tflite) Model(Deployed)

Conversion tool

Import

Interpreter

Figure 4
APP diagram of the fish pond part of the fishery system
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single-layer LSTM with 32 units and 5400 parameters is used. The
input data consist of historical meteorological data and relevant
weather data, while the output data are the solar radiation or
temperature for the next 24 h. Two models are trained on the data
from PV stations and meteorological stations and deployed on the
Android platform. Figure 10 illustrates the data preprocessing process.

4. Experimental Results

During the course of the study, the performance of the LSTM
model was tested. The model was built and trained using Python 3.7
and the TensorFlow 2.11 framework. Due to the small model size, it
was sufficient to use an NVIDIA GeForce MX250 for computation.

The training data used for this study were Beijing meteorological
station observation data provided by the data service provider WheatA,
as shown in Figure 11. Table 3 describes the input data, which includes
either solar radiation or temperature, along with other meteorological
parameters such as cloud cover, wind speed, and air humidity.
Table 4 outlines the dataset division. The training set and validation

Figure 5
APP diagram of the power system part of the fishery system

Figure 6
APP diagram of the fishery weather part of the fishery system

Figure 7
APP demo diagram of the meteorological subsystem
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Figure 8
Flow chart of the meteorological subsystem
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Figure 9
Architecture diagram of LSTM

Table 3
Dataset information

Parameters Unit Description

Air temperature °C Air temperature measured 2 m above the ground
Precipitation mm/hour Total bias-corrected precipitation, over land only
Snowfall mm/hour The amount of snowfall within the land area
Snow mass kg/m2 Only snowfall over land areas is included
Air density kg/m² Air density at ground level
Top of atmosphere solar radiation W/m² Incident shortwave radiation flux at the top of the atmosphere
Ground-level solar radiation W/m² Surface shortwave radiation flux
Cloud cover The percentage of cloud cover obtained by summing all heights above the ground
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set were employed for model training and monitoring potential
overfitting or underfitting throughout the training, whereas the test
set was utilized to evaluate the model’s ultimate performance.
Table 5 shows the mean absolute error (MAE) and RMSE of four
models, including ResNet (Zhang, 2021), RNN (Ahn & Park, 2021),
LSTM, and iTransformer (Liu et al., 2023), in predicting temperature
and solar radiation in the next 24 h, among which the LSTM model
used in this paper has the best performance.

The measurement metrics used for evaluating the model results
were MAE and RMSE. MAE reflects the model’s actual error, while
RMSE amplifies the impact of larger errors. Both metrics ensure that
the units of measurement remain unchanged. After the model
training converged, the MAE for temperature forecasting was 1.58
°C, and for solar radiation, it was 37.6 W/m². The RMSE for
temperature forecasting was 2.09 °C, and for solar radiation, it
was 81.47 W/m². Figure 12 displays the training results for the
1st, 4th, and 24th hours, showing that the model can effectively
predict future temperature and solar radiation.

Since TensorFlow Lite lightweighting the model, it is essential
to understand the performance loss after compression. To assess this,
tests were conducted on the test set. Two models were trained: one in
TensorFlow (tf) format and the other in TensorFlow Lite (tflite)

format. Taking temperature forecasting as an example, Table 6
presents a comparison of the two formats in various aspects. With
a precision of one decimal place, the input mismatch rate between
the two models was 1.92%. In terms of MAE, the tf format model
was 1.58, while the tflite format model was 1.59, a difference of
approximately 1%. Looking at the RMSE metric, the tf model
was 2.09, while the tflite model was 2.11, again with a difference
of about 1%. The performance was nearly identical, but in terms
of memory usage, the tf format model was 794 KB, while the
tflite format model was only 24 KB, a reduction of 1/33,
indicating a significant compression effect on the model.

The experimental results mentioned above indicate that the
model, after undergoing lightweight processing with TensorFlow
Lite, reduced in size to 1/33 of its original size while still
retaining 99% of its performance. This forms a solid foundation
for deploying multiple models on the edge.

5. Discussion

In the context of contemporary fishery parks, we have developed a
mobile application that integrates the consideration of fishery
meteorology into the development of the aquaculture information
system. This application not only offers general basic information
services for aquaculture systems but also emphasizes meteorological
information. Previously, the impact of meteorological factors on
aquaculture systems was overlooked in the development of
applications for monitoring aquaculture environments. For instance,
the intelligent smartphone application developed by Lopez-Betancur
et al. (2022) and Siskandar et al. (2022) effectively monitors real-
time water quality parameters but fails to consider meteorological
parameters. However, when data scientists provide solutions for
fishery systems, they must consider meteorological information,
which is closely associated with fishery systems, in addition to
crucial information such as water quality parameters. Data derived
from the same source are often more amenable to processing.

Table 4
Training set, validation set, and testing set

Set Number Percentage

Training set 70128 80
Validation set 8760 10
Testing set 8760 10

Table 5
Comparison of five models on the WheatA dataset

Model MAE RMSE

ResNet (solar radiation) 73.54 123.8
RNN (solar radiation) 56.46 96.38
iTransformer (solar radiation) 48.40 98.56
LSTM (solar radiation) 37.60 69.47
ResNet (temperature) 10.97 12.59
RNN (temperature) 2.16 2.85
iTransformer (temperature) 1.73 2.55
LSTM (temperature) 1.58 2.09

Figure 10
Flow chart of data processing
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Table 6
Comparison between LSTM (TensorFlow) and LSTM

(TensorFlow Lite)

Model Storage MAE RMSE

LSTM (TensorFlow) 792 KB 1.58 2.09
LSTM (TensorFlow Lite) 24 KB 1.59 2.11
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Moreover, given that aquaculture-related devices are primarily
employed to regulate the aquatic environment, their control and the
weather jointly influence the water environment. Recording
meteorological factors also facilitates load analysis. In the
investigation of PV energy supply, such as the research conducted
by Jamroen et al. (2023), although the instability of solar energy was
taken into account and alternative energy sources were utilized to
supplement insufficient solar power, it did not furnish managers with

preemptive decision-making information. In contrast, our research
accounts for the instability of PV power generation and provides 24-
hour hourly forecasts of sunlight and temperature based on
meteorological records, commencing from the principle of PV power
generation. This enables improved electricity scheduling and
estimation of the utilization of alternative energy sources for the
subsequent day. Additionally, we have created a data upload
interface to fulfill the requirements of model training using local

Figure 11
Map information of the meteorological station

Figure 12
Forecasting effect plot of the trained model (steps 1, 4, 24)

Table 7
Comparison between recent system and our system

Ref. Water quality parameters Instability of solar energy Weather forecast Meteorological parameters

Lopez-Betancur et al. (2022)
p

× × ×
Siskandar et al. (2022)

p
× × ×

Jamroen et al. (2023)
p p

× ×
Proposed

p p p p
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meteorological information obtained from PV stations. Table 7
illustrates the above comparisons.

By taking into account the various influences onmodern fishery
parks from the standpoint of fishery meteorology, the app developed
in this study is capable of accommodating the production demands of
future modern fishery parks and holds significant potential for future
applications. Furthermore, it is evident that such diverse data
requirements necessitate not only support from terminal devices
but also ongoing enhancements in other aspects of Internet of
Things technology within modern fishery parks.

6. Conclusion

Asmodern fisheries continue to evolve, there is a growing need to
consider a wide range of information within the fisheries system. This
includes information related to aquaculture, fisheries load, and
renewable energy supply, all of which are influenced by fisheries
meteorology. Based on research and surveys conducted in the
application market, it has been found that existing systems have not
comprehensively addressed the above-mentioned information and
failed to meet the demands of modern fisheries. Therefore, we have
developed the Fisheries Meteorological Comprehensive Information
Service System for modern fisheries parks. Specifically tailored to
meet the requirements of modern fisheries, it includes features for
renewable energy integration and forecasting. To meet the demands
of modern fisheries for renewable energy and forecasting, we
deployed an LSTM model at the edge using TensorFlow Lite. This
system supports inputs from both PV stations and meteorological
stations, ensuring stable access to forecast information. In order to
validate the performance of LSTM at the edge, we deployed the
model on Android using TensorFlow Lite. Through experimental
comparisons, we found that the tflite format of the model reduced in
size to 1/33 of the original while retaining 99% of the performance
of the tflite format model. This allows us to meet the requirement of
deploying multiple models at the edge while also providing effective
information for PV energy forecasting.
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