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Abstract: In an era marked by the transformative impact of machine learning algorithms across various disciplines, challenges in
achieving model interpretability persist. Existing evaluation datasets often lack transparency, thereby obscuring the decision-
making process of machine learning models, particularly in complex deep learning architectures. This opacity raises concerns
across sectors like healthcare, emphasizing the pivotal role of explainability in fostering trust and adhering to non-supervisory
norms. While progress has been made through the development of interpretable models, the absence of formalized, interpretable
datasets hampers the validation and comparison of techniques. Rule-based datasets, distinct from general synthetic datasets,
provide an avenue to simulate real-world challenges while maintaining interpretability. This paper introduces FormulAI, a
framework for generating comprehensive rule-grounded datasets encompassing categorical and continuous features, calibrated
noise, and imbalanced class distribution. Emphasizing scalability and reproducibility, these datasets serve as a robust standard,
fostering exploration in interpretability and robustness.
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1. Introduction

Machine learning (ML) algorithms have achieved impressive results in various fields, revolutionizing industries and solving
complex problems. Despite these achievements, researchers and practitioners still face ongoing challenges, including model
interpretability and dealing with imbalanced class distributions. Therefore, benchmark datasets used in ML development should
be designed to address these challenges by incorporating well-annotated instances and realistic class imbalances.

Explainability is crucial for establishing trust in artificial intelligence (AI) systems and represents a regulatory requirement
in critical areas such as healthcare (Caruana et al., 2015). Nevertheless, existing evaluation datasets often lack interpretability,
posing challenges in understanding the decision-making process of resulting machine learning models. These models, particularly
deep learning architectures, frequently function as black boxes, impeding insights into their predictive mechanisms. Efforts to
create more interpretable models, including those leveraging attention mechanisms, have demonstrated promise. However, the
absence of standardized, interpretable datasets limits our capacity to validate and compare various interpretability techniques
(Ribeiro et al., 2016; Lipton, 2018).
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The presence of interpretable ground truth labels plays a crucial role in evaluating the interpretability of ML models (Doshi-
Velez and Kim, 2017). Such labels serve as benchmarks for validating the explanations derived from these models, allowing
comparison against expected model behavior. Interpretable ground truth labels can be generated based on domain-expert
knowledge or synthetic rules.

Distinct from general synthetic datasets designed to simulate real-world data characteristics with controlled aspects like data
distribution, noise levels, and feature interactions (Abufadda and Mansour, 2021; Nikolenko, 2021), rule-based datasets
constitute a specific type of synthetic data. These datasets generate data instances and class labels based on explicit rules, criteria,
or formulas. Rule-based datasets offer a strategic solution for replicating imbalanced scenarios that mirror real-world challenges
while upholding interpretability. This capability facilitates the development and enhancement of machine learning (ML)
algorithms and techniques. The establishment and use of rule-based benchmarks play a pivotal role in comprehending and
refining the decision-making processes of ML models, ultimately fostering more reliable AI systems. Rule-based datasets prove
invaluable in challenging ML applications, serving as essential benchmarks to assess ML model performance under controlled
conditions, including model interpretability and explainability (Ribeiro et al., 2016), robustness (Hendrycks and Dietterich, 2019),
adversarial testing (Goodfellow et al., 2015), incremental complexity (Reed et al., 2016), and domain-specific challenges (Yang
and Leskovec, 2013).

Rule-based datasets can cover various scenarios, contributing to bolstering the robustness and generalization of AI models,
thereby enhancing their performance on unseen data and expanding their capacity to handle a broader spectrum of inputs (Zhang
et al., 2021a). Additionally, diverse and representative samples can aid research endeavors focused on fairness and bias reduction
(Barocas et al., 2019). Nevertheless, creating such benchmarks presents several challenges that can impact the dataset's quality,
applicability, and representativeness. These challenges encompass factors such as data complexity (Torralba and Efros, 2011),
scalability (Zhang et al., 2021a), rule significance (Hastie et al., 2001; Rudin, 2019), and the balancing noise and uncertainty
(Veit et al., 2017).

This paper introduces FormulAI as an extensive framework for generating rule-based datasets, primarily aimed at addressing
the challenge of explainability in ML applications. The resulting datasets are formulated based on explicit rules that govern the
relationships between input features and output labels, including a blend of categorical and continuous features to mirror the
diverse data encountered in real-world applications. Deliberately unbalanced labels simulate scenarios where certain outcomes
occur infrequently, and yet prioritize model interpretability. To infuse realism, controlled noise is introduced to emulate the
complexities found in the real world. Emphasizing scalability and reproducibility, the FormulAI datasets aim to serve as
benchmarks for assessing ML model performance under challenging conditions. This initiative intends to foster research and
development in key areas, including ML interpretability, managing imbalanced classes, and enhancing robustness. Furthermore,
these datasets will enable the evaluation and comparison of various algorithms, assess the efficacy of imbalanced learning
techniques, and facilitate the development of innovative approaches to enhance model prediction explanations.

2. Literature Review

Datasets constitute the fundamental building blocks upon which ML models are trained. As a primary source of information
and context, datasets allow models to learn, generalize, and infer from the underlying patterns used to make informed predictions.
The training process is similar to creating a cognitive map and its effectiveness is intrinsically linked to the quality of training
data.

Recent advancements in deep reinforcement learning highlight the significant impact of training ML models on extensive
datasets. This emphasizes the pivotal role of datasets in facilitating models to comprehend intricate patterns and complexities,
empowering them to accomplish tasks previously deemed difficult or outside the realm of ML algorithms (LeCun et al., 2015).
Nevertheless, contemporary accurate decision-support systems often operate as black boxes, concealing their internal logic from
users. This absence of explanation poses both practical and ethical concerns (Guidotti et al., 2018).

While rich datasets enhance models' ability to generalize to unseen data, improving robustness and accuracy, dataset
diversity embraces a broad spectrum of scenarios, variations, and edge cases, enhancing model generalization (Zhou et al., 2011).
However, specific considerations in dataset design crucially impact model performance: (a) biases within datasets can be learned
and perpetuated, leading to biased predictions and unfair outcomes (Mitchell et al., 2019); (b) outliers, anomalies, and noisy data
in a dataset can adversely affect model training and performance (Chandola et al., 2009); finally, (c) larger, more complex
datasets significantly contribute to model performance by capturing intricate patterns often missed in smaller datasets, enhancing
model scalability (Deng, 2014).
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2.1 Dataset resources

The UCI (University of California, Irvine) Machine Learning Repository is a widely recognized benchmark resource in the
ML community (UCI Machine Learning Repository, n.d.). It offers freely available standardized datasets for comparing and
evaluating the effectiveness of ML methods across various application domains, including healthcare, finance, and social
sciences. The most frequently used UCI datasets are Iris (Unwin and Kleinman, 2021), Wine (Cortez et al., 1998), Breast Cancer
Wisconsin (Mangasarian et al., 1995), Boston Housing (Harrison and Rubinfeld, 1978), among many others. However, some
datasets in the repository might be older or possess simpler characteristics compared to real-world data.

Kaggle is another well-known platform that promotes a dynamic environment for data science competitions, favoring the
development of cutting-edge models to address real-world challenges. Kaggle also hosts large datasets, often taken from industry
contexts, which provide useful and up-to-date insights for ML applications. These datasets serve as valuable benchmarks for
testing novel algorithms and exploring advanced techniques, demonstrating their potential to solve complex problems facing
modern industry.

In addition to UCI and Kaggle, other benchmark dataset resources that are used for evaluating ML algorithms include
Physionet (Moody et al., 2001), ImageNet (Deng et al., 2009), OpenML (Vanschoren et al., 2014), and SNAP (Leskovec and
Sosič, 2016).

2.2 Interpretability

Interpretable ML often involves understanding how a model's predictions are influenced by input features. To evaluate
interpretability in ML applications, it is recommended to use datasets carefully designed to assess interpretability challenges and
curated to reflect the problem's characteristics. This might involve selecting datasets with features challenging interpretability
techniques, such as intricate feature interactions (Kha et al., 2023), non-linearity (de Haro Pizarroso and Kampen, 2023), and
conditional dependencies (Cortiñas-Lorenzo and Lacey, 2023). While UCI and Kaggle datasets are valuable for various ML
research tasks, they might not always be optimal for evaluating ML applications in critical domains requiring interpretable
models, such as healthcare (Caruana et al., 2015), autonomous systems (Flammini et al., 2022), and finance (Weber et al., 2023).

For interpretability, comparing model-agnostic explanations to a ‘ ground truth' understanding of the data is crucial.
Unfortunately, most available datasets lack established ground truth explanations, posing challenges in assessing interpretability
methods effectively. Moreover, evaluating interpretability solely on simple datasets might not adequately mirror the diversity and
complexity encountered in real applications, such as high dimensionality, missing values, imbalanced classes, and noisy data.
Models performing well on simpler datasets might not translate to effective explanations in complex scenarios, where
relationships are less linear and classes overlap more, reducing the model's interpretability (Kulesza et al., 2015).

For example, consider a dataset that primarily represents a subset of a complex domain. In such cases, interpretability
methods trained on this limited dataset might struggle to handle deviations beyond the domain's boundaries. This limitation can
impact the method's ability to offer accurate explanations, especially when the data distribution significantly differs from what
was available during training (Caruana et al., 2015). Additionally, ensuring that the rules used to generate the data capture the
underlying distribution of the target domain is crucial. Biased synthetic data can impede the generalization of ML models in real-
world scenarios, underscoring the importance of well-designed and realistic synthetic datasets for robust testing and evaluation
(Torralba and Efros, 2011).

The field of interpretability in machine learning has garnered considerable attention, leading researchers to explore a myriad
of approaches. Past studies have investigated techniques spanning from rule-based interpretation to model-specific feature
mapping methods. The literature showcases a diverse array of efforts dedicated to enhancing comprehension of model decisions
and bridging the gap between AI system outputs and human understanding. Some of these approaches are outlined below.

Letham et al. (2015) generated interpretable predictive models using Bayesian Rule Lists. These models are constructed
through a series of if-then statements designed to simplify complex multivariate feature spaces into understandable decision rules.
Experimental results demonstrate that Bayesian Rule Lists achieve predictive accuracy comparable to leading machine learning
algorithms. They showcased high accuracy and interpretability in medical scoring systems, suggesting potential replacement of
the CHADS score, commonly used in clinical practice to estimate stroke risk in atrial fibrillation patients.

Ribeiro et al. (2018) introduced a novel model-agnostic system utilizing anchors, which act as localized and sufficient
conditions to efficiently compute explanations for any black-box model. The versatility of these anchors was demonstrated across
various models in different domains and tasks. A user study revealed that anchors notably enhance users' ability to predict a
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model's behavior on unseen instances with greater precision and reduced effort compared to existing linear explanations or
scenarios lacking explanations.

Chen et al. (2018) introduced a methodology for instance-wise feature selection aimed at model interpretation. This method
involves training a feature selector to identify the most informative subset of features for each specific example. The optimization
objective for this selector is to maximize the mutual information between the selected features and the response variable. The
authors claim the method's utility lies in explaining the behavior of models requiring interpretation of the conditional distribution
of the response variable given the input. Additionally, the study introduces an efficient variational approximation for computing
mutual information and demonstrates the methodology's effectiveness across diverse datasets, both synthetic and real, using
quantitative metrics and human evaluations.

Hooker et al. (2019) introduced an empirical measure for assessing the approximate accuracy of feature importance
estimates within deep neural networks. Their experiments, conducted across multiple large-scale image classification datasets,
revealed that several widely adopted interpretability methods produce feature importance estimates that do not outperform
randomly assigned feature importance values.

Various techniques, including gradient methods and surrogate models, have been proposed to analyze the behavior of
complex models. However, the development of datasets tailored for evaluating interpretability is not as common as creating
interpretable machine learning models. This scarcity is due to several factors, such as the complexity of data collection (Rudin,
2014), subjectivity in interpretability (Caruana et al., 2015), and a lack of standardization (Chen et al., 2018).

2.3 Benchmark design

Synthetic rule-based datasets enable the design of interpretable models with clearly defined rules that are easier to explain
(Ribeiro et al., 2016). The development of rule-based datasets represents a crucial step towards evaluating and improving the
decision-making mechanisms of ML models, leading to the further development of reliable and robust AI systems. These datasets
are critical for rigorous testing of ML applications and can serve as an indispensable benchmark for evaluating model
performance in tightly controlled and well-defined scenarios. However, designing rule-based datasets presents several challenges,
which can impact the dataset's quality, applicability, and representativeness:

(1)Designing large and complex synthetic datasets requires striking a balance between computational effort and
meaningfulness. As dataset size increases, the computational demand for training models also rises. Handling high-dimensional
feature spaces or intricate structures can be particularly computationally taxing when generating sizable synthetic datasets.
Scaling the dataset generation process to accommodate big data requirements presents significant computational challenges. To
ensure feasibility and practicality, it is crucial to manage the size and complexity of datasets effectively. Employing efficient
generative techniques becomes essential, maintaining a representation of real-world complexity within the dataset for robust
evaluation (Zhang et al., 2021a).

(2)The choice and definition of rules significantly impact a dataset's utility. Selecting meaningful and relevant rules is
crucial to ensure that the dataset accurately mirrors the target application's characteristics. However, erroneous rule choices can
introduce bias or unrealistic patterns, adversely affecting the dataset's usefulness in training and testing ML models. Balancing
rule complexity with interpretability is a delicate trade-off. Complex rules might hinder model interpretability and obscure
feature-label relationships, while overly simple rules may oversimplify the problem domain, resulting in inadequate datasets.
Achieving the right balance in rule complexity is crucial to creating synthetic datasets that are both realistic and interpretable
(Rudin, 2019).

(3)Accurately capturing complex interactions within real-world data poses a challenge in designing synthetic datasets.
Precisely modeling intricate data relationships, especially those based on overlapping or nesting rules, is non-trivial. Ensuring
rule consistency and reproducibility is crucial for creating reliable benchmark datasets where different data generation runs
produce consistent results (Goodfellow et al., 2016). Additionally, there's a risk of overfitting to the specific rules used in dataset
creation. When a dataset closely mirrors its generating rules, ML models may perform exceptionally well on synthetic data but
struggle with real-world data due to differing distributions (Hastie et al., 2001).

(4)Noise and uncertainty play vital roles in replicating the inherent randomness and variability present in real datasets.
Introducing noise and uncertainty into datasets is crucial for capturing the inherent stochastic nature of real-world data.
Integrating these elements allows synthetic datasets to better emulate the diverse and unpredictable characteristics of real data,
although achieving the right balance is challenging. Excessive noise might obscure underlying patterns, reducing the dataset's
significance, while insufficient noise may fail to accurately represent real-world scenarios (Veit et al., 2017). As more rules and
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noise are incorporated, they systematically increase complexity, offering greater control and incremental evaluation of their
impact on model performance (Reed et al., 2016).

(5)Robustness and Adversarial Testing. Synthetic rule-based datasets can be crafted to incorporate specific edge cases and
corner scenarios, challenging models to excel under adverse conditions and constraints where traditional algorithms might falter
(Hendrycks and Dietterich, 2019). Adversarial samples, more difficult to detect, underscore the importance of assessing
robustness to gauge a model's consistency and generalization ability. Analyzing a model's response to these demanding scenarios
helps identify potential pitfalls and assess how effectively a model generalizes beyond simple patterns (Carlini and Wagner,
2017).

A recent survey on neural network interpretability (Zhang et al., 2021b) provides a comprehensive overview of the intricate
concept of interpretability, emphasizing its pivotal role in fostering trust. Within this research domain, several related studies
offer insights relevant to the creation of rule-based datasets. These encompass discussions regarding: (a) the efficacy of rule-
based datasets in addressing challenges and augmenting the importance of model interpretability (Lipton, 2018); (b) strategies to
facilitate explainable classifier predictions (Ribeiro et al., 2016); (c) the influence of adversarial samples (Goodfellow et al., 2015)
and handling imbalanced class distributions (Chawla et al., 2002) on model generalization; and (d) assessing neural network
robustness against diverse corruptions and perturbations (Hendrycks and Dietterich, 2019).

3. Methodology

Rule-based datasets serve as standardized benchmarks, facilitating the comparative evaluation of models across varying
complexity levels and noise considerations. FormulAI stands out as a comprehensive framework designed to create rule-based
datasets to address diverse challenges encountered in machine learning applications. This method presents a systematic approach
to generating synthetic data instances, employing explicit rules governing the relationships between input features and output
labels. Its primary aim is to challenge model interpretability and enhance prediction explainability within ML applications.

FormulAI can function as a foundational framework for establishing tailored benchmarks that replicate real-world scenarios.
This approach encourages systematic investigations into model behavior, interpretability, and overall performance. The creation
of the proposed rule-based dataset involves a systematic process that includes selecting features, formulating explicit rules, and
implementing them algorithmically. These datasets not only challenge machine learning models but also enhance their capability
to navigate complex decision-making environments.

The crux of this methodology revolves around crafting transparent rules that govern class assignments, considering both
categorical and continuous features. These explicit rules bridge the gap between opaque "black box" models and human
comprehension by providing insight into how features influence predictions. Additionally, intentionally introducing imbalance in
the dataset mirrors real-world scenarios, offering a strategic approach to addressing label imbalance challenges while preserving
model interpretability.

The resulting datasets can serve as controlled benchmarks, validating the performance and robustness of machine learning
models under diverse conditions. Furthermore, they foster enhancements in model interpretability by design.

3.1 Feature selection

The proposed method starts with the selection of categorical and continuous features. Categorical features cover different
classes or names and capture the variation inherent in real data, whereas continuous features encapsulate quantitative properties
that facilitate decision-making.

Each categorical feature represents a distinct aspect of the underlying data distribution. For instance, in a financial
transaction record, the classification function for transaction categories may include labels such as "retail", "entertainment",
"groceries", "healthcare", and "travel". Likewise, continuous features span a range of quantitative measures. For instance, in a
climate modeling scenario, the temperature — a continuous function — might span from -10 degrees Celsius to 40 degrees
Celsius. In a financial risk assessment dataset, continuous values for income could range from $20,000 to $200,000 per year,
showcasing variations in income levels among individuals.

In FormulAI, categorical and continuous value ranges are selected to emulate the diversity and intricacy found in real data
distributions. This enables the creation of intricate and meaningful rules that define the association between features and labels.
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Each categorical feature, denoted as fc, delimits a range of possible categorical values ci ∈ C, where C
={C0,C1,...,Cm−1}, 0 ≤ i < m. Here, m denotes the maximum number of distinct values that can be attributed to fc.

The default configuration employs m = 10 for all categorical features: (a) C0 represent "no information", (b) values C1, C2,
and C3 form the rules for assigning labels to each instance, and (c) values from C4 to C9 introduce random noise into the
generated dataset. Hence, only C1, C2, and C3 are utilized in creating the labeling rules for instances, and none of the other
values (C0 and C4...C9) should be considered as criteria for interpretability.

The parameter m is adjustable to simulate various complexity requirements. In practical terms, increasing the value of m will
result in more challenging interpretability scenarios, as it is correlated to the complexity of finding the explanations leading to
each target label. However, we observed that when using the default setup proposed — wherein 3 out of 10 possible categorical
values per feature are linked to assigned labels – only 30% of the valid categorical values contribute to compiling rules used for
labeling instances, thereby presenting initial interpretability challenges.

Next, a feature set, denoted as fv, is devised to represent a range of continuous values v ∈ R, where vmin ≤ v
< vmax and (vmin,vmax) are the lower and upper bound values for each feature fv. By default, the configuration
setup uses (vmin, vmax) = (0, 10). Akin to categorical features, the integer portion of each continuous value is utilized: (a) v
= 0.0 denotes "no information", (b) values 1.0, 2.0, e 3.0 are employed in constructing rules that allocate labels to individual
instances, and (c) values v ≥ 4.0 introduces random noise into the generated dataset. Lastly, the decimal portion of each
continuous value contributes to adding noise to the resultant dataset.

In each experimental setup presented in the evaluation protocol, the number of features varies depending on the complexity
of the simulation.

3.2 Synthetic rules

The rationale behind crafting rules that capture real-world challenges while maintaining interpretability is two-fold. Firstly,
it empowers machine learning models to navigate intricate challenges, enhancing their adaptability and learning capabilities.
Secondly, it serves as a conduit between model functionality and human comprehension, a vital aspect in fostering trust and
accountability in AI systems.

Balancing rule complexity with the need for interpretability stands as a crucial aspect in synthetic datasets, offering robust
benchmarks for evaluating machine learning models. While complex rules hold potential in encapsulating intricate data patterns,
their lack of transparency might prevent human understanding. Conversely, overly simplistic rules may fail to capture the
subtleties present in real-world data.

Motivated by the goal of capturing latent data patterns that might elude simpler rules, FormulAI establishes various
connections among features. This attribute is crucial for generating more intricate patterns that cannot be detected using basic
rule structures. The strategic design and iterative construction of rules are tailored to generate tuples based on four distinct criteria:
(a) the number of features comprising each rule, (b) the potential valid values assignable to each feature, (c) the intended target
label, and (d) the level of noise introduced into each resulting tuple.

By default, each generation rule allows a maximum combination of 3 features. This means a rule can be defined by a single
feature or a combination of two or three categorical and/or continuous features. While this parameter impacts the size of the
resulting dataset, it offers versatility. Once a controlled value is assigned to each categorical or continuous feature selected for a
generation rule, all resulting tuples governed by the same rule are assigned the same target label. Finally, noise is added.

3.3 Labeling class imbalance

Deliberately incorporating label imbalance into the rule-based datasets serves as a strategic mechanism for emulating the
imbalanced class distributions often encountered in practical scenarios. FormulAI aims to replicate challenges posed by rare
outcomes while maintaining interpretability within the generated datasets. By mimicking situations where certain classes
naturally occur less frequently, this approach elevates the dataset's complexity. Importantly, the calibrated imbalance introduced
does not compromise the inherent interpretability of the data instances. This balanced fusion of realism and transparency allows
for assessing model performance in scenarios akin to real-world situations, ensuring authenticity without unnecessary complexity.

For each new rule considered during the dataset generation process, a subsequent corresponding class label is selected from
a predefined list of labels. The frequency of each target label within this reference list determines the imbalance factor for each
classification class. For instance, within the default label set, there are six distinct labels (denoted as l ∈ L), where L = {P,
Q,R,S ,T,V}, distributed in the following imbalanced sequence:
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target labels = [P,Q,R,S ,T,V,

P,Q,R,S ,T,

P,Q,R,S ,

P,Q,R, P,Q,

P,V]

According to the proposed sequence of target labels above, ‘P' emerges as the predominant label, being selected by 6 out
of 22 rules, while ‘T' and ‘V' represent the minority classes, each chosen only by 2 out of 22 rules. The target labels can
assume various configurations concerning the number of classes and imbalanced distributions. Therefore, as the rules
generate samples, the initial rule allocates all resulting samples the label ‘P', and subsequently, the second rule assigns the label
‘Q' to the generated samples. Note that the list of target labels functions in a circular manner; once the last element in the list
is reached, the subsequent generation rule will consider the first element as the next target class. This list of target labels can be
arranged in numerous ways to create (a) balanced distributions, (b) binary classifications, or even (c) a greater number of target
classes.

3.4 Random noise

Incorporating unnecessary noise can result in datasets that are excessively complex and difficult to interpret, thereby
obscuring discernible underlying patterns. Conversely, insufficient noise may not capture the intricate nuances inherent in real-
world data. The introduction of controlled noise inputs an element of authenticity by emulating the uncertainties, while
preserving the quality of the generated dataset, assuring that the established rules remain comprehensible and interpretable.

FormulAI introduces noise to both continuous and categorical features that are still designated as c = C0 or v = 0.0
after their respective controlled values for categorical features are assigned. The noise ratio parameter (nr) controls the
degree of random noise incorporated into the resulting synthetic dataset. When nr = 0.0, no noise is added, meaning that all
categorical or continuous features not used as part of a generation rule retain values as c = C0 or v = 0.0, respectively.
Conversely, when nr = 1.0, the maximum allowable noise is applied, resulting in random values assigned to all categorical
and continuous features not utilized as part of a generation rule.

For example, when nr = 0.1: (a) 10% of categorical features that still retain the value C0 will have a random value
selected between C4 and C9 assigned; (b) 10% of continuous features that still hold the value 0.0 will have a random value
between 4 and 9 (integer) assigned; and finally, (c) for each of continuous feature assigned a controlled value ∈ {1.0,2.0,3.0}
additional random noise ±r ∗ nr is added, where r is randomly selected from 0 ≤ r <1.

Although the resulting rule-based datasets aim for interpretability, the proposed evaluation protocol was designed
to ensure an appropriate level of complexity and noise, making the benchmark dataset challenging yet interpretable. Each
instance is uniquely identified by a name that represents the specific rule used to generate that particular row. For instance, in the
primary proposed dataset, a test record is denoted as "Fc8C1Fv17V3Fv19V2LRS4", indicating: (a) categorical feature Fc8 is
set as C1, (b) continuous feature Fv17 is set as 3.0, (c) continuous feature Fv19 is set as 2.0, (d) the label assigned to this row
is ‘R', and (e) this sample is the fourth one among a total of 25 samples generated with the same rule. Features not
explicitly mentioned in the sample ID are either set as C0 (categorical) or 0.0 (continuous) or are assigned random values
such as C4 to C9 (categorical) or 4.0 to 9.0 (continuous) with a random ratio of 0.35. For instance, categorical feature Fc7 = C6,
while continuous feature Fv17 has some added noise resulting in its final value being 2.9492 (instead of 3.0). Other categorical
and continuous features also possess randomly assigned values.

3.5 Evaluation protocol

The experimental design aims to ensure that the resulting benchmark datasets present challenges for both model
performance and the ability to explain predictions. To comprehensively evaluate the effectiveness and versatility of datasets
generated through FormulAI, the following evaluation protocol was designed. It measures how different parameters used during
rule-based dataset generation impact the performance of four baseline machine learning models: (a) Logistic Regression (LR)
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(Hosmer et al., 2013), (b) Support Vector Machines (SVM) (Cortes and Vapnik, 1995; Steinwart and Christmann, 2008), (c)
Random Forest (RF) (Breiman, 2001), and (c) eXtreme Gradient Boosting (XGBoost) (Chen and Guestrin, 2016). Evaluated
parameters include the dataset size (determined by the number of features and rules) and the noise ratio.

Each model is trained to predict target labels in three distinct ways. Firstly, the models are trained for exclusive
classification, where a single unique label chosen from non-overlapping groups or classes is assigned to each instance. Next, a
binary classification model is trained to distinguish the majority class ‘P' from the others. Lastly, another binary classification
model is trained to distinguish the minority class ‘V' from the others. Datasets are generated by splitting the data into training and
test sets. However, during evaluation, 20% of instances are randomly extracted from the training set to form a tuning set. This
subset aids in fine-tuning specific parameters that might impact the effectiveness of each approach, such as setting thresholds for
binary classification concerning imbalanced labels or determining the maximum depth for tree-based models (Random Forest and
XGBoost).

Models are trained using the training set. The maximum number of iterations is set to 25,000 for Logistic Regression and
100,000 for SVM. In Random Forest and XGBoost, models are tuned to determine the best maximum depth, selecting values
between 5 and 20. All parameter optimizations are based solely on the tuning set. Finally, the test set is utilized to calculate the
final model performance, reported as F1 score. Additionally, AUPRC is presented to showcase how varying levels of added noise
affect model performance.

4. Experimental Results and Discussion

Our experimental results are based on evaluating different dataset generation parameters using four baseline approaches.
Initially, we showcase how the size and complexity of datasets, in terms of rules, impact the performance of baseline models.
Subsequently, while keeping all parameters constant except for the noise level, which varies from 0.0 to 0.35, we analyze its
effect. Finally, we introduce a benchmark rule-based dataset that we consider challenging in terms of predictions and
explainability.

4.1 Dataset complexity

The complexity of a generated dataset, determined by its number of features and the inherent rules used to assign target
classes to each sample, can significantly impact the performance of a baseline model. This effect is assessed in the initial
experiment. Table 1 outlines the characteristics of five distinct datasets created to augment complexity concerning the number of
features, instances, and rules.

Table 1
Five datasets generated to assess how the number of features, instances, and rules impacts baseline model

performance

F Tr Ts R Rp Rv

2 90 30 15 3 1

4 1044 348 174 47 15

8 10728 3576 1788 487 163

16 97488 32496 16248 4431 1477

32 830880 276960 138480 37767 12589

Which: F = number of features (equally split between categorical and continuous) Tr = number of instances (rows) in the
training set; Ts = number of instances (rows) in the test set, R = number of different rules assigning target labels; Rp = number of
different rules assigning the majority class P; Rv = number of different rules assigning the minority class V

Some parameters used to generate the datasets were fixed. No noise ratio was applied (nr = 0.0), and eight resulting samples
were generated per rule, of which two samples were allocated to the test set, maintaining a 60:20 ratio between the training and
test sets. The resulting F1 scores are presented in Table 2 and compared in Figure 1.
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XGBoost not only outperforms other baselines but also perfectly identifies all correct answers in less complex dataset
formulations. However, the performance of LR and SVM tends to decline as the complexity of the benchmark dataset increases.
In the first three datasets, XGBoost achieved a maximum tuned F1 score of 1.0 using a decision tree depth between 5 and 9.
Conversely, for the more complex dataset, the best F1 score was obtained using a depth of 19.

Logistic regression assumes a linear relationship between features and the target variable. While it can perform well in
certain scenarios, it may fail to capture complex nonlinear relationships in the data, particularly when the decision boundary is
not well approximated by a linear function (Hastie et al., 2001). Although logistic regression models have been used as baselines
in several experiments, we found they can struggle to resolve challenging datasets, as those proposed in this work. Although
SVM remains effective as a baseline for predicting minority classes, its time-consuming training process might render it
unfeasible for more realistic tasks (see Table 7). In our evaluation, the decision tree-based ensemble models, Random Forest and
XGBoost, are the top-performing candidates. Notably, while both models exhibited strong performance, XGBoost still
demonstrated a slight superiority over Random Forest, as revealed by our experimental results.

Figure 1
Resulting F1 scores from XGBoost (XGB), Random Forest (RF), SVM, and Logistic Regression (LR)models. The

evaluation was conducted across five datasets characterized by varying levels of complexity

Table 2
Resulting F1 scores were obtained from evaluations using XGBoost (XGB), Random Forest (RF), SVM, and Logistic
Regression (LR). These evaluations were conducted on five datasets featuring varying levels of complexity. Each
dataset differed in the number of categorical and continuous features, instances, and rules used to assign target

labels (refer to Table 1 for detailed information)
Multilabel (Macro F1) Predominant Class (Label P) Minority Class (Label V)

Feat LR SVM RF XGB LR SVM RF XGB LR SVM RF XGB

2 0.1476 1.0000 1.0000 1.0000 0.6000 1.0000 1.0000 1.0000 0.6667 1.0000 1.0000 1.0000

4 0.1858 0.5438 1.0000 1.0000 0.4332 0.7170 1.0000 1.0000 0.2414 1.0000 1.0000 1.0000

8 0.1781 0.4193 1.0000 1.0000 0.4337 0.6726 1.0000 1.0000 0.1796 0.8344 1.0000 1.0000

16 0.1818 0.2472 0.8537 1.0000 0.4287 0.6517 0.9528 0.9982 0.1674 0.7695 0.9633 1.0000

32 0.1818 0.2373 0.2709 0.9706 0.4286 0.6226 0.7199 0.9230 0.1669 0.7357 0.8853 0.9527

4.2 Noise level

The second experiment aimed to assess the impact of introducing random noise into the rule-based generated data. Table 3
illustrates how categorical features are affected by random noise. Controlled categorical values C1 to C3 assigned to each
categorical feature, remain unchanged. However, random noise replaces the original C0 values with random values ranging
from C4 to C9. Similarly, continuous features undergo the same effect. Each continuous feature, replaced with a random
integer value between 4.0 and 9.0, also receives a positive or negative random increment of ±r ∗ nr, where r represents a
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random value in the range 0 ≤ r < 1, and nr is the noise ratio. If a continuous feature remains set as 0.0 (not chosen to
receive a random value), no ±r ∗ nr noise is added.

Several parameters were standardized for generating the datasets: (a) four categorical and four continuous features were
used; (b) the training set consists of 21,456 samples, while the test set comprises 5,364 samples; (c) 1,788 distinct rules were
employed to assign one of six target labels to each sample; finally, (d) 25 samples were generated per rule, of which 5 were
allocated to the test set. The resulting F1 scores are detailed in Table 4 and compared in Figure 2.

Table 3
Frequency of categorical values C0 to C9 in the first categorical feature when the noise ratio increases from 0.0 to
0.35 – once controlled values C1 to C3 are assigned to each feature, they are never replaced by random values.

Noise C0
Controlled Values RandomValues

C1 C2 C3 C4 C5 C6 C7 C8 C9

0.000

0.025

0.050

0.075

0.100

0.150

0.200

0.250

0.300

0.350

13860

13514

13191

12821

12488

11699

11081

10456

9646

9088

2532

2532

2532

2532

2532

2532

2532

2532

2532

2532

2532

2532

2532

2532

2532

2532

2532

2532

2532

2532

2532

2532

2532

2532

2532

2532

2532

2532

2532

2532

0

54

102

176

232

360

455

570

719

809

0

49

108

168

206

351

455

551

672

799

0

67

115

186

239

352

460

562

713

783

0

58

128

174

215

382

483

566

723

819

0

67

85

175

222

355

458

592

684

792

0

51

131

160

258

361

468

563

703

770

In contrast to the complexity introduced by features and rules, the addition of noise significantly impacts the performance of
all baseline models. Although XGBoost shows strong performance in varied dataset complexities, increasing random noise
negatively affects its classification performance. Nonetheless, even with added noise, XGBoost remains more efficient compared
to SVM and LR as a baseline model.

4.3 Challenging benchmark dataset

In this final experiment, a benchmark dataset is proposed, and Table 5 illustrates all parameters used in its generation.
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Figure 2
F1 scores resulting from the evaluation of XGBoost (XGB), Random Forest (RF), SVM, and Logistic Regression

(LR) in 10 datasets with varying levels of noise are presented.

These datasets include: (a) mutually exclusive label classification (6 labels); (b) binary classification differentiating the
predominant class P from other target classes; and (c) binary classification differentiating the minority class V from other target
classes. Further details can be found in Table 3.

Table 4
Resulting F1 scores, Precision, and Recall from XGBoost, SVM, and Logistic Regression, evaluated in ten datasets

with distinct levels of noise.
Multilabel Predominant Class (Label P) Minority Class (Label V)

Macro F1 F1 Precision Recall F1 Precision Recall

Noise LR SVM XGB LR SVM XGB LR SVM XGB LR SVM XGB LR SVM XGB LR SVM XGB LR SVM XGB

0.000

0.025

0.050

0.075

0.100

0.150

0.200

0.250

0.300

0.350

0.1781

0.1721

0.1634

0.1649

0.1519

0.1786

0.1656

0.1519

0.1575

0.1674

0.5464

0.3495

0.2676

0.2238

0.1944

0.1639

0.1454

0.1446

0.1301

0.1431

1.0000

0.9532

0.9350

0.9238

0.9026

0.8641

0.8218

0.7744

0.7376

0.7049

0.4349

0.4245

0.4235

0.4273

0.4273

0.4224

0.4283

0.4273

0.4282

0.4278

0.6913

0.6304

0.5829

0.5455

0.5233

0.4837

0.4429

0.4425

0.4279

0.4274

1.0000

0.9521

0.9172

0.9052

0.8632

0.8444

0.7557

0.6982

0.6621

0.6129

0.2788

0.2722

0.2719

0.2720

0.2724

0.2719

0.2725

0.2722

0.2724

0.2723

0.6286

0.5461

0.4954

0.4493

0.4228

0.3883

0.3441

0.3352

0.2723

0.2762

1.0000

0.9649

0.9248

0.9189

0.8998

0.8245

0.7308

0.6445

0.6088

0.5863

0.9877

0.9637

0.9569

0.9959

0.9904

0.9459

1.0000

0.9938

1.0000

0.9973

0.7680

0.7454

0.7077

0.6940

0.6865

0.6413

0.6215

0.6509

0.9986

0.9446

1.0000

0.9398

0.9097

0.8919

0.8296

0.8652

0.7823

0.7618

0.7255

0.6420

0.1907

0.1729

0.1743

0.1736

0.1744

0.1623

0.1635

0.1663

0.1696

0.1683

0.8306

0.6818

0.5857

0.5045

0.4357

0.3415

0.2963

0.2467

0.2284

0.1908

1.0000

0.9329

0.9049

0.8736

0.8600

0.8054

0.7226

0.6393

0.6323

0.5191

0.1129

0.0958

0.0968

0.0963

0.0968

0.0980

0.0907

0.0917

0.0937

0.0919

0.9058

0.6137

0.5007

0.4180

0.3348

0.2590

0.2142

0.1614

0.1494

0.1312

1.0000

0.9570

0.9365

0.9347

0.9330

0.8889

0.7975

0.7794

0.7188

0.5228

0.6135

0.8875

0.8712

0.8773

0.8814

0.4724

0.8282

0.8916

0.8896

0.9918

0.7669

0.7669

0.7055

0.6360

0.6237

0.5010

0.4806

0.5235

0.4847

0.3497

1.0000

0.9100

0.8753

0.8200

0.7975

0.7362

0.6605

0.5419

0.5644

0.5153

The chosen parameters were carefully selected to ensure that the resulting dataset presents significant challenges and is
inherently non-trivial to address.
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Table 5
Resulting F1 scores, Precision, and Recall from XGBoost, SVM, and Logistic Regression, evaluated in ten datasets

with distinct levels of noise.
Parameter Value/Description

Features 24

Categorical 12

Continuous 12

Labels L = {P,Q,R,S ,T,V}

Rules (total) 57,204

P 15,601

Q 13,001

R 10,401

S 7,801

T 5,200

V 5,200

Samples 25 (per rule)

Noise ratio 0.35

Training set 80% (1,144,080 rows)

Test set 20% (286,020 rows)

The noise ratio was set to 0.35. However, due to the larger number of features and samples per rule, the proposed dataset
exhibits notably higher levels of complexity and difficulty, particularly in terms of class predictions. This complexity is
compared to previously evaluated experimental datasets with different levels of noise, as illustrated in Figure 3. The blue
AUPRCs represent the incremental noise added in the initial experimental setup (see Section 4.2), while the red AUPRC is the
curve derived from the final proposed benchmark dataset. All curves were extracted from the tuning set when attempting to
predict the majority class ‘P'.

Finally, Table 6 presents the final Precision, Recall, and F1 scores resulting from each of the baseline models considered in
the evaluation protocol. Logistic Regression, as a simpler linear model, may struggle to capture complex, nonlinear relationships
within rule-based datasets. While generally considered more interpretable, this simplicity can be a limitation when dealing with
intricate data patterns. SVM can perform well when the data is separable or linearly/non-linearly separable with an appropriate
kernel. However, it does not prove to be suitable for the proposed task and is time-consuming in terms of the training process, as
demonstrated in Table 7. On the other hand, XGBoost, an ensemble method combining predictions from multiple decision trees,
is known for effectively handling complex, nonlinear relationships within data, demonstrating superior performance as a baseline
model when dealing with rule-based generated data.

The presented results indicate that the proposed benchmark dataset is an invaluable resource for challenging machine
learning applications, especially in the realm of interpretability. These findings affirm the dataset's pivotal role in fostering
advancements in the field and addressing the longstanding challenges associated with model understanding and prediction
explainability in AI systems.
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Figure 3
Resulting XGBoost AUPRC (Average Precision) in the tuning set comparing performance between the 10

datasets (blue) used to evaluate different noise ratios and the final proposed benchmark dataset (red), all given
when predicting the majority class P

In which: (a) curves in blue result from incremental noise ratio from 0.00 to 0.35 (top to bottom, respectively) as in the
experimental setup described in Table 4; (b) curve in red results from the main proposed dataset, which also has a noise ratio of
0.35, however designed with a larger number of features, as described in Table 5.

Table 6
Resulting F1 scores, Precision, and Recall from XGBoost (XGB), Random Forest (RF), SVM, and Logistic

Regression (LR), evaluated with the main proposed dataset.
Multilabel Predominant Class (Label P) Minority Class (Label V)

ML Macro F1 F1 Precision Recall F1 Precision Recall

LR 0.1572 0.4286 0.2727 0.9997 0.1667 0.0909 0.9999

SVM 0.1831 0.4285 0.2728 0.9987 0.1665 0.0908 0.9902

RF 0.1799 0.4295 0.2763 0.9640 0.1797 0.1079 0.5358

XGB 0.4195 0.4427 0.3049 0.8071 0.2892 0.2450 0.3529
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Table 7
Time to train each model – all evaluation protocol runs used an Intel(R) Core(TM) i7-10750H CPU@ 2.60GHz

processor, with 32.0 GB RAM – values can be used as a reference to compare training resource requirements
between different approaches.

Model Multilabel Label P Label V

LR 31 sec 17 sec 18 sec

SVM ≈ 5 days ≈ 5 days ≈ 5 days

RF ≈ 20 hours ≈ 10 hours ≈ 10 hours

XGB ≈ 8 hours ≈ 1.5 hour ≈ 1.5 hour

5. Conclusion

This paper introduces FormulAI, a novel framework for generating rule-based benchmark datasets designed to challenge
machine learning applications, particularly in the domain of interpretability. The resulting generated datasets consist of complex
rules, providing transparent explanations for their predictions. Through the controlled introduction of noise, label imbalance, and
intricate rules within the dataset, it mirrors real-world complexities without sacrificing interpretability. The evaluation protocol
demonstrates that the resulting datasets are not easy to resolve, making them a valuable asset for the machine learning community.

Looking ahead, there are several avenues for future work stemming from this research. Firstly, we plan to expand the dataset
generation process to encompass a broader range of domain-specific real-world application challenges, such as those found in
healthcare and finance, including multi-relational data generation. Additionally, we will continue to refine the benchmark dataset
by introducing more complex rules based on domain-specific knowledge, such as feature correlations, aiming not only to enhance
model interpretability but also synthetic data generation. Finally, we plan improve the proposed approach by generating synthetic
datasets to mimic those problems in which recurrent and convolutional neural networks are applicable.
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