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Abstract: Soil moisture sensing plays a crucial role in agriculture as it directly impacts plant growth and can significantly enhance crop
productivity. With the advent of technology, agriculture applications have undergone a revolution, enabling more advanced and efficient
practices. One such advancement is the use of soil moisture sensors, which provide valuable information about the current water level of
the soil, including whether it is dry, wet, or excessively saturated. These sensors have become indispensable tools for farmers and
growers, empowering them to make informed decisions regarding irrigation schedules, water management strategies, and overall crop
health. By accurately assessing soil moisture levels, farmers can optimize water usage, prevent water stress or overwatering, and
promote healthier plant development, ultimately leading to improved yields and sustainability in agriculture. The objective of the
proposed study is to investigate the effective soil moisture sensors by considering three sensors and an automated system for watering
the soil for agriculture. A comparative analysis is performed for different commercial off-the-shelf soil moisture sensors in cost,
accuracy, durability, and corrosion resistance. Secondly, this study further gives soil moisture reading as data input to the convolutional
neural network to classify whether water is required or not for the soil at a particular temperature which would help to conserve water
and develop agriculture.

Keywords: convolutional neural network, soil moisture sensors, [oT, smart irrigation system, accuracy

1. Introduction

The Internet of Things (IoT) is defined as a network of physical
objects, including furniture, machines, automobiles, and buildings,
that are connected to the Internet and have sensors, electronics,
software, and network connectivity. IoT is changing how we
work, live, and interact with the world. The fundamental idea
behind IoT is to connect physical objects to share data and even
carry out automatic tasks. Several industries, including medicine,
shipping, production, agriculture, and more, could undergo radical
change as a result of this technology. IoT devices come in many
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shapes and sizes, from tiny sensors to massive machines, and they
are capable of a variety of tasks, such as monitoring, controlling,
automating, and optimizing. IoT devices can also aid in collecting
data and analysis, allowing organizations and people to make
better decisions and increase productivity.

In the field of agriculture, IoT is playing a vital role in all
aspects. Many technical improvements made farming easier,
especially, soil-related works such as checking soil moisture and
quality of the soil. Soil sensors are electronic devices that are used
to measure the temperature, moisture, and nutrient content of the
soil. These sensors are frequently used in horticulture, agriculture,
and other disciplines that focus on cultivating plants. In order to
maximize crop yields and enhance soil health, they offer farmers
and researchers useful data. In order to assess the soil’s electrical
conductivity or resistance, soil sensors must be inserted into the
ground. This measurement is translated into a reading that may be
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comprehended by the user. Some sensors are also able to determine
salinity and pH levels [1]. The data obtained by soil sensors can be
utilized to make informed decisions regarding watering, fertilizer,
and other procedures that affect plant growth. Similar to this,
growers can add fertilizers to the soil to boost plant health if the
sensor determines that it is deficient in particular nutrients. Some
applications of the IoT are smart agriculture monitoring soil, crop,
livestock, weather, and farming equipment [2].

The motivation of the study is that the key element in plant
growth and development is soil moisture. Farmers and scientists can
adjust irrigation schedules, fertilizer use, and other agricultural
methods to enhance crop yields by analyzing soil moisture. This is
particularly crucial in areas with limited water supplies or those that
experience drought. Indicators of environmental circumstances, such
as the effects of climate change and land-use practices, can also be
found in soil moisture. By measuring soil moisture, researchers can
acquire insight into the well-being and long-term viability of
ecosystems. Figure 1 explains the benefits of smart irrigation using
IoT with artificial intelligence [3].

The proposed system offers automated decision-making about
soil irrigation, helping to optimize water use and enhance agricultural
practices. It does this by fusing the capabilities of a soil moisture
sensor, IoT connection, and a CNN model. The remainder of the
paper is organized as follows: Section 2 describes the related
works which were carried out in this research area previously. In
Section 3, the experimental setup, analysis of different soil water
level measuring techniques, different soil moisture sensors, and
technical comparison of Long Range (LoRa) and Narrowband
Internet of Things (NB-IoT) are all described in depth. Deep
learning classifier is used for classifying the water requirement.
The results as well as the discussion are explained in Section 4.
The limitations and future works are discussed in the conclusion part.

2. Literature Review

Many studies have been conducted in the past for soil moisture
identification using IoT sensors which is very helpful in agriculture
and farming using machine and deep learning methods.
Schwamback et al. [4] propose that the trade-off between cost and
accuracy is compared between inexpensive and advanced soil
moisture sensors. The capacitive sensor SKU:SEN0193 was tested

in the lab and on the ground for the study. In addition to
individualized calibration, two streamlined calibration processes
are suggested: worldwide calibration based on all 63 detectors and
a single-point calibration using sensor response in dry soil.

Abdelmoneim et al. [5] analyze the development and lab
validation of an inexpensive IoT soil moisture tensiometer.
R2 =0.99 indicates that the IoT-prototype can gauge tension up to
roughly 80 Kpa when compared to a tensiometer with a
mechanical manometer that is identical. By uploading the
measured points to a cloud service platform utilizing an ESP32
MCU, BMP180 barometer sensor, and an SD card module, it
generates an online soil water potential curve.

Immanuel and Sangeetha [6] presented the best crops for the
specific soil. When water is required, the field is irrigated with
enough water. When the level of water in the field attains a certain
height or the level of water in the well reaches a certain level, the
system sensor detects it and shuts off the pump motor automatically.
As a result, physical exertion is reduced, and the field is effectively
watered. Furthermore, the pump motor’s working life is extended.

Raghuvanshi et al. [7] propose a virtual soil moisture sensor
powered by deep learning algorithms. This approach aims to enhance
smart farming by providing reliable soil moisture data without the
need for extensive physical sensors. Sinha and Gupta [8] focus on
creating a deep learning-based model for smart irrigation sensors.
The model aims to improve the prediction accuracy of soil moisture
levels, thereby optimizing irrigation practices.

The motivation for this study arises from the critical need to
enhance agricultural productivity and sustainability through precise
water management. Soil moisture sensing is pivotal in agriculture, as
it directly influences plant growth and can significantly boost crop
yields. Traditional irrigation methods often lead to water wastage or
insufficient watering, which can harm crop health and reduce
productivity. The advent of advanced technology in agriculture offers
innovative solutions to these challenges, with soil moisture sensors
standing out as indispensable tools for modern farmers. These
sensors provide real-time data on soil water levels, enabling farmers
to make informed decisions about irrigation schedules and water
management strategies. By integrating soil moisture sensors with
deep learning techniques, specifically CNNs, this study aims to
optimize water usage, prevent water stress, and avoid overwatering.

3. Soil Moisture and Measurements

In this section, different types of soils, their moisture levels, and
the measuring techniques for the moisture have been discussed.

3.1. Soil type

For the study, three different soils are chosen. The comparison
has been made among the three types of soils. Moisture test is
conducted for all the three types of soil at three different temperatures.

1) Clay soil: Clay soil is composed of fine particles and has a
smooth texture [9]. It is sticky and heavy when wet and can
become hard and compact when dry.

2) Silt Soil: Silt soil consists of granules that fall between the sizes of
sand and clay. It is smooth and can be easily molded and has
moisture retention properties.

3) Loam Soil: Loam soil is a mixture of clay, silt, and sand particles
in roughly equal proportions. It has a crumbly texture and good
drainage and moisture retention properties, making it a better
option for gardening and agriculture.
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3.2. Soil moisture and its types

The term “soil moisture” describes the water level in the soil. It
is an important factor in plant growth and development, as well as in
ecosystem health and water resource management. The soil
moisture can be classified as three types and saturation occurs
when the soil is completely filled with water, and there is no
room for air [10]. This can happen during heavy rain or
flooding, and it can lead to soil erosion and nutrient loss. Field
capacity refers to the maximum amount of water that the soil can
hold against gravity. At field capacity, the soil is still moist, but
excess water will drain away. This is the ideal moisture level for
most plants to grow. The wilting point is the point at which
plants can no longer extract water from the soil. At this point,
the soil is too dry for most plants to survive. The wilting point is
influenced by factors such as soil texture, climate, and plant
species [11].

Measuring soil moisture is important for understanding plant
growth and water resource management. There are several
methods for measuring soil moisture, including gravimetric
sampling, soil water tension, and time domain reflectometry. By
monitoring soil moisture levels, farmers, researchers, and land
managers can make informed decisions about irrigation, fertilizer
application, and other agricultural practices.

3.3. Soil moisture measuring techniques

The technique involves taking a soil sample, weighing it, drying
it in an oven, and then weighing it again to determine the amount of
water that was present. The method provides accurate results but can
be time-consuming and labor-intensive.

3.3.1. Gravimetric sampling

Direct soil moisture measurement techniques involve physically
measuring the water level in the soil. The most common direct soil
moisture measurement technique is gravimetric sampling, which
involves taking a soil sample, weighing it, drying it in an oven, and
then weighing it again to determine the amount of water that was
present. The method provides accurate results but can be time-
consuming and labor-intensive.

3.3.2. Moisture sensors

Another direct soil moisture measurement technique is the use
of moisture sensors or probes, which are inserted into the soil to
measure the amount of moisture present. These sensors can be
either electrical or mechanical, and they measure the water
content of the soil using various methods. An electrical sensor is
a time domain reflectometry sensor. The moisture content of the
soil affects the speed at which the pulse travels, allowing for
accurate measurements of soil moisture. A mechanical sensor is
the tensiometer, which measures the soil’s moisture tension, or
the energy required to extract water from the soil. The
tensiometer measures the soil moisture tension using a ceramic
cup and a gauge that measures the pressure required to extract
water from the soil [12].

3.4. Radiation technique and indirect/modern soil
moisture measurement techniques

Radiation-based techniques are modern and indirect methods of
measuring soil moisture that use the principles of electromagnetic
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radiation to estimate the moisture content of soil. There are
two types of radiation-based techniques for soil moisture
measurement: neutron probe and gamma-ray probe [13].

3.4.1. Neutron probe technique

The neutron probe technique involves the use of a neutron
probe, which is a specialized instrument that emits a beam of
neutrons into the soil. These neutrons interact with the hydrogen
atoms in the soil, and the resulting energy is measured by a
detector. The moisture content of the soil can be estimated based
on the number of hydrogen atoms in the soil, which is directly
related to the soil moisture content [14]. The neutron probe
technique provides accurate and precise measurements of soil
moisture, but it requires specialized equipment and expertise to
operate. The technique is also relatively expensive and time-
consuming, making it more suitable for research applications than
routine soil moisture monitoring.

3.4.2. Gamma-ray probe technique

The soil moisture content can be determined using the gamma-
ray probe technique, which uses a gamma-ray source and detector.
The gamma rays emitted by the source pass through the soil and
are absorbed by the water molecules in the soil [15]. The amount
of gamma-ray absorption is proportional to the soil moisture
content, and this information is used to estimate the soil moisture
content. The gamma-ray probe technique [6] is relatively fast and
non-invasive, making it well-suited for routine soil moisture
monitoring in agricultural and environmental applications.
However, it requires specialized equipment and expertise to
operate, and safety considerations must be taken into account
when using gamma-ray sources.

3.5. Resistive technique indirect/modern soil
moisture measurement techniques

Two main types of resistive soil moisture sensors are used to
measure the soil moisture. There are granular matrix sensors and
frequency domain reflectometry (FDR).

3.5.1. Granular matrix sensor

Granular matrix sensors use porous granular material, such as
gypsum, to identify the soil water content. The granular material
absorbs moisture from the soil, and the electrical resistance of the
granular material changes as the moisture content changes. The
resistance is measured by electrodes embedded in the granular
material, and the moisture content is estimated based on the
resistance measurement [16].

3.5.2. FDR sensor

FDR sensors use a metallic probe that is inserted into the soil.
The probe emits electromagnetic waves at different frequencies,
which are reflected back from the soil. The reflection of the
waves from the soil is related to the soil’s dielectric constant,
which is related to the soil water content. The change in
dielectric constant due to soil moisture is measured, and the
moisture content is estimated based on the measured dielectric
constant [6, 17].

The resistive technique is relatively simple, inexpensive, and
provides accurate and reliable estimates of soil moisture content.
This technique is widely used in agriculture, environmental, and
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ecological applications due to its non-destructive nature and ease of
use. However, the resistive technique is affected by factors such as
soil salinity, temperature, and the presence of rocks and other
obstructions in the soil, which can impact the accuracy of the
estimates. Calibration of the resistive sensors is required for each
soil type and texture to obtain accurate and reliable estimates of
soil moisture content [18].

3.6. Working

In this section, three types of soil moisture sensors are explained
with their specifications namely capacitive soil moisture sensor
V1.2, capacitive soil moisture sensor V2.0 and Grove — Resistive
Soil Moisture Sensor [19].

3.6.1. Capacitive soil moisture sensor V1.2

The sensor is capacitive version 1.2 and works well with all
climatic conditions. Figure 2 shows the sensor of capacitive
moisture detector. Table 1 depicts the specifications of the version
1.2 sensor.

3.6.2. Capacitive soil moisture sensor V2.0
The details of the capacitive soil moisture sensor V2.0 are
explained in Table 2 and Figure 3 The V2.0 sensor.

3.6.3. Grove: Resistive soil moisture sensor
The specification of resistive soil moisture sensor is explained
in Table 3 and Figure 4.

Figure 2
Capacitive soil moisture sensor V1.2

Table 1

Specification of capacitive soil moisture sensor V1.2
Sr.No Parameter Values
l. Operating Voltage Range 33-55V
2. Output Voltage Range 0.0-3.0V
3. Operating Current 5 mA
4. Interface PH2.54 -3.0P
5. Dimension of Sensor 5X4x3cm
6. Weight 30 gm

3.6.4. Arduino Uno

A microcontroller board called Arduino Uno depends on the
ATmega328P-PU. In this paper, it is utilized to transmit and receive
sensor data by connecting the soil moisture sensors. Code is written
in a simplified form of C++ and executed on a PC via a USB
connection to an Arduino board Bertocco [20]. The description of
the Arduino Uno board is shown in Figure 5 and Table 4.

Table 2

Specification of capacitive soil moisture sensor V2.0
S.No Parameter Values
1. Operating Voltage Range 33-55V
2. Output Voltage Range 0.0-3.0V
3. Operating Current 5 mA
4. Interface PH254-3.0P
5. Dimension of Sensor 5%X4x3cm
6. Weight 15 gm

Figure 3
Capacitive soil moisture sensor V2.0

Table 3

Specification of Grove: Resistive soil moisture sensor
S.No Parameter Values
L. Operating Voltage Range 33-50V
2. Output Voltage Range 0.0-3.0V
3. Operating Current 35 mA
4. Interface PH2.54-3.0P
5. Dimension of Sensor 2.0 X 6.0 cm
6. Weight 10 gm

Figure 4
Grove: Resistive soil moisture sensor
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Figure 5
Arduino board
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Table 4
Specification of Arduino Uno board

S.No Parameter Value range

1 Microcontroller used ATmega328

2 Operating Voltage Range 5V

3 Input Voltage Range 6-20V

4 Output Voltage Range 0.0-3.0V

5 Operating Current 5 mA

6 Interface PH254-30P
7 Dimension of Sensor 5X4x3cm

8 Weight 15 gm

3.7. Technical comparison of LoRa and NB-IoT

LoRa and NB-IoT are two popular wireless communication
technologies used in the IoT applications. Both technologies are
designed to support low-power, wide-area networks and provide
long-range communication capabilities [21]. However, there are
some key differences between the two technologies.

LoRa uses a proprietary chirp spread spectrum modulation
technique [22], while NB-IoT [23] uses narrowband orthogonal
frequency-division multiplexing modulation technique. LoRa
uses a wide bandwidth (up to 500 kHz), whereas NB-IoT uses a
narrow bandwidth (up to 200 kHz). LoRa operates in unlicensed
frequency bands (ISM bands) and NB-IoT operates in licensed
frequency bands. LoRa has a longer range compared to NB-IoT
[24]. LoRa can cover a range of up to 10 km in rural areas,
while NB-IoT has a range of up to 1-2 km in urban areas. LoRa
has a lower deployment cost compared to NB-IoT since it
operates in unlicensed frequency bands and does not require
expensive licensing fees. Hence, LoRa performance is better
than NB-IoT for this study, and Figure 6 shows the LoRa
wireless communication system [25].

The working setup of the model to identify the soil
moisture whether it is dry, wet, and more water is depicted in
Figure 7. The three different soils with three different water
levels [26] test is conducted with complete setup as shown in
Figure 7.

3.8. Hardware and software requirement for the
experiment

The hardware requirements for the experimental setup are
given below.
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Figure 6
LoRa

1) Capacitive sensors (V1.2 and V2.0)

2) Resistive sensors (SENO114 and Grove)
3) Arduino Uno board x 2

4) Laptop/PC x 1

5) LoRa Shield x 2

Software Description
1) Arduino Integrated Development Environment
2) The Things Network

3.9. Classifier

Data from the soil moisture sensor readings are given as input to
the deep convolutional neural network. The data are converted into
tables where columns represent the moisture reading in different
temperatures. The rows represent the different types of soil [26].
The working setup of the sensor for different type of soils is
mentioned in Figure 8.

The input is passed to a three-layered neural network. Each
layer consists of convolution layer, concatenation layer, 1 X 1
filter, and max pooling layer. The data goes through all the layers
of the system and finally reaches the fully connected layer. The
classification is done by classifying whether water needs to be
supplied to the soil and not required [8]. It is a binary
classification model where 0 is water not required and 1 is water
required and accuracy obtained is 95.23%. With the help of the
classifier, irrigation can easily identify whether soil is wet or not.
The proposed model from input data to the classified output is
explained in Figure 8.!

4. Experimental Results

This section discusses the experimental findings, which are
divided into three sections depending on the input from the three
soil moisture sensors [7]. Three soils, silt, loam, and clay are used
in the experiment to obtain sensor readings at three different
temperatures: room temperature, 30°C, and 45°C. To check the
accuracy of the sensor, or how closely measured and actual values
relate to one another, the measured readings of the sensor are
compared with values from the datasheet. The sensor’s measured
results indicate whether the soil is dry, wet, or watery. Since the

Thttps://www.electronicshub.org/interfacing-soil-moisture-sensor-with-arduino/
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Figure 7
Proposed model architecture
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Figure 8
Working setup of system

manufacturer defines these values, the actual values for these states
differ from sensor to sensor [27].

4.1. Capacitive soil sensor V 1.2

The experiment is performed at room temperature for five
values of water content, i.e., 20%, 40%, 60%, 80%, and 100%.
Figure 9 shows the sensor reading and graph for silt, clay, and
loam soils with different moisture content at room temperature,
30°C, and 45°C, respectively. According to the observation, Dry
water level: [420,500]; Wet water level: [380,420]; Watery level:
[250,380] [28].

4.2. Capacitive soil sensor V 2.0

The experiment is performed at room temperature for five water
content values, i.e., 20%, 40%, 60%, 80%, and 100%. Figure 10
shows the sensor reading and graph for silt, clay, and loam soils
with different moisture content at room temperature, 30°C, and
45°C, respectively. According to the observation, Dry water level:
[410,500]; Wet water level: [360,410]; Watery level: [250,360].
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Figure 9
Graphical representation of capacitive soil moisture V1.2 (30 °C, 45 °C and room temp). Capacitive soil sensor V1.2 (Room temp)
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4.3. Resistive sensor (Grove)

The experiment is performed at room temperature for five
values of water content, i.e., 20%, 40%, 60%, 80%, and 100%
[29]. Figure 11 shows the sensor reading for silt, clay, and loam
soils with different moisture content at room temperature, 30°C,
and 45°C, respectively. According to the observation, Dry water
level: [0,280]; Wet water level: [280,680]; Watery level: [680,930].
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Tables 5 and 6 depict the summary of results. According to
comparison 4, the capacitive V2.0 sensor is the most accurate,
corrosion-resistant, and durable of all the sensors, whereas the
capacitive V1.2 sensor is less accurate than the V2.0 sensor but is
also the most corrosion-resistant, durable, and least expensive
[30]. The trade-off between expense and precision exists.
Therefore, depending on the needs, such as precision or cost, both
can be employed for agricultural purposes. However, as was
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Figure 10
Graphical representation of capacitive soil moisture V2.0 (30 °C, 45 °C, and room temp)
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already said, resistive sensors can be less precise, more expensive,
and less long-lasting.

The current study faced several limitations, including a limited
range of tested sensors and controlled environmental conditions,
which may not fully represent real-world scenarios. Only three
soil types were considered, and sensor calibration details were
sparse, potentially affecting measurement accuracy. Furthermore,
the study did not extensively explore the cost implications of
implementing the automated system. For future work, expanding

the range of sensors and conducting field experiments under
diverse  environmental  conditions  will provide more
comprehensive insights. Advanced calibration techniques,
integration with [oT platforms, and more sophisticated machine
learning models can enhance accuracy and reliability.
Additionally, exploring cost-benefit analyses, sustainability
impacts, and user-friendly interfaces can facilitate the adoption of
smart agriculture technologies, promoting efficient water use and
improved crop yields.
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Figure 11
Graphical representation of resistive sensor (Grove) (30 °C, 45 °C, and room temp)
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Table 5
Summary of results — I
Sensor type Temperature Water content levels Dry water level Wet water level Watery level
Capacitive soil sensor V1.2 Room Temp 20%, 40%, 60%, 80%, 100% 500 — 420 420 — 380 380 — 250
30°C 20%, 40%, 60%, 80%, 100% 500 — 420 420 — 380 380 — 250
45°C 20%, 40%, 60%, 80%, 100% 500 — 420 420 — 380 380 — 250
Capacitive soil sensor V2.0 Room Temp 20%, 40%, 60%, 80%, 100% 500 — 410 410 — 360 360 — 250
30°C 20%, 40%, 60%, 80%, 100% 500 - 410 410 — 360 360 — 250
45°C 20%, 40%, 60%, 80%, 100% 500 - 410 410 — 360 360 — 250
Resistive sensor (Grove) Room Temp 20%, 40%, 60%, 80%, 100% 0—280 280 — 680 680 — 930
30°C 20%, 40%, 60%, 80%, 100% 0-280 280 — 680 680 — 930
45°C 20%, 40%, 60%, 80%, 100% 0-280 280 — 680 680 — 930
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Table 6
Summary of results — IT
Capacitive soil Capacitive soil Resistive

Criteria sensor V1.2 sensor V2.0 sensor (Grove)

Accuracy Moderate High Low

Corrosion High High Low
resistance

Durability High High Low

Cost Low Moderate ~ Moderate to High

Overall Good Best Poor
performance

5. Conclusion

People’s primary source of food comes from agriculture, and it is
crucial to keep an eye on the crops’ yield and quality. For instance,
smart irrigation, soil moisture monitoring, and other smart
technology should be used to provide a sustainable environment for
agriculture. A procedure where numerous sensors are combined with
communication technology to track environmental changes brought
on by various external elements is referred to as “smart agriculture”.
The data gathered from this process is then optimized to help
farmers make informed decisions. The capacitive soil moisture
sensor V2.0 performs better than the capacitive soil moisture sensor
V1.2 and resistive sensor — Grove sensor with more accuracy. The
classifier CNN classifies the given data from sensor reading for
smart irrigation. It classifies as water required or water not required
for the soil. Future work can be carried out as an automated drip
irrigation system for agriculture which would save water.
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