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Abstract: Conventional method of counting animals is one of the most challenging tasks in livestock management; moreover, counting of animals
in drone-acquired imagery, though promising, is more challenging in intelligent livestock management. In this paper, we apply state-of-the-art object
detection model, Mask YOLOvV7, for detection and counting of cattle in different scenarios such as in controlled (feedlot) environment and
uncontrolled (open-range) environment. Mask mechanism was embedded into the backbone of the YOLOv7 algorithm (Mask YOLOv7) for
instance segmentation of individual cattle object. We evaluate the performance of the model proposed in this study using Intersection over
Union threshold of 0.5, average precision (AP), and mean average precision. The results of the experiment conducted in this study show that
the proposed model achieves an accuracy of 93% in counting cattle in controlled environment and 95% in uncontrolled environment. These
results affirm the potential of the model, Mask YOLOvV7, to perform competitively with any other existing object detection and instance
segmentation models in terms of accuracy and AP especially when the speed of object detection matters. Moreover, the research has potential

applications in livestock inventory, which helps in tracking, monitoring, and reporting vital information about individual cattle.
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1. Introduction

Many large-scale agriculture producing countries generate greater
percentage of their agricultural revenue from animal husbandry.
According to Sishodia et al. (2020), meat consumption is on the
increase in demand by populace, and to meet their demand, there is a
need to address the challenges confronting livestock production and
their management. Lack of expertise to manage the livestock,
problems with remote monitoring of the livestock, high costs of
managing the livestock, and government policies are some of the
harsh challenges confronting the operation and maintenance of large-
scale livestock production and management systems. Therefore, it is
necessary to address the aforementioned challenges in animal
husbandry with appropriate methods. Animals’ behavior is a
reflection of their state and conditions, and recent advancements in
smart agricultural technology have enabled automatic monitoring of
animals’ behaviors for their health, which include their body weights
and eating habits, etc. for the improvement and maximization of
meat production (Kumar & Ilango, 2018).

1.1. Above-ground animal detection and
monitoring using drone vision systems

The use of sensors has in no small measure assisted in remote
monitoring of animals by providing useful information in real-time
for uninterrupted monitoring of animals in the open-range; by this,
great changes have been brought to the perception of farmers toward
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the possibility of remote monitoring and management of animals
(Kumar & Ilango, 2018). Monitoring of movement and behavior of
animals by the farmers are also made possible by wearing sensor-
based devices on the animals, which further help in monitoring their
physiological and morphological conditions to prevent their
unhealthy growth and death rate for overall production gain (Auclair-
Ronzaud et al., 2020; Du & Zhou, 2018; Gonzalez et al., 2018;
Halachmi et al., 2019; Kumar & Ilango, 2018; O’Leary et al., 2020;
Sharma & Koundal, 2018; Wang et al., 2021). Camera-trapped
imagery has been employed for automatic identification and counting
of species of animals (Willi et al., 2019); moreover, camera traps and
thermal infrared imagery have been employed as methods by Sharma
and Koundal (2018), Beaver et al. (2020), and Tabak et al. (2020)
for capturing animal activities at different locations and diagnosing
various degrees of disease militating against them.

Nigeria is a country with millions of cattle species alone excluding
other animal species, mostly with nomadic animal rearing methods.
These methods make it difficult to monitor activities of individual
animals during grazing. Real-time monitoring can be a good method
of controlling the intrusion of animals to restricted areas and keeping
the animals safe during grazing. Unmanned aerial vehicle (UAV)
imagery could serve as an alternative method to land-based survey of
animals. The emergence and the application of drone vision system in
monitoring of animals show promising prospect, which if combined
with deep learning models will turn around animal farming and
management.

Drone vision systems are on a par with other technologies for
tasks such as viewing from above-ground, acquisition of high-
resolution image outputs without delay irrespective of the terrain
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and weather conditions. Although reliability and accuracy are very
important factors to be considered when counting animals in
drone vision system-acquired imagery, they still present some
difficulties in the management of intelligent husbandry (Alanezi
et al., 2022). For drone vision systems to be regarded as a reliable
and efficient monitoring method for livestock activities, the
embedded algorithms for processing the acquired images must
match with the corresponding functions (Tsouros et al., 2019).

1.2. Machine learning-based drone vision systems
for animal detection and monitoring

The recent advancement in machine learning has greatly increased
the application of drone vision systems in animal detection and counting
(Eikelboom et al., 2019). UAV applications cut across different tasks
such as estimation of livestock population (Chabot et al., 2018;
Eikelboom et al., 2019; Han et al., 2019; O’Leary et al., 2020; Ulhaq
et al., 2021). Image segmentation is one of the most employed
techniques for automatic detection and counting of animals in
images; it works on either the instance or the semantic of objects
(animals) in the images using their pixels with a specific threshold
(Chabot et al., 2018; Dujon et al., 2021). In addition, image
segmentation performs better when there is a clear difference
between the image foreground objects (animals) and the image
background.

To perform a multi-stage counting in a UAV embedded with
imagery sensors for images with complex features, a hybrid of
template matching and spectral characteristics approach was
improved by Sadgrove et al. (2021). To obtain accurate results from
the above-ground animal survey, thermal imagery and UAV were
integrated for wildlife detection, segmentation, classification, and
tracking by Gonzilez et al. (2018), and this was made possible by
using a pixel with a specific threshold and binary mask that matches
a template in different instances. The prospect in using computer
vision for livestock detection from UAV imagery was revealed in
Sadgrove et al. (2021), this is in addition to different machine
learning models that have been employed solely for detection and
counting of animals from UAV imagery. Supervised pixel-based
image classification method (Chabot et al., 2018) and unsupervised
pixel-based image classification method (Han et al., 2019) have been
used for animal identification and counting, and animal population
overestimation, respectively, with proper preprocessing such as
labeling and augmentation of the images for supervised data training
method using either manual or automatic labeling method such as
LabelMe (Russell et al., 2008) for effectual results.

Convolutional neural network (CNN) and deep CNN-based
models such as R-CNN (Girshick et al., 2014), Fast R-CNN
(Girshick, 2015), Faster R-CNN (Ren et al., 2017), and Mask
R-CNN (He et al., 2017) have received awesome acceptance in
the computer vision community for exhibiting great object
detection, segmentation, and classification in complex images
with speed, accuracy, and precision combined. Among the
researchers who have utilized CNN-based models for tasks
involving the counting and monitoring of animals are Eikelboom
et al. (2019) and Xu et al. (2020), who proposed a hybrid of CNN
and UAV systems for tracking and counting animals that were
detected in UAV-based video recordings. It is necessary to
consider some factors when conducting animal detection tasks
such as variability in illumination, occlusion, and similarity
between foreground objects (target objects) and their backgrounds.

Although R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN,
and SSD (Liu et al., 2016) have been applied as solutions to animal
detection, identification, and monitoring tasks with great results
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(Bello et al., 2021a; Bello et al., 2021b; Bello et al., 2021c), there
is a need to address detection speed of the models when applying
to animal monitoring, which is what YOLOv7 (Wang et al., 2022)
represents. Mask YOLOV7, a deep learning model popular for its
speed and good accuracy among the community of precision
agriculture, is a neural network architecture developed purposely
for object detection and image segmentation in real time. Among
the numerous works that utilized YOLO algorithms for
agricultural tasks are Hatton-Jones et al. (2021), Hu et al. (2023),
Madasamy et al. (2021), and Yang et al., (2023).

Hence, the primary goal of the work carried out in this paper is
to utilize the state-of-the-art algorithm, Mask YOLOV7, a speed and
accurate method, embedded in drone vision systems, for automatic
detection and counting of cattle in images.

2. Related Work

Andrew et al. (2016) proposed an automated visual identification
system for individual Holstein Friesian cow from dorsal RGB-D-
based imagery. By using support vector machine (SVM) and radial
basis function kemels, which were based on ASIFT descriptor
structure, predictions were generated. The system was able to perform
segmentation of the animal regions by fitting a depth model; this was
followed by extracting ASIFT descriptors over the area that was
detected. The essence of using SVM is to learn a species-wide
predictor of descriptor individuality utilized for the selection and usage
of features to recover the identity of the cow. A method based on
image entropy was proposed by Gu et al. (2017) to recognize and
identify the behavior of cow object on motion against a complex
background. For automated capturing of behavior and characteristic
features displayed by the cow, they employed minimum bounding
box and contour mapping. By demonstration, Andrew et al. (2017)
posited the appropriateness of computer vision pipelines that make use
of the architectures of deep neural network to perform the automated
detection and identification of individual Holstein Friesian cow in a
farm setup using dorsal coat patterns. With the available datasets, they
have demonstrated the possibility of performing robust detection and
localization of Holstein Friesian cow with 99.3% accuracy.

Cheema and Anand (2017) proposed object detection based on
Faster R-CNN framework for efficient detection of animals in
images. They trained a linear SVM classifier for the recognition
of individual animals using the features extracted from AlexNet of
the animal’s flank. The techniques of deep learning were
employed in Zin and Tin (2018) for exploration and examination
of the image processing technologies utilization in analyzing and
identifying individual cattle. The main features considered for the
identification are the black and white body patterns of the cow.
The body of the cow which was placed on the Rotary Milking
Parlor was detected by using inter-frame differencing and
horizontal histogram-based method. The predefined distance value
was used for the extraction of body region of the cow, which
served as input data to train the deep CNN.

A method of artificial intelligence-based CNNs was employed in
Rivas et al. (2018) for the analyses of images captured by a camera-
aided drone for the identification of individual objects in the images.
The approach they used is such that the trained CNNs can detect not
only cow but any other object by using the same algorithmic process of
CNN:s training. A computer vision system was proposed by Zhao et al.
(2019) that could identify individual dairy cows. This was made
possible by making use of videos that show the side view of cow
in motion. Detection and location of the cow object and its body
area as the individual identity information were made possible by
the system. To determine the identity of unfamiliar images, a
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template database was created for matching and comparing the
images. Their experiment results reveal the possibility of
calculating accurately the feature points in the body pattern of cows
by the use of SIFT method. When FAST, SIFT, and FLANN are
used for the detection, extraction, and matching points, 96.72%
accuracy of one-step identification was achieved.

Liu et al. (2020) in their proposed practical system employed
multiple methods to detect recorded structural information about
cattle in a video. To come up with the cow structural model, key
features were employed for the representation of positions of the
specific body parts of the cow and its overall spatial location,
such as the connections between the head, the trunk, and the legs.
For the extraction of the key features from the raw images and
selection of individual features for conversion into a structural
model, two CNNs were applied to the detection system. In order
to enable the system work with different quality of videos
collected from a public farm during normal operation, a post-
processing model was developed. A non-contact method based on
deep parts features fusion for identifying cow was proposed by
Hu et al. (2020). For the extraction of the cow object in the side
view image and the cow’s head, trunk, and leg parts, they applied
YOLO method and a part segmentation algorithm using frame
differencing and segmentation span analysis.

Three independent fine-tuned AlexNet models were used in
extracting the deep features of the cow’s head, trunk, and leg parts.
While a weighted summation strategy was employed for the
features fusion, a trained SVM classifier was used for the cow
image classification. An automated method based on Mask R-CNN
capable of counting cattle in a quadcopter vision system was
proposed by Xu et al. (2020). The application of the Mask R-CNN
framework was demonstrated for instance segmentation of the
detected cow images in the counting experiment in open-range and
feedlots environment. Performance evaluation method was used in
verifying the optimal Intersection over Union (IOU) threshold (0.5)
and the detection performance of the algorithm for full appearance.

Similar work to Xu et al. (2020) was carried out by Shao et al.
(2020) to aid in managing open-range cattle; they proposed a system
based on CNNs for detecting and counting cow using UAV-captured
images. They improved the system performance for detection by
utilizing the UAV images, thereby enabling the approximate size
prediction of the object when the assumption can be made of the
height of UAV from the ground to be approximately constant.
They resized to an optimal resolution the input image for training
and testing the CNN, which is determined by the object’s size and

the down-sampling rate of the network. To prevent repetitive
image counting, they applied a 3D model reconstructed by using
the UAV images for clustering detection results.

3. Materials and Methods

The primary materials used in performing the work in this paper
include dataset of cow images, drone system, open-range, and
feedlots. For the methods, they include overview of the proposed
model architecture and our framework, image acquisition, dataset
preparation and preprocessing, the algorithm for detection and
counting cattle, Mask YOLOv7 implementation details, and
performance evaluation metrics.

3.1. Overview of the proposed model architecture
and our framework

This section presents the general idea behind the proposed model
architecture and our framework pipeline for processing the
drone-captured images solely for cattle detection and counting
using Mask YOLOv7 algorithm. Figure 1 (Wang et al.,, 2022)
shows the extended efficient layer aggregation networks (E-ELAN)
of the YOLOV7 algorithm, which primarily concentrate on a
model’s number of parameters and computational density. The
VovNet (CNN seeks to make DenseNet more efficient by
combining all features only once in the last feature map) model and
the CSPVoVNet model analyze the influence of the input/output
channel ratio and the element-wise operation on the network
inference speed. YOLOvV7 extended ELAN and called it E-ELAN.
The major advantage of ELAN was that by controlling the gradient
path, a deeper network can learn and converge more effectively.
The gradient transmission path of the original architecture is not
changed by the E-ELAN; however, the cardinality of the added
features is increased by it using group convolution, and the features
of different groups are combined in a shuttle and merged
cardinality manner. The essence of carrying out the operation in
this manner is to ensure the enhancement of the features learned by
different feature maps and the improvement of the use of
parameters and computations.

While the architecture in the computational block is majorly
changed by E-ELAN, the entire transition layer architecture is not
changed. It employs expansion technique in addition to shuffle and
merge techniques to enhance the network learning ability without
collapsing the original gradient path. The approach in this scenario

Figure 1
Extended-efficient layer aggregation networks (E-ELAN)
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Figure 2
Flow diagram of the algorithm for cattle detection and counting

Sequence of images from
the video frames

Training and Testing
Samples

is to employ group convolution for the expansion of the channel and
number of computational blocks, which employs the same group
parameter and channel multiplier to all the computational blocks of
a computational layer. Subsequently, the feature map computed by
each computational block is shuffled and after that concatenated
together. Therefore, the number of channels in each group of the
feature maps will be equal to the number of channels in the original
architecture. After all these, these groups of feature maps are
merged. The capability of E-ELAN to learn more diverse features
necessitated applying it in this paper.

Mask YOLOv7 has all-purpose detection pipeline, which
comprises three different parts, namely (1) backbone, (2) encoder,
and (3) decoder. The structure of the Mask YOLOv7 model
primarily comprises three parts, which are (1) input, (2) backbone
feature extraction network, and (3) the part for strengthen feature
extraction network and predictions. As shown in Figure 2, the input
cattle features are detected and extracted by the convolution layers
from the image acquired by the drone to form a feature map, and
then, the YOLO detection module detects the feature map sent to it.
The output results in the feature map are then framed by the
detection module and the selection decision is made by the detection
module whether to frame coordinates, label the confidence, and
categorize information in accordance with the program settings.

Manual annotation was carried out on the ground truth for all the
cattle training datasets before training the network with optimized
parameters; all these processes were followed by testing the model
on the testing dataset for cattle detection and counting.

3.2. Image acquisition and datasets preprocessing

Inaccessibility and lack of suitable open datasets are two major
reasons for ineffectiveness recorded by machine learning in cattle
detection and counting tasks; moreover, few available public
datasets such as FriesianCattle dataset (Andrew et al., 2017) have
several flaws such as distorted images, blurred images, similarity
between images, limited number of cattle per image, and many
more disadvantages. In order to leverage the shortage of open
datasets, we employed drone-based data collection method to
collect image datasets from the two dataset collection sources, that
is, from the feedlot and the open-range environments. The input
datasets employed for the detection and counting experiment
conducted in this research were collected from (1) the cattle ranch
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containing a group of Nigerian beef cattle and other complicated
background objects and (2) the surrounding housed beef cattle.

For the application of this proposed model in different scenarios
and backgrounds, two cattle ranches and one housed-cattle farm were
chosen. As shown in Figure 3, the employed drone DJI Phantom 4
Rtk has the following technical specifications: ISO range of 12800,
image sensor of 1" CMOS, maximum image size of 4096 x 2160
pixels, video processor of H.265 4 k at 60 fps, WiFi of 2.4 and
5.8 GHz, flight time of up to 30 min, speed of up to 72 km/h,
remote control maximum distance of 5 km, and battery of 6000
mAh. The integrated camera has the following technical
specifications: ISO range of 100-6400, glasses of 18—55 mm,
image sensor of CMOS, maximum image size of 6016 x 4000
pixels, effective pixels of 24 megapixels, and video processor of
full HD 1,920 x 1,080/30 fps.

Figure 3
Drone DJI phantom 4 Rtk

Both the videos and photos used in this study were captured by
the camera; however, we preferred video recordings to photos
because of many factors including the good qualities that video
recordings possess, whereby the captured cattle datasets (for both
the feedlot datasets and the open-range datasets) were collected in
different scenarios and saved in MOV format as an MPEG 4
video container file, which, by cropping, were later converted to
original images in JPEG format. As standard practice, the original
images were reduced to the size (512 x 512 pixels for the feedlot
cattle datasets and 1280 x 1280 pixels for the open-range cattle
datasets) suitable for features extraction by CNN; not only is this
reduction method guides against over-fitting during network
training, it increases the speed of the model also.

The datasets in the feedlot comprise 800 training images and
200 testing images, and in the open-range, the datasets comprise
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Figure 4
Sample of cattle dataset depicting cattle. (a) In the open-range and (b) in the feedlot

(a)

(b)

800 training images and 200 testing images, making it ratio 4:1 for
both training and testing datasets. LabelMe, the web-based image
annotation tool was employed in labeling the ground truth of the
datasets, which include the cattle heads and their whole body.
Figure 4 shows sample of cattle datasets in open-range and
feedlot. These labeled data were then stored in a format that
conforms to Mask YOLOvV7 framework for image annotation.

3.3. The algorithm for detection and counting
cattle

YOLOV7, an extended version of the family of YOLO models
(YOLO (Redmon et al., 2016), YOLOvV2 (Redmon & Farhadi, 2017),
YOLOV3 (Redmon & Farhadi, 2018), YOLOv4 (Bochkovskiy et al.,
2020), YOLOVS5 (Jocher et al., 2022), YOLOV6 (Li et al., 2022)), has
high detection speed and accuracy. Mask YOLOV7, just like other
models in that family, is a single-stage object detector. Frames of
images in the form of features are extracted through a backbone in a
YOLO model; the extracted features are mapped in the neck and
forwarded to the network head. Just as in YOLO model, both the
object’s locations and classes are predicted by Mask YOLOv7 with
the help of bounding boxes generated for them. To arrive at a final
prediction, Mask YOLOV7 carries out a post-processing through non-
maximum suppression.

Mask YOLOv7 sets the standard in object detection by
possessing a network architecture that predicts bounding boxes
accurately more than any known algorithms at similar inference
speeds. To achieve this feat, a number of changes were made to
the network and training routines of Mask YOLOv7. Four notable
improvements of YOLOv7 on the existing YOLOs are (1)
extended efficient layer aggregation, (2) model scaling techniques,
(3) re-parameterization planning, and (4) auxiliary head coarse-to-
fine. The final head trains efficiently more than the auxiliary head
because of presence of fewer networks between the auxiliary head
and the prediction. Therefore, different levels of supervision were
conducted for this head in Mask YOLOV7 resulting in accepting a
coarse-to-fine  definition where at different granularities,
supervision is passed back from the lead head.

3.3.1. Loss function

YOLOV7 loss function comprises three different parts, namely
(1) bounding box loss function, (2) objectness loss function, and (3)
class loss function. The primary function of bounding box loss
function is to measure the prediction box error for the error of
coordinate positioning. While the prediction box confidence error
is reflected by the objectness loss function, the class loss function

gives a reflection of the error committed by the prediction box
error for the target category. Mask mechanism was embedded into
the backbone of YOLOv7 for instance segmentation, and the
mask loss function of the Mask YOLOv7 is defined as the
average binary cross-entropy loss, which carries out a sigmoid
function on each pixel in the target category.

3.4. Mask YOLOvV7 implementation details

The implementation of Mask YOLOv7 was set up on a Python
environment inferred with a pre-trained model. The collected data
were prepared for training, and the Mask YOLOv7 model was
trained using the prepared data before testing and evaluating the
model. Mask YOLOv7 model, being a model that was developed
not only for object detection but also for image segmentation, was
implemented in this work for cattle detection, cattle instance
segmentation, and cattle counting. By applying this technique, we
locate cattle objects in the images with great precision. Before
conducting the training on the model, GPU accessibility is a pre-
requirement; this is to avoid training with the CPU, which is time-
consuming and inefficient, especially for resource-demanding
instance segmentation task. Mask YOLOv7 and its dependencies
were installed by cloning the repository and changing the git
branch from main to u7, where instance segmentation can be found.

Unlike other YOLO series such as YOLOVS5, where all tasks are
stored in one codebase, Mask YOLOV7 stores each task on a separate
branch. Instead of using test inference, we use Mask YOLOV7 instance
segmentation model pre-trained on the COCO dataset to test whether the
installation of the environment was successful. We used polygon
annotations for the labeling tasks in addition to bounding box around
the cattle objects; this is to ensure the model learns the precise shape
of each cattle object for both detection and instance segmentation.
We applied preprocessing and augmentation after labeling the data to
supplement the dataset and stabilize the model from facing object
prediction difficulty. The parameter values that we pass matter;
therefore, most notably, attention was paid to epochs, batch size, and
image size; this is because they are very crucial to performance of
model training more than any other parameters.

Epochs are the number of times it will take the model to make a
cycle through the data in the course of training. The batch size is the
number of samples per gradient update, and the image size is the
input image dimensions, which determines the number of pixels
the model has to process for each image. Model performance can
be improved by increasing the epochs, batch size, and image size
parameters; however, this improvement may require more training
time and computational resources. To measure Mask YOLOv7
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generalization performance as a deep learning model, we run the
model on a test dataset; this was carried out to ensure the
effectiveness of the model in predicting outcomes for new and
unseen data. Test images are usually selected by randomly chosen
a sample of the collected data and excluded the sample from the
training process.

The Mask YOLOv7 implementation has been executed by
employing Google Colab and GPU for the model training. To
complete the training of the model, we based the parameters on
the total number of images in our datasets, which are 1000 images
per feedlot dataset and open-range dataset. Therefore, with a batch
size of 50, it takes 20 gradient updates to complete 1 epoch.
Furthermore, we trained the network using stochastic gradient
descent with 0.001 weight decay, 0.9 momentum, 0.01 initial
learning rate, and 0.5 confidence thresholds. After the training
was completed, the generated weight was used for the evaluation
and inference. Other specifications used are 64-bit of Windows 10
Operating System with 16 GB RAM.

To evaluate the performance of the proposed method in this
paper, precision, average precision (AP), and recall are employed
as the performance evaluation metrics. Precision refers to the
proportion of true positive prediction in all the positive prediction
Equation (1); recall refers to the proportion of true positive
prediction in all of the positives Equation (2). The precision—recall
curve measures the performance of the model based on how large
the area enclosed by the curve at different IOU thresholds. AP is
expressed in Equation (3). IOU, which stands for Intersection
Over Union, is defined as the area of intersection of predicted
bounding box and the ground-truth bounding box over the area of
their union as expressed in Equation (4).

True Positive

where N is the calculated number of PR points.

x 100 (4)

ANB
10U =
AUB

4. Results and Discussion

As mentioned earlier in the previous section, the performance
evaluation of the proposed method for cattle detection and
counting in both feedlot and open-range was performed to
compare it with other state-of-the-art detection algorithms. The
comparison experiments were carried out on the head and whole
body of the cattle.

4.1. Evaluation results on detection and counting

The IOU threshold employed in this work ranges from 0.1 to 0.95
for the APs for bounding box prediction. The precision—recall curve
results for whole body detection of the cattle in the feedlot, and
head and whole body detection of the cattle in the open-range are
shown in Figure 5. Cattle on the open-range are very easy to be
detected by the detection algorithm from their head to every other
part of their body more than cattle in the feedlot. The cattle in the
feedlot are restricted in motion with tendency to be found in
different positions such as lying down in their stock densities; this,
most often, makes it difficult for the detection algorithm to detect
their head, although the detection algorithm sometimes find it
difficult to detect cattle’s heads in the open-range especially
when the cattle on grazing are eating with their head bending
down.

Head detection matters in any cattle counting tasks; therefore,

= — _ (1)  due to the aforementioned issues, the performance of the proposed
True Positive + False Positive method on detecting cattle’s head in the feedlot was very low
compared to the full-appearance detection of the cattle. As
o True Positive @) mentioned earlier, IOU, which stands for Intersection Over Union,
" True Positive 4 False Negative is defined as the area of intersection of predicted bounding box
and the ground-truth bounding box over the area of their union as
N expressed in Equation (4); and the threshold, whose dependent
AP =) [R(n) = R(n — 1)]. maxP(n) ®) variable changes whenever its values which are between 0 and 1
Figure 5
Curves showing precision—recall metrics for the three detection cases
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reach optimal, is significant to the performance of object
detection tasks.

Choosing either a too large or too small threshold will lead to
predicting a bounding box that overlaps. For single label detection,
precision was chosen over any other metrics as standard evaluation
measure for the evaluation of variable thresholds where three
different detection cases were considered. At threshold of 0.5,
which is known as the equilibrium point, having the same values
in the three cases by precisions and recalls means that all the
predictions that are positive are the true positives. This paper
conducts experiment on detection and instance segmentation of
cattle object for their counting in an image; this is the major
reason why precision is preferred to any other metrics for the
instance segmentation task which is all about boundary extraction
of each cow in the image.

As presented in Table 1, the APs are computed for (1)
bounding box prediction which is used for the detection results
and (2) mask prediction which is used for the cattle object
counting by instance segmentation of the three detection and
counting cases over different values of IoU threshold at the
equilibrium points. As presented in Tables 1 and 2, the detection
of cattle instances and their counting accuracy in the three
detection and counting cases show great effectiveness of the
proposed method. Table 1 shows that the proposed Mask
YOLOvV7 method achieved detection accuracy of 90% AP for
bounding box in whole body detection in the feedlot, 83% AP in
head detection in the open-range, and 95% AP for whole body
detection in the open-range.

Table 1
AP scores for bounding box and mask detection for three
detection cases

Detection case AP% (bounding box) AP% (mask)

Head in open-range 83 80
Whole body in open-range 95 91
Whole body in feedlot 90 88

Table 2
Counting results for three detection cases

Detection case Counting accuracy (CA)% CA error (%)

Head in open-range 91 9

Whole body in 95 5
open-range

Whole body in feedlot 93 7

Furthermore, Table 1 also shows that the proposed Mask
YOLOv7 method achieved detection accuracy of 88% AP for
mask in whole body detection in the feedlot, 80% AP in head
detection in the open-range, and 91% AP for whole body
detection in the open-range. Table 2 shows that the proposed
Mask YOLOv7 method achieved 93% counting accuracy in
whole body detection result in the feedlot with 7% counting error,
91% counting accuracy in head detection result in the open-range
with 9% counting error, and 95% counting accuracy in whole
body detection result in the open-range with 5% counting error.

4.2. Comparisons of Mask YOLOv7 with other
mainstream object detection models

When evaluated and compared with other state-of-the-art models
such as YOLOV3 (regression-based technique), SSD (regression-
based technique), and Faster R-CNN (region proposals-based
technique) using the same datasets, Mask YOLOv7 (regression-
based technique) shows high speed and accuracy as presented in
Table 3 where YOLOvV3 achieved detection accuracy of 89% AP
for bounding box in whole body detection in the feedlot, 81% AP
in head detection in the open-range, and 93% AP for whole body
detection in the open-range; SSD achieved detection accuracy of
87% AP for bounding box in whole body detection in the feedlot,
79% AP in head detection in the open-range, and 90% AP for
whole body detection in the open-range; Faster R-CNN achieved
89% AP for bounding box in whole body detection in the feedlot,
82% AP in head detection in the open-range, and 92% AP for
whole body detection in the open-range.

For the counting results, YOLOvV3 achieved 91% counting
accuracy in whole body detection result in the feedlot, 89%
counting accuracy in head detection result in the open-range, and
93% counting accuracy in whole body detection result in the
open-range; SSD achieved 89% counting accuracy in whole body
detection result in the feedlot, 88% counting accuracy in head
detection result in the open-range, and 90% counting accuracy in
whole body detection result in the open-range; Faster R-CNN
achieved 91% counting accuracy in whole body detection result in
the feedlot, 90% counting accuracy in head detection result in the
open-range, and 92% counting accuracy in whole body detection
result in the open-range. Mask YOLOV7, as employed in the work
reported in this paper, has achieved the most accurate detection
(AP) and counting accuracy among the compared existing object
detection algorithms in the three detection and counting cases.
Going by these results, Mask YOLOvV7 represents effectiveness in
real-world applications regardless the scenes and circumstances
under which the images that formed the datasets were collected
such as images with complex background, overlapping, occlusion,
similarity in cattle coat color, and variation in illumination.
Figure 6 shows the comparisons of the prediction performance of

Table 3
Performance comparisons of counting results with competing models

AP%

Counting accuracy (CA)%

Head detection =~ Whole body detec- Whole body Head detection =~ Whole body detec- Whole body
Method (open-range) tion (open-range)  detection (feedlot)  (open-range) tion (open-range)  detection (feedlot)
YOLOV3 81 93 89 89 93 91
SSD 79 90 87 88 90 89
Faster R-CNN 82 92 89 90 92 91
Mask YOLOv7 83 95 920 91 95 93
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Figure 6
Comparisons of the prediction performance of the four object
detection algorithms on open-range test images

Mask YOLOv?

Figure 7
Comparisons of the prediction performance of the four object
detection algorithms on feedlot test images

YOLOv3 Faster R-CNN

SSD

the four object detection algorithms considered in this paper on open-
range test images, and Figure 7 shows the comparisons of the
prediction performance of the four object detection algorithms
considered in this paper on feedlot test images.

5. Discussion

Mask YOLOV7, a state-of-the-art object detection algorithm, is
proposed in this paper as a method for achieving cattle detection and
counting in drone vision system imagery. The major contribution of
this work lies in the high speed and accuracy of Mask YOLOv7
algorithm when applied to the cattle detection and counting tasks.
Mask YOLOV7 classifier was designed for binary classification of
object in the image (1 for cattle and 0 for no cattle) with the
confidence score and mask in place. Mask YOLOvV7 uses the
regression-based technique to carry out the instance segmentation of
the detected cattle object in the image, thereby making it achieve
high speed and accuracy compared to other aforementioned state-of-
the-art models. Instance segmentation is a popular method used in
object detection; it was applied in this paper to aid the counting of
cattle unlike the existing works in which the both of bounding box
and mask formulation are poorly addressed (Rivas et al., 2018).

The real-time monitoring of livestock for feeding, mating,
resting, and other behaviors as telltale for health-related conditions
requires a reliable detection technique such as keypoint detection

122

Mask YOLOv7

Faster R-CNN

SSD

in an image (Mayo et al., 2019; Wang et al., 2022), which is
addressed by Mask YOLOv7 in this paper as instance
segmentation method for real-time monitoring of farm animals
(Piette et al,, 2020). The performance of Mask YOLOV7 in
detecting cattle in the image requires that the input cattle features
are detected and extracted by the convolution layers from the
image acquired by the drone to form a feature map, and then, the
Mask YOLOV7 detection module detects the feature map sent to
it. Different precisions and recalls metrics at different thresholds
were measured quantitatively in order to give accurate assessment
of the Mask YOLOv7 performance; the evaluation revealed
threshold of 0.5 as a better value with AP greater than 90%.
However, threshold of 0.5 is adjustable to fit the application
scenario as there is no one-fit-all threshold in object detection. In
Bello et al. (2021a), threshold of 0.5 was used to achieve best results
in the cattle instance segmentation task. Cattle instance segmentation
helps in head detection of cattle although not as accurate as it does
for whole body detection. When compared, the detection of cattle
head for counting achieved 91% and 95% counting accuracy in
whole body detection result in the open-range. Many factors were
responsible for the unequal performance and difficulty in detecting
cattle head among which is pose variation caused by either movement
or grazing behavior of the cattle. As presented -earlier, the
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comparisons of the proposed Mask YOLOvV7 method with other state-of-
the-art algorithms on the same datasets for the three detection cases
justify the performance of Mask YOLOv7 over others. Mask
YOLOvV7 was applied to the cattle instance segmentation, thereby
adding to the performance of the YOLOV7 in the detection and
counting of the cattle. However, there was difficulty by the proposed
model to detect heads of cattle in the open range. This further
confirms the struggle that YOLOv7, like many other detection
algorithms, goes through to detect small objects.

The techniques employed in the monitoring of cattle using drones
and the challenges involved are considered in Alanezi et al. (2022) where
a strong case was presented for the application of drone systems for the
detection and counting of cattle over extensive properties with much
interest from animal husbandry. Conclusively, drone applications in
animal farming keep expanding geometrically especially in the feedlot
operations for monitoring livestock production and activities (Bello
et al., 2021b; Ghazali et al., 2022) so much so that its applications are
spreading with no barrier for industrial benefits.

6. Conclusion

Drone system application in animal farming is a technology that
made possible the detection and counting of animals such as cattle
for their inventory and welfare monitoring. In this paper, Mask
YOLOV7 model was embedded in the drone system for the cattle
object detection and instance segmentation. Annotated imagery
acquired with the aid of drone system was employed for the
performance evaluation of the proposed method, Mask YOLOvV7.
The proposed Mask YOLOv7 method achieved 93% counting
accuracy in whole body detection result in the feedlot, 91% counting
accuracy in head detection result in the open-range, and 95%
counting accuracy in whole body detection result in the open-range.
The evaluation revealed threshold of 0.5 as a better value with AP
greater than 90% at different precisions and recalls metrics. We have
as our future work automated cattle inventory system based on drone
integrated with enhanced Mask YOLOV7.
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