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Abstract: In an era marked by the transformative impact of machine learning (ML) algorithms across various disciplines, challenges in achieving
model interpretability persist. Existing evaluation datasets often lack transparency, thereby obscuring the decision-making process of ML models,
particularly in complex deep learning architectures. This opacity raises concerns across sectors like healthcare, emphasizing the pivotal role of
explainability in fostering trust and adhering to non-supervisory norms. While progress has been made through the development of
interpretable models, the absence of formalized, interpretable datasets hampers the validation and comparison of techniques. Rule-based
datasets, distinct from general synthetic datasets, provide an avenue to simulate real-world challenges while maintaining interpretability. This
paper introduces FormulAI, a framework for generating comprehensive rule-grounded datasets encompassing categorical and continuous
features, calibrated noise, and imbalanced class distribution. Emphasizing scalability and reproducibility, these datasets serve as a robust
standard, fostering exploration in interpretability and robustness.
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1. Introduction

Machine learning (ML) algorithms have achieved impressive
results in various fields, revolutionizing industries and solving
complex problems. Despite these achievements, researchers and
practitioners still face ongoing challenges, including model
interpretability and dealing with imbalanced class distributions.
Therefore, benchmark datasets used in ML development should be
designed to address these challenges by incorporating well-annotated
instances and realistic class imbalances.

Explainability is crucial for establishing trust in artificial
intelligence (AI) systems and represents a regulatory requirement in
critical areas such as healthcare [1]. Nevertheless, existing evaluation
datasets often lack interpretability, posing challenges in
understanding the decision-making process of resulting ML models.
These models, particularly deep learning architectures, frequently
function as black boxes, impeding insights into their predictive
mechanisms. Efforts to create more interpretable models, including
those leveraging attention mechanisms, have demonstrated promise.
However, the absence of standardized, interpretable datasets limits
our capacity to validate and compare various interpretability
techniques [2, 3].

The presence of interpretable ground truth labels plays a crucial
role in evaluating the interpretability of ML models [4]. Such labels
serve as benchmarks for validating the explanations derived from
these models, allowing comparison against expected model behavior.

Interpretable ground truth labels can be generated based on domain-
expert knowledge or synthetic rules.

Distinct from general synthetic datasets designed to simulate real-
world data characteristics with controlled aspects like data distribution,
noise levels, and feature interactions [5, 6], rule-based datasets
constitute a specific type of synthetic data. These datasets generate
data instances and class labels based on explicit rules, criteria, or
formulas. Rule-based datasets offer a strategic solution for replicating
imbalanced scenarios that mirror real-world challenges while
upholding interpretability. This capability facilitates the development
and enhancement of ML algorithms and techniques. The
establishment and use of rule-based benchmarks play a pivotal role
in comprehending and refining the decision-making processes of ML
models, ultimately fostering more reliable AI systems. Rule-based
datasets prove invaluable in challenging ML applications, serving as
essential benchmarks to assess ML model performance under
controlled conditions, including model interpretability and
explainability [3], robustness [7], adversarial testing [8], incremental
complexity [9], and domain-specific challenges [10].

Rule-based datasets can cover various scenarios, contributing to
bolstering the robustness and generalization of AI models, thereby
enhancing their performance on unseen data and expanding their
capacity to handle a broader spectrum of inputs [11]. Additionally,
diverse and representative samples can aid research endeavors
focused on fairness and bias reduction [12]. Nevertheless, creating
such benchmarks presents several challenges that can impact the
dataset’s quality, applicability, and representativeness. These
challenges encompass factors such as data complexity [13],
scalability [11], rule significance [14, 15], and the balancing noise
and uncertainty [16].
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This paper introduces FormulAI as an extensive framework for
generating rule-based datasets, primarily aimed at addressing the
challenge of explainability in ML applications. The resulting datasets
are formulated based on explicit rules that govern the relationships
between input features and output labels, including a blend of
categorical and continuous features to mirror the diverse data
encountered in real-world applications. Deliberately unbalanced
labels simulate scenarios where certain outcomes occur infrequently
and yet prioritize model interpretability. To infuse realism, controlled
noise is introduced to emulate the complexities found in the real
world. Emphasizing scalability and reproducibility, the FormulAI
datasets aim to serve as benchmarks for assessing ML model
performance under challenging conditions. This initiative intends to
foster research and development in key areas, including ML
interpretability, managing imbalanced classes, and enhancing
robustness. Furthermore, these datasets will enable the evaluation
and comparison of various algorithms, assess the efficacy of
imbalanced learning techniques, and facilitate the development of
innovative approaches to enhance model prediction explanations.

2. Literature Review

Datasets constitute the fundamental building blocks uponwhich
ML models are trained. As a primary source of information and
context, datasets allow models to learn, generalize, and infer from
the underlying patterns used to make informed predictions. The
training process is similar to creating a cognitive map and its
effectiveness is intrinsically linked to the quality of training data.

Recent advancements in deep reinforcement learning highlight the
significant impact of training ML models on extensive datasets. This
emphasizes the pivotal role of datasets in facilitating models to
comprehend intricate patterns and complexities, empowering them to
accomplish tasks previously deemed difficult or outside the realm of
ML algorithms [17]. Nevertheless, contemporary accurate decision-
support systems often operate as black boxes, concealing their
internal logic from users. This absence of explanation poses both
practical and ethical concerns [18].

While rich datasets enhance models’ ability to generalize to unseen
data, improving robustness and accuracy, dataset diversity embraces a
broad spectrum of scenarios, variations, and edge cases, enhancing
model generalization [19]. However, specific considerations in dataset
design crucially impact model performance: (a) biases within datasets
can be learned and perpetuated, leading to biased predictions and
unfair outcomes [20]; (b) outliers, anomalies, and noisy data in a
dataset can adversely affect model training and performance [21]; finally,
(c) larger, more complex datasets significantly contribute to model
performance by capturing intricate patterns often missed in smaller
datasets, enhancing model scalability [22].

2.1. Dataset resources

The UCI (University of California, Irvine) Machine Learning
Repository is a widely recognized benchmark resource in the ML
community1. It offers freely available standardized datasets for
comparing and evaluating the effectiveness of ML methods across
various application domains, including healthcare, finance, and
social sciences. The most frequently used UCI datasets are Iris [23],
Wine [24], Breast Cancer Wisconsin [25], Boston Housing [26],
among many others. However, some datasets in the repository
might be older or possess simpler characteristics compared to real-
world data.

Kaggle is another well-known platform that promotes a dynamic
environment for data science competitions, favoring the development
of cutting-edge models to address real-world challenges. Kaggle also
hosts large datasets, often taken from industry contexts, which provide
useful and up-to-date insights for ML applications. These datasets
serve as valuable benchmarks for testing novel algorithms and
exploring advanced techniques, demonstrating their potential to
solve complex problems facing modern industry.

In addition to UCI and Kaggle, other benchmark dataset resources
that are used for evaluating ML algorithms include Physionet [27],
ImageNet [28], OpenML [29], and SNAP [30].

2.2. Interpretability

Interpretable ML often involves understanding how a model’s
predictions are influenced by input features. To evaluate
interpretability in ML applications, it is recommended to use datasets
carefully designed to assess interpretability challenges and curated to
reflect the problem’s characteristics. This might involve selecting
datasets with features challenging interpretability techniques, such as
intricate feature interactions [31], non-linearity [32], and conditional
dependencies [33]. While UCI and Kaggle datasets are valuable for
various ML research tasks, they might not always be optimal for
evaluating ML applications in critical domains requiring interpretable
models, such as healthcare [1], autonomous systems [34], and
finance [35].

For interpretability, comparing model-agnostic explanations to
a “ground truth” understanding of the data is crucial. Unfortunately,
most available datasets lack established ground truth explanations,
posing challenges in assessing interpretability methods effectively.
Moreover, evaluating interpretability solely on simple datasets
might not adequately mirror the diversity and complexity
encountered in real applications, such as high dimensionality,
missing values, imbalanced classes, and noisy data. Models
performing well on simpler datasets might not translate to
effective explanations in complex scenarios, where relationships
are less linear and classes overlap more, reducing the model’s
interpretability [36].

For example, consider a dataset that primarily represents a subset
of a complex domain. In such cases, interpretability methods trained on
this limited dataset might struggle to handle deviations beyond the
domain’s boundaries. This limitation can impact the method’s ability
to offer accurate explanations, especially when the data distribution
significantly differs from what was available during training [1].
Additionally, ensuring that the rules used to generate the data
capture the underlying distribution of the target domain is crucial.
Biased synthetic data can impede the generalization of ML models
in real-world scenarios, underscoring the importance of well-
designed and realistic synthetic datasets for robust testing and
evaluation [13].

The field of interpretability in ML has garnered considerable
attention, leading researchers to explore a myriad of approaches.
Past studies have investigated techniques spanning from rule-
based interpretation to model-specific feature mapping methods.
The literature showcases a diverse array of efforts dedicated to
enhancing comprehension of model decisions and bridging the
gap between AI system outputs and human understanding. Some
of these approaches are outlined below.

Letham et al. [37] generated interpretable predictive models using
Bayesian Rule Lists. These models are constructed through a series of
if-then statements designed to simplify complex multivariate feature
spaces into understandable decision rules. Experimental results
demonstrate that Bayesian Rule Lists achieve predictive accuracy1https://archive.ics.uci.edu
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comparable to leading ML algorithms. They showcased high accuracy
and interpretability in medical scoring systems, suggesting potential
replacement of the CHADS score, commonly used in clinical
practice to estimate stroke risk in atrial fibrillation patients.

Ribeiro et al. [38] introduced a novel model-agnostic system
utilizing anchors, which act as localized and sufficient conditions to
efficiently compute explanations for any black-box model. The
versatility of these anchors was demonstrated across various models
in different domains and tasks. A user study revealed that anchors
notably enhance users’ ability to predict a model’s behavior on
unseen instances with greater precision and reduced effort compared
to existing linear explanations or scenarios lacking explanations.

Chen et al. [39] introduced a methodology for instance-wise
feature selection aimed at model interpretation. This method
involves training a feature selector to identify the most informative
subset of features for each specific example. The optimization
objective for this selector is to maximize the mutual information
between the selected features and the response variable. The authors
claim the method’s utility lies in explaining the behavior of models
requiring interpretation of the conditional distribution of the
response variable given the input. Additionally, the study introduces
an efficient variational approximation for computing mutual
information and demonstrates the methodology’s effectiveness
across diverse datasets, both synthetic and real, using quantitative
metrics and human evaluations.

Hooker et al. [40] introduced an empirical measure for assessing
the approximate accuracy of feature importance estimates within deep
neural networks. Their experiments, conducted across multiple large-
scale image classification datasets, revealed that several widely
adopted interpretability methods produce feature importance
estimates that do not outperform randomly assigned feature
importance values.

Various techniques, including gradient methods and surrogate
models, have been proposed to analyze the behavior of complex
models. However, the development of datasets tailored for
evaluating interpretability is not as common as creating
interpretable ML models. This scarcity is due to several factors,
such as the complexity of data collection [41], subjectivity in
interpretability [1], and a lack of standardization [39].

2.3. Benchmark design

Synthetic rule-based datasets enable the design of interpretable
models with clearly defined rules that are easier to explain [3]. The
development of rule-based datasets represents a crucial step toward
evaluating and improving the decision-making mechanisms of ML
models, leading to the further development of reliable and robust AI
systems. These datasets are critical for rigorous testing of ML
applications and can serve as an indispensable benchmark for
evaluating model performance in tightly controlled and well-defined
scenarios. However, designing rule-based datasets presents several
challenges, which can impact the dataset’s quality, applicability, and
representativeness:

1) Designing large and complex synthetic datasets requires striking
a balance between computational effort and meaningfulness. As
dataset size increases, the computational demand for training
models also rises. Handling high-dimensional feature spaces or
intricate structures can be particularly computationally taxing
when generating sizable synthetic datasets. Scaling the dataset
generation process to accommodate big data requirements
presents significant computational challenges. To ensure
feasibility and practicality, it is crucial to manage the size and

complexity of datasets effectively. Employing efficient
generative techniques becomes essential, maintaining a
representation of real-world complexity within the dataset for
robust evaluation [11].

2) The choice and definition of rules significantly impact a dataset’s
utility. Selectingmeaningful and relevant rules is crucial to ensure
that the dataset accurately mirrors the target application’s
characteristics. However, erroneous rule choices can introduce
bias or unrealistic patterns, adversely affecting the dataset’s
usefulness in training and testing ML models. Balancing rule
complexity with interpretability is a delicate trade-off.
Complex rules might hinder model interpretability and obscure
feature-label relationships, while overly simple rules may
oversimplify the problem domain, resulting in inadequate
datasets. Achieving the right balance in rule complexity is
crucial to creating synthetic datasets that are both realistic and
interpretable [15].

3) Accurately capturing complex interactions within real-world data
poses a challenge in designing synthetic datasets. Precisely
modeling intricate data relationships, especially those based on
overlapping or nesting rules, is non-trivial. Ensuring rule
consistency and reproducibility is crucial for creating reliable
benchmark datasets where different data generation runs
produce consistent results [42]. Additionally, there is a risk of
overfitting to the specific rules used in dataset creation. When
a dataset closely mirrors its generating rules, ML models may
perform exceptionally well on synthetic data but struggle with
real-world data due to differing distributions [14].

4) Noise and uncertainty play vital roles in replicating the inherent
randomness and variability present in real datasets. Introducing
noise and uncertainty into datasets is crucial for capturing the
inherent stochastic nature of real-world data. Integrating these
elements allows synthetic datasets to better emulate the diverse
and unpredictable characteristics of real data, although achieving
the right balance is challenging. Excessive noise might obscure
underlying patterns, reducing the dataset’s significance, while
insufficient noise may fail to accurately represent real-world
scenarios [16]. As more rules and noise are incorporated, they
systematically increase complexity, offering greater control and
incremental evaluation of their impact on model performance [9].

5) Robustness and Adversarial Testing. Synthetic rule-based
datasets can be crafted to incorporate specific edge cases and
corner scenarios, challenging models to excel under adverse
conditions and constraints where traditional algorithms might
falter [7]. Adversarial samples, more difficult to detect,
underscore the importance of assessing robustness to gauge a
model’s consistency and generalization ability. Analyzing a
model’s response to these demanding scenarios helps identify
potential pitfalls and assess how effectively a model
generalizes beyond simple patterns [43].

A recent survey on neural network interpretability [44] provides a
comprehensive overview of the intricate concept of
interpretability, emphasizing its pivotal role in fostering trust.
Within this research domain, several related studies offer insights
relevant to the creation of rule-based datasets. These encompass
discussions regarding: (a) the efficacy of rule-based datasets in
addressing challenges and augmenting the importance of model
interpretability [2]; (b) strategies to facilitate explainable classifier
predictions [3]; (c) the influence of adversarial samples [8] and
handling imbalanced class distributions [45] on model
generalization; and (d) assessing neural network robustness
against diverse corruptions and perturbations [7].
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3. Methodology

Rule-based datasets serve as standardized benchmarks, facilitating
the comparative evaluation of models across varying complexity levels
and noise considerations. FormulAI stands out as a comprehensive
framework designed to create rule-based datasets to address diverse
challenges encountered in ML applications. This method presents a
systematic approach to generating synthetic data instances,
employing explicit rules governing the relationships between input
features and output labels. Its primary aim is to challenge model
interpretability and enhance prediction explainability within ML
applications.

FormulAI can function as a foundational framework for
establishing tailored benchmarks that replicate real-world scenarios.
This approach encourages systematic investigations into model
behavior, interpretability, and overall performance. The creation of
the proposed rule-based dataset involves a systematic process that
includes selecting features, formulating explicit rules, and
implementing them algorithmically. These datasets not only
challenge ML models but also enhance their capability to navigate
complex decision-making environments.

The crux of thismethodology revolves around crafting transparent
rules that govern class assignments, considering both categorical and
continuous features. These explicit rules bridge the gap between
opaque “black box” models and human comprehension by providing
insight into how features influence predictions. Additionally,
intentionally introducing imbalance in the dataset mirrors real-world
scenarios, offering a strategic approach to addressing label imbalance
challenges while preserving model interpretability.

The resulting datasets can serve as controlled benchmarks,
validating the performance and robustness of ML models under
diverse conditions. Furthermore, they foster enhancements in
model interpretability by design.

3.1. Feature selection

The proposedmethod starts with the selection of categorical and
continuous features. Categorical features cover different classes or
names and capture the variation inherent in real data, whereas
continuous features encapsulate quantitative properties that
facilitate decision-making.

Each categorical feature represents a distinct aspect of the
underlying data distribution. For instance, in a financial transaction
record, the classification function for transaction categories may
include labels such as “retail,” “entertainment,” “groceries,”
“healthcare,” and “travel.” Likewise, continuous features span a
range of quantitative measures. For instance, in a climate modeling
scenario, the temperature – a continuous function – might span from
−10 °C to 40°C. In a financial risk assessment dataset, continuous
values for income could range from $20,000 to $200,000 per year,
showcasing variations in income levels among individuals.

In FormulAI, categorical and continuous value ranges are selected
to emulate the diversity and intricacy found in real data distributions.
This enables the creation of intricate and meaningful rules that
define the association between features and labels.

Each categorical feature, denoted as fc, delimits a range of
possible categorical values ci ∈ C, where C = {C0, C1, : : : , Cm−1},
0 ≤ i < m. Here, m denotes the maximum number of distinct
values that can be attributed to fc.

The default configuration employs m= 10 for all categorical
features: (a) C0 represent “no information”, (b) values C1, C2, and
C3 form the rules for assigning labels to each instance, and (c)
values from C4 to C9 introduce random noise into the generated

dataset. Hence, only C1, C2, and C3 are utilized in creating the
labeling rules for instances, and none of the other values (C0 and
C4 : : :C9) should be considered as criteria for interpretability.

The parameter m is adjustable to simulate various complexity
requirements. In practical terms, increasing the value of m will result
in more challenging interpretability scenarios, as it is correlated with
the complexity of finding the explanations leading to each target
label. However, we observed that when using the default setup
proposed – wherein 3 out of 10 possible categorical values per
feature are linked to assigned labels – only 30% of the valid
categorical values contribute to compiling rules used for labeling
instances, thereby presenting initial interpretability challenges.

Next, a feature set, denoted as fv, is devised to represent a range of
continuous values v ∈ R, where vmin ≤ v < vmax and (vmin, vmax) are the
lower and upper bound values for each feature fv. By default, the
configuration setup uses (vmin, vmax) = (0, 10). Akin to categorical
features, the integer portion of each continuous value is utilized: (a)
v= 0.0 denotes “no information”, (b) values 1.0, 2.0, and 3.0 are
employed in constructing rules that allocate labels to individual
instances, and (c) values v≥ 4.0 introduces random noise into the
generated dataset. Lastly, the decimal portion of each continuous
value contributes to adding noise to the resultant dataset.

In each experimental setup presented in the evaluation protocol,
the number of features varies depending on the complexity of the
simulation.

3.2. Synthetic rules

The rationale behind crafting rules that capture real-world
challenges while maintaining interpretability is two-fold. Firstly, it
empowers ML models to navigate intricate challenges, enhancing
their adaptability and learning capabilities. Secondly, it serves as a
conduit between model functionality and human comprehension, a
vital aspect in fostering trust and accountability in AI systems.

Balancing rule complexity with the need for interpretability
stands as a crucial aspect in synthetic datasets, offering robust
benchmarks for evaluating ML models. While complex rules hold
potential in encapsulating intricate data patterns, their lack of
transparency might prevent human understanding. Conversely,
overly simplistic rules may fail to capture the subtleties present in
real-world data.

Motivated by the goal of capturing latent data patterns that might
elude simpler rules, FormulAI establishes various connections among
features. This attribute is crucial for generating more intricate patterns
that cannot be detected using basic rule structures. The strategic design
and iterative construction of rules are tailored to generate tuples based
on four distinct criteria: (a) the number of features comprising each rule,
(b) the potential valid values assignable to each feature, (c) the intended
target label, and (d) the level of noise introduced into each
resulting tuple.

By default, each generation rule allows a maximum
combination of 3 features. This means a rule can be defined by a
single feature or a combination of two or three categorical and/or
continuous features. While this parameter impacts the size of the
resulting dataset, it offers versatility. Once a controlled value is
assigned to each categorical or continuous feature selected for a
generation rule, all resulting tuples governed by the same rule are
assigned the same target label. Finally, noise is added.

3.3. Labeling class imbalance

Deliberately incorporating label imbalance into the rule-based
datasets serves as a strategic mechanism for emulating the
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imbalanced class distributions often encountered in practical scenarios.
FormulAI aims to replicate challenges posed by rare outcomes while
maintaining interpretability within the generated datasets. By
mimicking situations where certain classes naturally occur less
frequently, this approach elevates the dataset’s complexity.
Importantly, the calibrated imbalance introduced does not
compromise the inherent interpretability of the data instances. This
balanced fusion of realism and transparency allows for assessing
model performance in scenarios akin to real-world situations,
ensuring authenticity without unnecessary complexity.

For each new rule considered during the dataset generation
process, a subsequent corresponding class label is selected from a
predefined list of labels. The frequency of each target label within
this reference list determines the imbalance factor for each
classification class. For instance, within the default label set, there
are six distinct labels (denoted as l ∈ L), where L = {P, Q, R, S,
T, V}, distributed in the following imbalanced sequence:

target labels ¼ ½P;Q;R; S;T;V; P;Q;R; S;T; P;Q;R; S; P;Q;R; P;Q; P;V �

According to the proposed sequence of target labels above, “P” emerges
as the predominant label, being selected by 6 out of 22 rules, while “T”
and “V” represent the minority classes, each chosen only by 2 out of 22
rules. The target labels can assume various configurations concerning
the number of classes and imbalanced distributions. Therefore, as the
rules generate samples, the initial rule allocates all resulting samples
the label “P,” and subsequently, the second rule assigns the label
“Q” to the generated samples. Note that the list of target labels
functions in a circular manner; once the last element in the list is
reached, the subsequent generation rule will consider the first
element as the next target class. This list of target labels can be
arranged in numerous ways to create (a) balanced distributions, (b)
binary classifications, or even (c) a greater number of target classes.

3.4. Random noise

Incorporating unnecessary noise can result in datasets that are
excessively complex and difficult to interpret, thereby obscuring
discernible underlying patterns. Conversely, insufficient noise
may not capture the intricate nuances inherent in real-world data.
The introduction of controlled noise inputs an element of
authenticity by emulating the uncertainties, while preserving the
quality of the generated dataset, assuring that the established rules
remain comprehensible and interpretable.

FormulAI introduces noise to both continuous and categorical
features that are still designated as c = C0 or v= 0.0 after their
respective controlled values for categorical features are assigned. The
noise ratio parameter (nr) controls the degree of random noise
incorporated into the resulting synthetic dataset. When nr= 0.0, no
noise is added, meaning that all categorical or continuous features
not used as part of a generation rule retain values as c = C0 or
v= 0.0, respectively. Conversely, when nr= 1.0, the maximum
allowable noise is applied, resulting in random values assigned to all
categorical and continuous features not utilized as part of a
generation rule.

For example, when nr= 0.1: (a) 10% of categorical features that
still retain the valueC0 will have a random value selected betweenC4

and C9 assigned; (b) 10% of continuous features that still hold the
value 0.0 will have a random value between 4 and 9 (integer)
assigned; and finally, (c) for each of continuous feature assigned a
controlled value ∈ {1.0, 2.0, 3.0} additional random noise ±r ∗ nr
is added, where r is randomly selected from 0 ≤ r< 1.

Although the resulting rule-based datasets aim for interpretability,
the proposed evaluation protocol was designed to ensure an appropriate
level of complexity and noise, making the benchmark dataset
challenging yet interpretable. Each instance is uniquely identified by
a name that represents the specific rule used to generate that
particular row. For instance, in the primary proposed dataset, a test
record is denoted as “Fc8C1Fv17V3Fv19V2LRS4," indicating: (a)
categorical feature Fc8 is set as C1, (b) continuous feature Fv17 is
set as 3.0, (c) continuous feature Fv19 is set as 2.0, (d) the label
assigned to this row is “R,” and (e) this sample is the fourth one
among a total of 25 samples generated with the same rule. Features
not explicitly mentioned in the sample ID are either set as C0

(categorical) or 0.0 (continuous) or are assigned random values such
as C4 to C9 (categorical) or 4.0 to 9.0 (continuous) with a random
ratio of 0.35. For instance, categorical feature is Fc7 = C6, while
continuous feature Fv17 has some added noise resulting in its final
value being 2.9492 (instead of 3.0). Other categorical and
continuous features also possess randomly assigned values.

3.5. Evaluation protocol

The experimental design aims to ensure that the resulting
benchmark datasets present challenges for both model performance
and the ability to explain predictions. To comprehensively evaluate
the effectiveness and versatility of datasets generated through
FormulAI, the following evaluation protocol was designed. It
measures how different parameters used during rule-based dataset
generation impact the performance of four baseline ML models: (a)
logistic regression (LR) [46], (b) support vector machines (SVMs)
[47, 48], (c) random forest (RF) [49], and (c) eXtreme gradient
boosting (XGBoost) [50]. Evaluated parameters include the dataset
size (determined by the number of features and rules) and the
noise ratio.

Eachmodel is trained to predict target labels in three distinct ways.
Firstly, the models are trained for exclusive classification, where a
single unique label chosen from non-overlapping groups or classes is
assigned to each instance. Next, a binary classification model is
trained to distinguish the majority class “P” from the others. Lastly,
another binary classification model is trained to distinguish the
minority class “V” from the others. Datasets are generated by
splitting the data into training and test sets. However, during
evaluation, 20% of instances are randomly extracted from the
training set to form a tuning set. This subset aids in fine-tuning
specific parameters that might impact the effectiveness of each
approach, such as setting thresholds for binary classification
concerning imbalanced labels or determining the maximum depth for
tree-based models (RF and XGBoost).

Models are trained using the training set. Themaximumnumber
of iterations is set to 25,000 for LR and 100,000 for SVM. In RF and
XGBoost, models are tuned to determine the best maximum depth,
selecting values between 5 and 20. All parameter optimizations are
based solely on the tuning set. Finally, the test set is utilized to
calculate the final model performance, reported as F1 score.
Additionally, AUPRC is presented to showcase how varying
levels of added noise affect model performance.

4. Experimental Results and Discussion

Our experimental results are based on evaluating different
dataset generation parameters using four baseline approaches.
Initially, we showcase how the size and complexity of datasets, in
terms of rules, impact the performance of baseline models.
Subsequently, while keeping all parameters constant except for
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the noise level, which varies from 0.0 to 0.35, we analyze its effect.
Finally, we introduce a benchmark rule-based dataset that we
consider challenging in terms of predictions and explainability.

4.1. Dataset complexity

The complexity of a generated dataset, determined by its number
of features and the inherent rules used to assign target classes to each
sample, can significantly impact the performance of a baseline model.
This effect is assessed in the initial experiment. Table 1 outlines the
characteristics of five distinct datasets created to augment complexity
concerning the number of features, instances, and rules.

Some parameters used to generate the datasets were fixed. No
noise ratio was applied (nr= 0.0), and eight resulting samples were

generated per rule, of which two samples were allocated to the test
set, maintaining a 60:20 ratio between the training and test sets. The
resulting F1 scores are presented in Table 2 and compared in Figure 1.

XGBoost not only outperforms other baselines but also perfectly
identifies all correct answers in less complex dataset formulations.
However, the performance of LR and SVM tends to decline as the
complexity of the benchmark dataset increases. In the first three
datasets, XGBoost achieved a maximum tuned F1 score of 1.0 using
a decision tree depth between 5 and 9. Conversely, for the more
complex dataset, the best F1 score was obtained using a depth of 19.

LR assumes a linear relationship between features and the target
variable. While it can perform well in certain scenarios, it may fail to
capture complex nonlinear relationships in the data, particularly when
the decision boundary is not well approximated by a linear function
[14]. Although LR models have been used as baselines in several
experiments, we found they can struggle to resolve challenging datasets,
as those proposed in this work. Although SVM remains effective as a
baseline for predicting minority classes, its time-consuming training
process might render it unfeasible for more realistic tasks (see Table 3).
In our evaluation, the decision tree-based ensemble models, RF and
XGBoost, are the top-performing candidates. Notably, while both
models exhibited strong performance, XGBoost still demonstrated a
slight superiority over RF, as revealed by our experimental results.

4.2. Noise level

The second experiment aimed to assess the impact of introducing
random noise into the rule-based generated data. Table 4 illustrates
how categorical features are affected by random noise. Controlled
categorical values C1 to C3 assigned to each categorical feature
remain unchanged. However, random noise replaces the original C0

Table 1
Five datasets generated to assess how the number of features,

instances, and rules impacts baseline model performance

F Tr Ts R Rp Rv

2 90 30 15 3 1
4 1044 348 174 47 15
8 10728 3576 1788 487 163
16 97488 32496 16248 4431 1477
32 830880 276960 138480 37767 12589

where F = number of features (equally split between categorical and
continuous) Tr= number of instances (rows) in the training set; Ts= number
of instances (rows) in the test set; R = number of different rules assigning
target labels; Rp = number of different rules assigning the majority class P;
Rv = number of different rules assigning the minority class V

Table 2
Resulting F1 scores were obtained from evaluations using XGBoost (XGB), random forest (RF), SVM, and logistic regression (LR).
These evaluations were conducted on five datasets featuring varying levels of complexity. Each dataset differed in the number of
categorical and continuous features, instances, and rules used to assign target labels (refer to Table 1 for detailed information)

Multilabel (macro F1) Predominant class (label P) Minority class (label V)

Feat LR SVM RF XGB LR SVM RF XGB LR SVM RF XGB

2 0.1476 1.0000 1.0000 1.0000 0.6000 1.0000 1.0000 1.0000 0.6667 1.0000 1.0000 1.0000
4 0.1858 0.5438 1.0000 1.0000 0.4332 0.7170 1.0000 1.0000 0.2414 1.0000 1.0000 1.0000
8 0.1781 0.4193 1.0000 1.0000 0.4337 0.6726 1.0000 1.0000 0.1796 0.8344 1.0000 1.0000
16 0.1818 0.2472 0.8537 1.0000 0.4287 0.6517 0.9528 0.9982 0.1674 0.7695 0.9633 1.0000
32 0.1818 0.2373 0.2709 0.9706 0.4286 0.6226 0.7199 0.9230 0.1669 0.7357 0.8853 0.9527

Figure 1
Resulting F1 scores from XGBoost (XGB), Random Forest (RF), SVM, and Logistic Regression (LR) models. The evaluation was

conducted across five datasets characterized by varying levels of complexity. These datasets comprise different numbers of categorical and
continuous features, samples, and rules utilized for assigning target labels (refer to Table 1 for detailed information). The evaluation covers
three classification scenarios: (a) mutually exclusive label classification (6 labels); (b) binary classification, distinguishing the predominant

class ‘P’ from other target classes; and (c) binary classification, distinguishing the minority class ‘V’ from other target classes

(a) (b) (c)
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values with random values ranging from C4 to C9. Similarly,
continuous features undergo the same effect. Each continuous
feature, replaced with a random integer value between 4.0 and 9.0,
also receives a positive or negative random increment of ±r * nr,
where r represents a random value in the range 0 ≤ r< 1, and nr is
the noise ratio. If a continuous feature remains set as 0.0 (not
chosen to receive a random value), no ±r * nr noise is added.

Several parameters were standardized for generating the datasets:
(a) four categorical and four continuous features were used; (b) the

training set consists of 21,456 samples, while the test set comprises
5,364 samples; (c) 1,788 distinct rules were employed to assign one
of six target labels to each sample; finally, (d) 25 samples were
generated per rule, of which 5 were allocated to the test set. The
resulting F1 scores are detailed in Table 5 and compared in Figure 2.

In contrast to the complexity introduced by features and rules,
the addition of noise significantly impacts the performance of all
baseline models. Although XGBoost shows strong performance in
varied dataset complexities, increasing random noise negatively
affects its classification performance. Nonetheless, even with
added noise, XGBoost remains more efficient compared to SVM
and LR as a baseline model.

4.3. Challenging benchmark dataset

In this final experiment, a benchmark dataset is proposed, and
Table 6 illustrates all parameters used in its generation.

These datasets include: (a) mutually exclusive label
classification (6 labels); (b) binary classification differentiating the
predominant class P from other target classes; and (c) binary
classification differentiating the minority class V from other target
classes. Further details can be found in Table 4.

Table 3
Time to train each model – All evaluation protocol runs used an
Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz processor, with
32.0 GB RAM – Values can be used as a reference to compare
training resource requirements between different approaches

Model Multilabel Label P Label V

LR 31 s 17 s 18 s
SVM ≈ 5 days ≈ 5 days ≈ 5 days
RF ≈ 20 h ≈ 10 h ≈ 10 h
XGB ≈ 8 h ≈ 1.5 h ≈ 1.5 h

Table 4
Frequency of categorical values C0 to C9 in the first categorical feature when the noise ratio increases from 0.0 to 0.35 – Once

controlled values C1 to C3 are assigned to each feature, they are never replaced by random values

Noise C0

Controlled values Random values
C1 C2 C3 C4 C5 C6 C7 C8 C9

0.000 13860 2532 2532 2532 0 0 0 0 0 0
0.025 13514 2532 2532 2532 54 49 67 58 67 51
0.050 13191 2532 2532 2532 102 108 115 128 85 131
0.075 12821 2532 2532 2532 176 168 186 174 175 160
0.100 12488 2532 2532 2532 232 206 239 215 222 258
0.150 11699 2532 2532 2532 360 351 352 382 355 361
0.200 11081 2532 2532 2532 455 455 460 483 458 468
0.250 10456 2532 2532 2532 570 551 562 566 592 563
0.300 9646 2532 2532 2532 719 672 713 723 684 703
0.350 9088 2532 2532 2532 809 799 783 819 792 770

Figure 2
F1 scores resulting from the evaluation of XGBoost (XGB), Random Forest (RF), SVM, and Logistic Regression (LR) in 10 datasets
with varying levels of noise are presented. These datasets include: (a) mutually exclusive label classification (6 labels); (b) binary
classification differentiating the predominant class P from other target classes; and (c) binary classification differentiating the

minority class V from other target classes. Further details can be found in Table 4

(a) (b) (c)
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The chosen parameters were carefully selected to ensure that the
resulting dataset presents significant challenges and is inherently
non-trivial to address.

The noise ratio was set to 0.35. However, due to the larger
number of features and samples per rule, the proposed dataset
exhibits notably higher levels of complexity and difficulty,
particularly in terms of class predictions. This complexity is
compared to previously evaluated experimental datasets with
different levels of noise, as illustrated in Figure 3. The blue
AUPRCs represent the incremental noise added in the initial
experimental setup (see Section 4.2.), while the red AUPRC is the
curve derived from the final proposed benchmark dataset. All
curves were extracted from the tuning set when attempting to
predict the majority class “P.”

Finally, Table 7 presents the final precision, recall, and F1
scores resulting from each of the baseline models considered in
the evaluation protocol. LR, as a simpler linear model, may
struggle to capture complex, nonlinear relationships within rule-
based datasets. While generally considered more interpretable,
this simplicity can be a limitation when dealing with intricate
data patterns. SVM can perform well when the data are
separable or linearly/non-linearly separable with an appropriate
kernel. However, it does not prove to be suitable for the
proposed task and is time-consuming in terms of the training
process, as demonstrated in Table 3. On the other hand,
XGBoost, an ensemble method combining predictions from
multiple decision trees, is known for effectively handling
complex, nonlinear relationships within data, demonstrating
superior performance as a baseline model when dealing with
rule-based generated data.

The presented results indicate that the proposed benchmark
dataset is an invaluable resource for challenging ML
applications, especially in the realm of interpretability. These
findings affirm the dataset’s pivotal role in fostering
advancements in the field and addressing the longstanding
challenges associated with model understanding and prediction
explainability in AI systems.
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Parameters used to generate the final proposed benchmark
dataset –The resulting dataset is the one evaluated in Figure 3 by

the full red line

Parameter Value/Description

Features 24
Categorical 12
Continuous 12
Labels L = {P, Q, R, S, T, V}
Rules (total) 57,204
P 15,601
Q 13,001
R 10,401
S 7,801
T 5,200
V 5,200
Samples 25 (per rule)
Noise ratio 0.35
Training set 80% (1,144,080 rows)
Test set 20% (286,020 rows)
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5. Conclusion

This paper introduces FormulAI, a novel framework for
generating rule-based benchmark datasets designed to challenge ML
applications, particularly in the domain of interpretability. The
resulting generated datasets consist of complex rules, providing
transparent explanations for their predictions. Through the controlled
introduction of noise, label imbalance, and intricate rules within the
dataset, it mirrors real-world complexities without sacrificing
interpretability. The evaluation protocol demonstrates that the
resulting datasets are not easy to resolve, making them a valuable
asset for the machine learning community.

Looking ahead, there are several avenues for future work stemming
from this research. Firstly, we plan to expand the dataset generation
process to encompass a broader range of domain-specific real-world
application challenges, such as those found in healthcare and finance,
including multi-relational data generation. Additionally, we will
continue to refine the benchmark dataset by introducing more complex
rules based on domain-specific knowledge, such as feature
correlations, aiming not only to enhance model interpretability but also
synthetic data generation. Finally, we plan to improve the proposed
approach by generating synthetic datasets to mimic those problems in
which recurrent and convolutional neural networks are applicable.
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Figure 3
Resulting XGBoost AUPRC (average precision) in the tuning set comparing performance between the 10 datasets (blue) used to
evaluate different noise ratios and the final proposed benchmark dataset (red), all given when predicting the majority class P, In
which: (a) curves in blue result from incremental noise ratio from 0.00 to 0.35 (top to bottom, respectively) as in the experimental setup
described in Table 5; (b) curve in red results from the main proposed dataset, which also has a noise ratio of 0.35, however designed

with a larger number of features, as described in Table 6

Table 7
Resulting F1 scores, precision, and recall from XGBoost (XGB), random forest (RF), SVM, and logistic regression (LR), evaluated

with the main proposed dataset

Multilabel Predominant class (label P) Minority class (label V)

ML Macro F1 F1 Precision Recall F1 Precision Recall

LR 0.1572 0.4286 0.2727 0.9997 0.1667 0.0909 0.9999
SVM 0.1831 0.4285 0.2728 0.9987 0.1665 0.0908 0.9902
RF 0.1799 0.4295 0.2763 0.9640 0.1797 0.1079 0.5358
XGB 0.4195 0.4427 0.3049 0.8071 0.2892 0.2450 0.3529
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