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Abstract:Graph neural networks (GNNs) have garnered substantial interest across different fields, including the automotive sector, owing to
their adeptness in comprehending and managing data characterized by intricate connections and arrangements. Within the automotive realm,
GNNs can be harnessed in diverse capacities to elevate effectiveness, safety, and overall operational excellence. This study is centered on the
assessment of various GNN models and their potential performance within the automotive sector, utilizing widely recognized datasets.
The objective of the study was to raise awareness among researchers and developers working on vehicle intelligence systems (VIS)
about the potential benefits of utilizing GNNs. This could offer solutions to various challenges in this field, including comprehending
complex scenes, managing diverse data from multiple sources, adapting to dynamic situations, and more. The research explores three
distinct GNN models named ViG, point-GNN, and few-shot GNN. These models were evaluated using datasets such as KITTI, Mini
Imagenet, and ILSVRC.
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1. Introduction

Applying artificial intelligence, especially machine learning, in
visual applications offers a broad range of possibilities. It finds utility
in various areas, including different areas such as fault diagnosis
analysis [1], surveillance and security [2], natural language
processing (NLP) [3], and numerous other fields [4]. This study
specifically concentrates on studying computer vision (CV) as one
of the main fields of artificial intelligence that is used in
transportation and traffic management, referred to as an intelligent
transportation system (ITS) [5].

The main praxis of CV has been characterized by convolutional
neural networks (CNNs). In image recognition applications, these
networks have always been the most used since they have always
worked relatively well. Their main drawbacks arise due to their
apparent differences with human vision [6]. For example, a CNN
will classify two identical images as different if noise is added to
one of them. In addition, such networks also experience problems
in recognizing images of the same object rotated, which is also
very easy for human eyes.

The application of CV in addressing challenges within the
vehicle industry is not a recent development. It commenced by
introducing conventional image processing techniques to identify
specific objects such as license plates in vehicles [7].
Subsequently, the research extended its scope to present more
intricate challenges, examining how traditional CV techniques
could operate on images captured by drones to offer valuable
insights into the automotive sector [8].

To advance in the direction of models closer to the behavior of
human vision, several research fronts have been opened. On the one
hand, vision transformers (ViT), whose main advantage over
convolutional networks lies in their ability to capture long-range
dependencies within an image, have begun to be used [9].
Moreover, combined with CNNs (CMTs or convolutional meets
transformers), good performance in classification tasks is achieved
[10]. On the other hand, self-attention-based architectures are
widely used in areas such as NLP. In the area of CV, CNNs are
still much more dominant. Many works have tried to combine
these architectures with self-attention [11, 12]. Even with good
results and consuming less computational resources, CNNs are
still state-of-the-art in this area of machine learning. This is
because such networks have not scaled effectively on modern
hardware due to the use of specialized attention patterns [13].
Graph neural networks (GNNs) have emerged in response to the
need to work with graph models. This concept has been
introduced first by Gori et al. [14]. This need arises because the
nature of certain data makes it much easier and more
computationally efficient to work with nodes that can be related to
each other. These relationships build up dependencies that can be
exploited to predict different patterns of behavior. If we can
classify certain behaviors, we can also predict and design them.
Examples of applications where such networks can greatly
improve performance include the modeling of certain physical
systems, where there are certain phenomena that can be related to
each other. For this same reason, GNNs are also used to predict
protein interface and to classify diseases. They are useful for
exploiting the relationship between GNN nodes. In the scope of
this paper, GNNs are used in the field of CV and more
specifically for the vehicle industry. GNNs have emerged as a
powerful tool in the automotive field, revolutionizing various

*Corresponding author: Lama Alkhaled, Department of Computer Science,
Lulea University of Technology, Sweden. Email: lama.alkhaled@ltu.se

Artificial Intelligence and Applications
2025, Vol. 3(2) 161–167

DOI: 10.47852/bonviewAIA42021556

© The Author(s) 2024. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

161

https://orcid.org/0009-0001-8059-7673
https://orcid.org/0000-0003-1343-1742
mailto:lama.alkhaled@ltu.se
https://doi.org/10.47852/bonviewAIA42021556
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


aspects of vehicle-related applications. GNNs excel in modeling
complex relationships and dependencies within graph-structured
data, making them well suited for tasks involving intricate
connections, such as traffic flow analysis, road network
optimization, and ITs. In the automotive industry, GNNs are
employed to enhance predictive maintenance by analyzing the
relationships among various components in a vehicle, predicting
potential failures, and optimizing maintenance schedules [15].
Additionally, GNNs contribute to autonomous vehicle
development by modeling and understanding the interactions
between different entities on the road, aiding in decision-making
processes for safe navigation. The ability of GNNs to capture and
leverage intricate relationships within graph-based datasets
positions them as a key technology for addressing challenges and
driving innovations in the dynamic and interconnected realm of
automotive systems [16]. In the context of CV, GNNs are used to
partition an image into a semantic graph consisting of a set of
objects and their semantic relationships. This procedure can be
seen in Figure 1. The theoretical concept will be faced in the
following points of this section, where the main advances of the
vision GNN model will be discussed [17].

2. GNN Models for Vision

The selection of GNN models such as ViG, point-GNN, and
few-shot GNN over other GNN models depends on the specific
requirements and characteristics of the given task or application.
One of the main issues while working on vehicle-related problems

is invariant representation of the collected objects from the
captured scenes, this kind of known issue might recommend the
use of the view-invariant representations. ViG model is designed
to capture view-invariant representations in graph-structured data.
Also, it is beneficial when the graph data involve diverse and
multiperspective information. The other selected model is point-
GNN. It is specifically designed for tasks involving point cloud
data. It excels in scenarios where the input data are represented as
a set of points in space. This makes it suitable for applications
such as 3D object recognition, segmentation, and processing point
cloud data from sensors like LiDAR. Lastly, few-shot GNN is
going to be tested, as it is tailored for scenarios where the
available labeled data are scarce. It addresses the challenge of
learning from a small amount of labeled samples. This is
particularly valuable in situations where obtaining a large labeled
dataset is impractical or expensive. This kind of problem is related
to most of the CV applications, and the vehicle is one of them.

2.1. ViG model

Themain architecture of themodel is based on the incorporation
of two modules that complement each other. First, there is a module
called Grapher, whosemainmission is to aggregate and update graph
information using graph convolution. Second, an fast forward
network (FFN) module with 2 networks is used for node feature
transformation and to promote node diversity. The following
paragraphs will go into more detail on each of the modules. In
Figure 2, the framework of the model is shown.

Figure 1
Image to graph procedure. In the following steps on building the graph, some semantic information can be included to form more

sensible relationships between nodes

Figure 2
Framework of the ViG model
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Comparing this model with previous graph convolutional
network (GCNs), it improves the feature diversity due to the
introduction of more feature transformations and nonlinear
activations. The general procedure consists of applying a linear
layer before and after the graph convolution. With this, the
Grapher module can be expressed as follows (see Equation (1) [17]):

Y ¼ σ GraphConv XWinð Þð ÞWout þ X (1)

where Win and Wout are the weights of the layers and σ is the
activation function.

2.2. Point-GNN model

The major challenges that we should keep in mind while working
on vehicle-related problems are high accuracy, high robustness, and real-
time responses [19, 20]. For example, in a situation like the one in
Figure 3, any slightest failure with respect to the factors mentioned
above can result in a major issue in the industrial world [21, 22].

The architecture proposed by the authors of this paper is divided
into three important sections: the construction of a graph starting
from a point cloud, a GNN of T iterations in charge of object
recognition and bounding box merging and scoring. Figure 4
shows the approach followed [23].

2.2.1. Graph construction

Given a point cloud of N points P ¼ p1; p2; :::; pNf gÞ; a
graph G = (P,E) is constructed, being E expressed as follows (see
Equation (2) [23]):

E ¼ f pi; pj
� �j jjxi � xjjj2 < rg (2)

Then, in order to finish building the graph, a cell list is used to
find point pairs that are within a given cutoff distance. It is also
notable to mention that building a graph from thousands of points
compromises computer performance, so the authors propose to
use a voxel downsampled point cloud P̂ for the graph construction.

2.2.2. Graph neural network
Vertex features are refined and updated by adding features

along the edges. Vertex features are updated as follows (see
Equation (3) [23]):

vtþ1
i ¼ gtðρðfetijj i; jð Þ 2 EgÞ; vti ÞÞ

etij ¼ f t vti ; v
t
j

� � )
(3)

The autoregistration mechanism is then introduced to predict an
alignment offset under the assumption that the central vertex contains
some structural features from the previous iterations. Finally,
multilayer perceptrons (MLP) are used as shown in Equation (4).

xti ¼ MLPt
h stið Þ

etij ¼ MLPt
f xj � xi þΔxti ; s

t
j

h i� �
stþ1
i ¼ MLPt

g Max eijj i; jð Þ 2 E
� �� �þ sti

9>=
>; (4)

2.2.3. Box merging and scoring
To ensure that the bounding boxes are outputted correctly, you

must merge the different outputs of the network, since multiple
vertices can be in the same object. Besides this, it is necessary to
assign a confidence score. This score is computed as the sum of
the classification scores weighted by the intersection-of-union
(IoU) [23].

2.3. Few-shot GNN

The concept of one-shot learning was initially presented by Li
et al. [24]. In their work, they posited that leveraging knowledge from
existing classes could aid in predicting outcomes for new classes,
even when only one or a few labels are accessible. In this work,
the model is based on a GNN, made of blocks-k (see Figures 5
and 6). These blocks are mainly composed by two different

Figure 3
Example of a complex situation in an autonomous vehicle

environment

Table 1
Result of ViG model

Model Params Flop (B) Top-1% Top-5 %

ViG- Ti 7.1 1.3 73.9 92
ViG-S 22.7 4.5 80.4 95.2
ViG-B 86.6 17.7 82.3 95.9

Table 2
Result of point-GNN model on KITTI

Models

Car

Easy Moderate Hard

Point-GNN 88.33 79.47 72.29
Voxel net [18] 81.97 65.46 62.85

Models

Pedestrian

Easy Moderate Hard

Point-GNN 51.92 43.77 40.14
Voxel net [18] 57.86 53.42 48.87

Models

Cyclist

Easy Moderate Hard

Point-GNN 78.6 63.48 57.07
Voxel net [18] 67.16 47.65 45.11
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structures: one that computes an N × N matrix representation of the
graph structure characterized as the adjacency matrix A(k) and a
graph convolutional block that computes an input feature matrix N*
F0 feature matrix, V Kþ1ð Þ where N is the number of nodes and F0 is
the number of input features for each node. To compute the adjacency
matrix, the input features pass through a set of fully connected layers. In
these terms, it is considered an MLP stacked after the absolute
difference between two vector nodes, as indicated by the following
equation (see Equation (5) [24]):

φθ̃ x kð Þ
i ; x kð Þ

j

� �
¼ MLPθ̃ abs x kð Þ

i ; x kð Þ
j

� �� �
(5)

In the graph convolution block, the input feature matrix V Kþ1ð Þ is
obtained after giving to it the adjacency matrix Ak and the input
feature matrix Vk as inputs [25].

3. Experimental Results

Different datasets related to vehicle industries are proposed to
use to evaluate the performance of the various GNNmodelsas shown
in Table 1.

For the first proposedmodel ViG, ImageNet ILSVRC2012 [26]
has been used, it has 120M training images and 50K validation
images, with 1000 categories.

This conducted experiment aims to use the facilities provided
by working with nodes and graphs in the context of CV. As we

Figure 4
Architecture structure followed by point-GNN

Figure 5
GNN illustration

Figure 6
GNN model. Three blue blocks are used for Omniglot and

Mini-Imagenet (nf= 96)

Table 3
Result of few-shot GNN model

Methods Technique Iterations Accuracy

5-way 1 shot 1000 92.65
5-way 5-shot 1000 97.035
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have already mentioned, working with graphs qualitatively improves
the performance of the systems. In our context, using graph
convolution directly on the generated graph results in low
performance. For this reason, more feature transformation has
been introduced to improve the diversity of information. This
architecture demonstrates a clear superiority over the other
architectures, so we can conclude that ViG architecture can serve
as a basis for future projects.

On testing the next model, KITTI (Karlsruhe Institute of
Technology and Toyota Technological Institute) [27] as one of the
known datasets related to vehicles will be used to evaluate the
performance. The KITTI dataset is one of the most widely used
and popular datasets within the area of autonomous driving. It
consists of 7481 training samples and 7518 testing samples. Each
sample has an image and an associated point cloud as shown in
Table 2 and Figure 7.

In this experiment, GNN proves to work better for the purpose of
detecting 3D objects from a graph representation of the point clouds
obtained by a LiDAR sensor as shown in Table 3. As we have
previously observed in the table of results, this network is generally

superior to the others in terms of object recognition in scene
understanding for autonomous driving. This demonstrates, among
other things, the superiority of GNNs over CNNs in this area. This
superiority will translate into a proliferation in the implementation
of these techniques in the future. We will see how these techniques
evolve and combine with others, making the world of autonomous
driving more and more developed, generating better, safer, and
more accessible models for the general population. In the following
experiment, few-shot model will be used over KITTI dataset. The
model has been conducted in a virtual environment with Ubuntu
22.04, Python 3.8, and Pytorch 1.12. In this case, only the image
sequences with their respective labels have been used, unlike the
second experiment, where the data corresponding to those captured
by the LiDAR sensor were used. This dataset has 8 different
classes as described in Table 4.

These results indicate that, even with fewer iterations than with
the Mini-ImageNet dataset [28], we have obtained a better object
recognition accuracy. The main difference between ImageNet and
Mini-ImageNet is that Mini-ImageNet typically includes a reduced
number of classes compared to the full ImageNet dataset.

The analysis of three distinct GNN models reveals that
employing the few-shot learning technique results in higher
accuracy compared to the other two models. This is particularly
valuable in scenarios where we have a shortage of labeled data
inputs. In our specific field, although we possess extensive
datasets with labeled inputs, it remains intriguing to apply these
techniques within the realm of autonomous driving. Exploring
these methodologies could potentially pave the way for novel
research domains and innovative approaches that build upon the
aforementioned concepts.

4. Conclusion

The integration of GNN models in the automotive industry
holds the promise of significantly improving task outcomes and
effectively tackling various challenges. Generally, harnessing the
capabilities provided by node and graph operations in CV
enhances performance across diverse systems. GNNs exhibit
notable effectiveness, especially in the realm of 3D object
detection using graph representations derived from LiDAR sensor
point clouds. Additionally, few-shot GNN demonstrates superior
object recognition accuracy with fewer iterations, as demonstrated
in the Mini-Imagenet dataset. Testing these techniques with
limited data is valuable in scenarios where abundant labeled
inputs are scarce. While our specific domain benefits from
extensive datasets, exploring these techniques in the context of
autonomous driving could uncover new research areas and
innovative methods. It is important to note that not all issues
necessitate complex GAN models, and careful consideration of
specific task requirements, data characteristics, and constraints
should guide model selection. The nature of the data, available
computational resources, and the desired balance between
accuracy and efficiency in real-time applications should influence
model choices, with attention to the automotive field’s demands
for robustness, interpretability, and safety.

5. Future Work

Our next focus will be on constructing a predictive model for
animal trajectory movements within the context of autonomous
driving. This model would anticipate the movements of animals,
drawing from their typical biological behaviors observed on our

Table 4
Result of different GNNs’ models on KITTI

Models

Car

Easy Moderate Hard

Point-GNN 88.33 79.47 72.29
ViG 76.12 65.23 52.6
Few-shot GNN 91.23 86.9 78.4
Voxel net [18] 81.97 65.46 62.85

Models

Pedestrian

Easy Moderate Hard

Point-GNN 51.92 43.77 40.14
ViG 40.3 22.6 16.8
Few-shot GNN 76.5 66.8 58.9

Models

Cyclist

Easy Moderate Hard

Point-GNN 78.6 63.48 57.07
ViG 67.16 47.65 45.11
Few-shot GNN 89.3 78.9 70.5

Figure 7
Qualitative results of point-GNN performance

with the KITTI dataset
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roadways. Such an initiative would play a crucial role in accident
prevention, enabling vehicles to predict animal trajectories with
varying degrees of precision. Consequently, vehicles could make
more informed decisions in these scenarios, contributing to
enhanced safety measures.
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