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Abstract:Wheelchairs are complex systems often requiring a wide range of adjustments to adapt to the various types of patients’ disabilities. They
also include a series of additional elements, for example footrests, designed to keep the patient in a comfortable position. Unfortunately, most of the
commercial products do not allow maintaining the position of a patient foot who has no control over his lower limbs. To address this issue,
customization seems to be the appropriate solution as it enables to tailor products based on predetermined features. In Rebahi et al. [1], we
have explored the use of computer vision and artificial intelligence to correctly define customized parameters of the wheelchairs’ footrests.
The proposed solution is based on estimating geometric properties of real shoes contours. Although this solution was accurate to some extent,
its main drawback was the small amount of data that we were able to collect. For this reason, we decided to explore another approach where
shoes contours data are synthetic, and convolutional neural networks (CNNs) are applied. The CNN shows promising results with minor
inaccuracies of 0.8 cm created by our preprocessing. This paper discusses the synthetic data approach and compares its performance to the
one described in Rebahi et al. [1].
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1. Introduction

Wheelchairs are systems helping persons with reducedmobility to
become more independent and actively participate in society.
According to straits research [2], the global wheelchair market size
that was around 3,339 million US$ in 2022 will reach almost 5,562
million US$ in 2031. This increase is mainly driven by the aging of
the population and the higher occurrence of disabilities. This report
also mentions that the integration of Internet of Things (IoT), smart
technologies, and customization features can be good opportunities
for the wheelchair market. In fact, and according to the European
Commission [3], technologies such as artificial intelligence (AI), 3D
printing, and IoT are already being applied to the wheelchair
industry. Data Bridge Market Research [4] also claims that the smart
wheelchair market, which was US$ 150.8 million in 2021, would
increase to US$ 285.38 million by 2029 and is expected to undergo
a compound annual growth rate (CAGR) of 8.3% during the forecast
period 2022 to 2029.

Standard wheelchairs are often prescribed for persons affected by
temporary injuries or disabilities. If the disability is permanent, like
paralysis, these wheelchairs are not adequate anymore and need to
be customized in order to take precisely into account the patient’s
body measurements. For this reason, we see that more and more
companies (like SORG, Sunrise Medical, and Aidacare) producing
wheelchairs tend to add customization features to their products. In
our work [1], the use of computer vision and AI to correctly define

customized anthropometric parameters of the wheelchairs’ footrests
was explored. The proposed solution used parameters extracted from
real shoes contours. Although this approach was accurate to some
extent, its main drawback was the small amount of data that we
were able to collect. In this paper, we would like to investigate
another approach where shoes contours data are synthetic, and
convolutional neural networks (CNNs) are applied. We will also
compare the related performance results to the ones obtained from
the geometric approach.

This paper is organized as follows. Section 1 introduces the
topic being investigated. Section 2 discusses the related state of
the art. Section 3 highlights the solution that was implemented,
Section 4 presents the experimental results, and Section 5
concludes the paper.

2. Literature Review

To effectively train machine learning (ML) algorithms, big
datasets are needed. The larger and more diverse the datasets are, the
better the model performance will be. Unfortunately, collecting real-
world data and labeling them is time consuming and often difficult.
Moreover, there are always issues related to privacy, copyrights, and
ethics that need to be aware of [5], when collecting such data. An
alternative that is gaining more and more acceptance within the ML
community is the use of synthetic data to train the ML models [6].
Synthetic data are information that is artificially generated for
training and testing purposes. Regardless the performance of this
new approach, some of the problems related to data protection,
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mentioned earlier, will certainly be eliminated. Another crucial benefit
of utilizing synthetic data is the fact that no manual labeling of this data
is required [6].

In He et al. [7], deep learning layers were reformulated based on
residual functions with reference to the layer inputs. The authors
claim that these residential networks are easier to optimize and
more accurate. Their experiments show that an ensemble of the
residual nets achieves 3.57% error on the ImageNet test set.

In Tobin et al. [8], a technique, called domain randomization,
for training models on simulated images of simple objects that
transfer to real images by randomization was explored. It was
demonstrated that an object detector trained only in simulation
can achieve high enough accuracy in the real world to perform
grasping in clutter.

In Ren and Lee [9], an additional discriminator was used in a
self-supervised manner to actively minimize the domain gap
learned by the model. Following a generative adversarial networks
approach, one model learns to predict depth, edges, and surface
normal while another discriminates between the learned features
from synthetic and real data.

Similarly, Borrego et al. [10] used this technique to train a single
shot detector object detector on synthetic data. They generated non-
photorealistic data to fine tune the model and showed that this can
substantially improve the accuracy (up to 25%) of a CNN.

In Borrego et al. [10], the authors introduced a new Syn2Real
benchmark for unsupervised domain adaptation. The benchmark
aims to evaluate the object recognition accuracy of models trained
on synthetic data when applied to a real target domain.

In Hoffman et al. [11], a novel discriminatively trained cycle-
consistent adversarial domain adaptation model was discussed. This
technique, called CyCADA, is able to adapt representations at both
the pixel-level and feature-level, enforcing cycle-consistency while
leveraging a task loss. Moreover, CyCADA does not require aligned
pairs. The authors claim that CyCADA was applied to a variety of
visual recognition and prediction settings, including digital
classification and semantic segmentation of roads scenes, and has
shown effectiveness even on challenging synthetic-to-real tasks.

In Duan et al. [12], an approach named CenterNet, dealing with
the lack of additional looks into the cropped regions in keypoint-
based techniques, was investigated. Instead of a pair of keypoints,
each object is detected as a triplet. The authors claim that
CenterNet improves both precision and recall.

In order to build efficient models, large labeled datasets are
crucial in the training phase. For this reason, the authors of
Meta-Sim: Learning to Generate Synthetic Datasets [13] have
developed a technique, called Meta-Sim, able to learn a
generative model of synthetic scenes, and obtain images as well
as its corresponding groundtruth via a graphics engine. The
performed experiments on downstream tasks have shown that
Meta-Sim significantly improves content generation quality over
a human-engineered probabilistic scene grammar, both
qualitatively and quantitatively.

In Law and Deng [14], a new approach for object detection was
discussed. This approach, called CornerNet, detects an object
bounding box as a pair of keypoints, the top-left corner and the
bottom-right corner, using a single convolution neural network.
Doing so, the need for designing a set of anchor boxes commonly
used in prior single-stage detectors is eliminated. In addition to
that, a new type of pooling layer that helps the network better
localize corners was introduced. The authors also claim that
CornerNet achieves a 42.2% AP on MS COCO, outperforming all
existing one-stage detectors.

In Behl et al. [15], an algorithm for optimally generating
synthetic data based on a novel differentiable approximation of
the objective was proposed. The undertaken approach aims at
addressing the issues of the recent methods focusing on adjusting
simulator parameters usually relying on REINFORCE like
gradient estimators. The authors claim that their method is faster
(up to 50 ×) in finding data distribution. They also claim that the
training data generation was reduced up to 30 ×, with a better
accuracy (+8.7%) on real-world test datasets than the other methods.

In Hwang et al. [16], the problem of vision-based action
recognition of elders’ daily activities using deep learning is
discussed. Based on modern visualization techniques, the authors
have developed an action simulation platform, called ElderSim,
that can generate synthetic data on elders’ daily activities. This
platform was used to generate a large-scale synthetic dataset of
elders’ activities of daily living, named KIST SynADL, and
combined with real datasets to train three state-of-the-art human
action recognition models. The authors claim that some
performance improvement was noticed from the experiments
undertaken on newly proposed scenarios.

In Mikami et al. [17], the authors investigated in which cases an
increase in synthetic data helped to bridge the domain gap. They note
no increase in data allows to bridge the gap if it is too large. They
introduced a simple scaling law that predicts the performance
from the amount of pre-training data.

In Kim et al. [18], a new action recognition benchmark, called
SynAPT, was introduced in order to mitigate the issues related to
training models with real videos, such as privacy, bias, and ethics.
The authors have constructed a synthetic dataset from three
publicly available assets (ElderSim, SURREACT, PHAV), trained
models on the produced dataset, and then transferred these pre-
trained models to various downstream tasks. The authors claim
that the models pre-trained on the synthetic dataset outperform
those pre-trained on real videos on the downstream datasets with
low representation bias.

In Mishra et al. [19], a unified model, called Task2 Sim, that
learns to map downstream task representations to optimal
simulation parameters for synthetic pre-training data for them was
discussed. It was shown that Task2Sim can be trained on a set of
“seen” tasks and can then generalize to novel “unseen” tasks
predicting parameters for them in one shot. The authors also claim
that Task2Sim can compete with pre-training on real images from
ImageNet.

Table 1 summarizes the analysis of the selected literature
papers.

3. Methodology

In Rebahi et al. [1], we have proposed a technique (called along
this paper, geometric approach) combining computer vision and deep
learning to extract the dimensions of the contours of the shoe on an
A4 sheet of paper. The application of a ML component is to train a
model that was able to rectify the computer vision biases as opposed
to the dimensions measured by hand. Although this footrest design
approach was accurate, its main drawback was the small amount of
data that we were able to collect. As a result, we decided to explore
another approach based on CNNs and where the data are synthetic.

In this paper, the second technique (called synthetic data-based
approach along this paper) will be discussed, and its results will be
compared to the results of the first one. Before going deeper and for
clarity sake, a short overview of the geometric approachwill be given
first. For more details, we refer to Rebahi et al. [1].
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3.1. Geometric Approach

As described in Rebahi et al. [1], the geometric approach works
as follows:

1. Contours of a patients’ shoe are drawn on an A4 sheet of paper
and photographed.

2. The model extracts the dimensions of an object using OpenCV.
The latter is a computer vision library with which we can extract
the dimensions of an object from an image if a reference object
with known dimensions exists in the image. The dimensions
that will be extracted by OpenCV are shoe length, top shoe
width, and bottom shoe width

3. It uses the dimensions found by OpenCV and feeds them into a
ML model, which predicts the anthropometric measurements of
the patient’s shoe.

Figures 1 and 2 give an overview of the overall structure of the
implementation.

3.2. Synthetic data-based approach for shoe size
estimation

CNNs and other deep learning approaches have achieved
impressive results for tasks like image recognition or object
detection. Large amounts of data are required to train these models.
For specific tasks like object detection or segmentation, there exist
annotated datasets, for example, Microsoft COCO. Creating a dataset
is often tedious and labor intensive as a human has to manually
annotate all images with its corresponding ground truth. Since we
are the first ones to estimate shoe dimensions from RGB images, we
had to create our own dataset. We take an existing dataset of
footprints, calculate their outlines, and annotate them. Since the

number of footprints in the dataset is small, we create synthetic data
from the real data. The dataset consists of shoe outlines with the
corresponding keypoints for estimating foot length, top width, and
bottom width. We use these keypoints to calculate the desired
anthropometric measurements. We, then, use a state-of-the-art
ResNet [20] model to predict these keypoints.

3.3. Keypoint-based approaches

Estimating length from just an RGB image is not an easy task to
learn for neural networks due to ambiguities created by depth and
viewing direction. For example, shoes in an image appear smaller
the further away they are from the camera or get distorted because
of a different perspective. We take the prior knowledge of the
known DIN A4 paper into account to adjust and rectify the image
for a consistent input for our model. Furthermore, we simplify the
approach even further and ask the network to output a belief
distribution over the pixels where it expects the top, bottom, top left,
top right, bottom left, and bottom right of the shoe. We then take the
most likely pixel from each of these belief distributions and calculate
the pixel distance ourselves. Combined with the knowledge about
the DIN A4 size and its appearance in the image, we convert pixel
distance to centimeters. There are several ways of representing belief
distributions, and keypoint-based approaches like CornerNet [14]
have shown great results in object detection, by detecting the corners
of objects in an image, and are robust against inconsistencies like
occlusions or in our case against non-optimal shoe outlines. We
adapt this approach to our own architecture.

For our shoes, we select six keypoints: two for the top and
bottom, two for the top left and top right, and two for the bottom
left and bottom right of the shoe. Using the six keypoints, we can
calculate the length, top width, and bottom width.

Table 1
Meta-level analysis of the selected relevant literature

No. Reference Year Technique used Dataset used/produced

1 Rebahi et al. [1] 2023 Combination of deep learning and
computer vision

Real data based on shoes contours

2 Kim et al. [18] 2022 Synthetic data generation Synthetic dataset produced from three publicly available assets
(ElderSim, SURREACT, PHAV)

3 Mishra et al. [19] 2022 Transfer learning, deep learning Synthetic data, model tested on 20 classification tasks
4 Hwang et al. [16] 2021 Real and synthetic data fusion for

training SOTA models
A large-scale synthetic dataset of elders’ daily activities, called
KIST SynADL, was produced. KIST SynADL was used in
addition to some real datasets

5 Ren and Lee [9] 2018 Domain adaptation, adversarial
learning

PASCAL VOC 2017 classification and 2012 detection

6 Borrego et al. [10] 2018 Domain adaptation, domain
randomization

Non-photorealistic synthetic data

7 Borrego et al. [10] 2018 Domain adaptation ShapeNetCore, Microsoft COCO
8 Mikami et al. [17] 2021 Transfer learning, deep learning More a theoretical analysis
9 Behl et al. [15] 2020 Technique based on differentiable

approximation for generating
synthetic data

Photorealistic renderer was used

10 Kar et al. [13] 2019 Neural networks, autoencoder loss KITTI, ImageNet
11 Hoffman et al. [11] 2018 Cycle-consistent adversarial domain

adaptation
MNIST, SVHN, SYNTHIA, GTA, CityScapes

12 Tobin et al. [8] 2017 Domain randomization technique
for training models

Simulated images of simple objects that transfer to real images

13 Law and Deng [14] 2020 Convolution neural network Microsoft COCO dataset
14 Duan et al. [12] 2019 Convolution neural network Microsoft COCO dataset
15 He et al. [7] 2015 Residual neural networks ILSVRC, CIFAR-10, Microsoft COCO
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3.4. Dataset creation and data alterations

To train a neural network, we decided to create our own shoe size
estimation dataset, where shoe outlines lines are labeled with keypoints
for length, top and bottomwidth as can be seen in Figure 3. For this, we
use the Footwear Impression Database [21], which provides high-
quality scans of footprints. Our approach is based on the work in
domain randomization [8], which showed that neural networks are
able to bridge the gap between synthetic and real-world data given
enough variation inside the synthetic training data. For this, we
perform alterations to the shoe outlines generated from the Footwear
Database in the form of scaling and deformations to create our
synthetic dataset.

Using basic image processing techniques, we first create a
binarized version of our image using Otsu’s method [22] to find a
suitable threshold. We apply the morphological operations opening
and closing to the footprint to close gaps and create shapes with
extractable contours, and we, therefore, apply dilations and closing to
close small gaps. After that, we use OpenCV to extract the contour
of our processed image. Since keypoints can vary between shoes, we
had to annotate them by ourselves. For this, we wrote a simple
annotation tool, where the user draws three lines indicating where the
length, top width, and bottom width should be calculated. Since the

user is not always clicking on the outline, we select the point on the
shoe closest to the end of the drawn line as our keypoint. Because
we do not know the actual size of the footprints, we resize all
images to 297 × 210 pixel where each pixel corresponds to a
millimeter. This allows us to resize the shoes to arbitrary shoe sizes.

It is worth to mention that we have created shoe contours from a
footprint database and annotate them with ground truth keypoints.
Then we apply augmentations to create our synthetic dataset.

The dataset is restricted to only 1175 images, which is not enough
to train a CNN. To create more variety, we performed alterations to our
data which are illustrated in Figure 4. We calculate three points in our
shoe and place Gaussian bells on them. This creates a deformation field
which allows us to create more shoe shapes. For the final input to our
network, we also rotate and flip to prevent overfitting. In Table 2, the
terminology related to the used dataset is provided.

3.5. Network architecture and training

For our CNN architecture, we use a ResNet-18, seen in Figure 5
and replaced the last layers with our heatmap module which consists
of three convolution blocks where we reduce the number of features
in each step. The final output of each block is a 128 × 128 heatmap.
To train our architecture, we use a variant of focal loss first

Figure 2
Principle dimensions and measurements are needed for the

design of the footrest

Figure 1
Footrest design customization implementation. This figure shows how computer vision andmachine learning are combined to extract

the anthropometric measurements

Figure 3
Detecting keypoints on a shoe contour
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introduced by CornerNet [14] and as our optimizer we use Adam
with a learning rate of 0.0001. For training, we do not need to
resize the images back to their original size of 297 × 210 because
focal loss and the keypoints are independent of the actual length.
We trained our architecture on the P100 GPU provided by Kaggle
[23] to speed up the training. To evaluate and use the network in
a real-life task, we need to resize the heatmap to the original
image size. We test our trained network on 24 shoe outlines
which we excluded from the training data to evaluate our approach.

It is important to mention that we have used a ResNet
architecture as our backbone and replaced the fully connected
layer with a heatmap module consisting of multiple convolution
layers to output heatmaps.

4. Evaluation

We evaluate our network on the real-life foot sketches. We convert
the foot sketches to a binary contour using the computer vision algorithm

described earlier and feed them to our network. The predictions can be
seen in Figures 6 and 7 and show promising results and correctly
detected keypoints even on the real-life data.

On the right side,we see the original image,which is the input for the
computer vision algorithm, on the left side, the binarizedoutput, and in the
middle the aggregated heatmaps over the shoe outline. We cut out the
shoe and made it bigger to improve the visibility of the activity blobs.
As one can see, the network correctly predicts the points on the
outline where we measure the distances. One downside of the
keypoints is that we also measure diagonally which increases
the estimated length or width. This can be improved by looking for
the nearest point on the outline in y-direction for the height and in
x-direction for the width. We evaluate our deep learning approach on
the real-world data. We calculate the mean and standard deviation for
the errors occurred in this approach.

To transform our keypoint predictions from pixel to metric space,
we perform scaling to the measured distances with the size of a DINA4
paper divided by the extracted binary image size from the real-world
approach. Since the viewing angle is not always perfectly
perpendicular to the paper, we encounter some minor scaling errors
that are mainly responsible for the errors listed above.

To compare the algorithmic to the deep learning approach, we
compute the mean and median error for all estimations.

Figure 4
Data creation pipeline

Table 2
Dataset dictionary

Technique used Explanation

Outline detection Binarization of the footprint, contour
extraction using OpenCV

Manual annotation Annotation of the outline with 6 keypoints
Deformation field Deforms the outline at the top and bottom,

e.g., smaller or wider shoe outlines
Rotation and
scaling

Rotating and scaling the outline to create
different shoe sizes

Heatmap Placing a 2D Gaussian over the keypoints

Mean error Standard deviation

Shoe length 8.68 mm 5.52 mm
Top length 7.77 mm 9.18 mm
Bottom width 5.54 mm 4.50 mm
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Figure 5
Modified ResNet architecture

Figure 6
Predicted keypoints on real data

Figure 7
Outlier for the geometric approach
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In Figure 8, we plot the mean and median error for our real and
synthetic data approaches. We observe that geometric estimation
using triangles and circles is more accurate as seen in the median
errors. However, the mean and median errors for the synthetic
data approach are closer, meaning that we have fewer outliers
with large errors. The following image shows an example. Here
the line is not connected, and the algorithm fails to estimate
bottom width. The main advantage of the synthetic data approach
is the ability to generalize to a large variety of shoes with
acceptable accuracy. However, for estimating small shoes, our
analysis shows that the geometric approach is to be preferred.

5. Conclusion

In this paper, a new technique, called synthetic data based
approach, for supporting the design of wheelchairs footrests was
explored. It is based on the use of deep learning networks trained
on synthetic data. In fact, this technique was proposed to deal
with the lack of sufficient shoes contours data that were utilized in
the development of the [1] solution. The latter is also a technique,
mainly based on computer vision, for extracting anthropometric
measurements needed in the design of the wheelchairs footrests.
The technique discussed in this paper adapted keypoint-based
approaches such as CornerNet that have shown satisfactory results
in object detection and robustness against inconsistencies like
occlusions, namely non-optimal shoe outlines in the context of
this paper. This technique was implemented and tested, and the
obtained results have shown that its main advantage is the ability
to generalize to a large variety of shoes with acceptable accuracy.
However, for estimating small shoes, our analysis shows that the
geometric approach elaborated in [1] is to be preferred.
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