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Abstract: Pipes age and corrosion are themain factors of leakage inwater distributionnetworks.According to theWorldResources Institute, European
countries will face water problems by 2040. If we take Italy as an example, more than 40% of drinking water was lost in 2020 due to leaky aqueducts.
Decrepit pipes can lead to environmental concerns, economical losses, and potential public health problems if water gets contaminated. Localizing
leakagepositions in an accurateway is often a big challenge.On the other side, replacingdecrepit pipes is not an easy task andusually costly.Anoptimal
solution to deal with water leakage is to use smart pipes where appropriate sensors monitoring the conditions of the pipes are incorporated in.
Digitalization plays a crucial role here. By providing accurate information about the pipes and using artificial intelligence techniques for data
analysis, potential leakages and their corresponding positions can be detected in time, which allows to schedule a maintenance task as soon as
possible. The current paper discusses the use of smart pipes combined with predictive maintenance and shows how this combination improves
water leakage detection, hence minimizing water waste and protecting the environment. The solution was validated in an experimental setup put
in place by the Italian company EKSO S.R.L in its factory facilities in Rozallo, Italy. The obtained results show the feasibility of the solution
and the relevance of using artificial intelligence techniques for predicting degradation in smart pipes.
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1. Introduction

Water distribution networks are prone to leakagewhich is in general
due to pipes age and corrosion (Alawadhi & Tartakovsky, 2020).
According to the American Society of Civil Engineers (2021) and
Gebelhoff (2023), there was a water main break every two min and
roughly 6 billion gallons of treated water were lost every day in the
United States (US). The situation in Europe is not much better.
According to the World Resources Institute, European countries will
face water problems by 2040. The World Wildlife Fund states that the
water issues will affect 17% of the European people and 13% of
Europe’s GDP by 2050 (Karimli, 2023). If we take Italy as an
example, it seems this country is wasting more and more water from
leaky aqueducts. In a report published by the national statistics bureau
“ISTAT 1,” it is stated that in 2020, Italy’s aqueducts had lost 42.2%
of the water they carried (Cinelli, 2023). Decrepit pipes can lead to
environmental concerns, economical losses, and potential public health
problems if water gets contaminated (Alawadhi & Tartakovsky,
2020). What makes the situation worse is the fact that water utilities
are often not required to track water losses (Gebelhoff, 2023). Even if
this information is provided, it is difficult to localize more accurately

the leakage positions. On the other side, replacing decrepit pipes is not
an easy task and often costly. An optimal solution to deal with water
leakage is to use smart pipes (e.g., Figure 1) where appropriate
sensors are incorporated in. In addition to the sensors, some
communication means are also put in place which allows to monitor
the conditions of the pipes and their contents. Although smart pipes
are not widely deployed, the related technologies seem to be
promising. A concrete example is given by the Italian company
EKSO S.R.L2 that has already experienced manufacturing pipes with
embedded grids of Fiber Bragg Grating (FBG) from the production
stage. FBG is a type of distributed net that reflects particular
wavelengths of light and transmits all others. By combining signals
coming from the pipe “sensors” set along the pipe, the pipes
continuity/integrity can be evaluated. This is achieved by creating a
periodic variation in the refractive index of the fiber core, which
generates a wavelength-specific dielectric mirror. Hence, FBC can be
used to block certain wavelengths or as wavelength-specific reflector.

The main advantage of using smart pipes is the ability to monitor
in a continuousway the status of the pipes and predict potential leakages
in an accurate way and in time. Indeed, the data transmitted from the
sensors will be analyzed using artificial intelligence techniques, and
pipes conditions information will be made available to the water
utilities operators. Combining the use of smart pipes with a
predictive maintenance service has tangible results. In case, some
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anomalies or potential leakages are accurately detected, the operators
can schedule early enough a reparation task or a pipe replacement.

In this paper, we will discuss a pilot showing how the use of smart
pipes combined with predictive maintenance can improve water leakage
detection, hence saving vital nature resources. The pilot was achieved in
the EKSO S.R.L factory facilities in Rozallo (RG), Italy (Figure 2). This
location is themain EKSOproduction site, while it features more than 10
km of different types of smart pipes of many different cross sections and
configuration just for experimentation purposes.

This paper is organized as follows. Section 1 introduces the
topic being investigated. Section 2 discusses the related state of
the art. Section 3 highlights the algorithm that was implemented,
Section 4 presents the experimental results, and Section 5
concludes the paper.

2. Literature Review

Exploring leakage detection in water pipes networks was
tackled in the literature from different angles.

In Sadeghioon et al. (2014), a novel pressure sensing method able
to measure pressure changes due to leaks was explored and its
performance was shown in laboratory and field trials. These pressure
changes can be used in detecting the corresponding leakage positions.

In Alawadhi and Tartakovsky (2020), it was shown that Bayesian
data assimilation, combined with the method of distributions, can be a
powerful tool for detecting small leaks in the presence of uncertain
conditions and ambient noise. This approach was explored by the
authors because it seems that describing transient flow in pipe networks
using water hammer equations is not effective as factors such as initial
and boundary conditions, and location and strength of a possible leak
can render deterministic predictions of this system unreliable.

InVirk et al. (2020), detecting leaks andclassifying their corresponding
sizes were explored in wall-mounted pressurized water pipelines through
vibrations measurements using low-power accelerometers. Here, three
techniques, support vector machine (SVM), k-nearest neighbors, and
decision tree, were used and their results were compared. Their
simulation is based on MATLAB and shows that SVM provides the best
results. This paper also provides a good survey of pipeline testbeds and
their contributions to leak detection and localization. The approach
followed in Virk et al. (2020) and the approach discussed in the current
paper are similar; however, our approach explores the use of deep
learning networks and vibration sensors in detecting leakages and their
corresponding positions. Our implementation, which is meant to be part
of a predictive maintenance service, is in Python, built on top of solid
machine learning libraries such as Tensorflow, and uses TPUs to
accelerate machine learning workloads.

Figure 1
(Left) FBG sensing approach. (Right) Smart pipe structure and digital twin initial approach

Figure 2
EKSO pilot location in Rozallo, Italy
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Maintenance is a service that technicians need to perform regularly
or on demand to keep machines and equipment operational.
Traditionally, maintenance can be seen as two categories, corrective
or preventive. Corrective maintenance is applied when a given part
is broken and needs to be repaired. Unfortunately, this approach
might have long downtimes. For the preventive maintenance, the
part will be replaced even it is not broken. This will be achieved, for
example, by defining a fixed lifetime for each part. This approach
can be cost inefficient because the replaced parts can still be in good
condition and used for longer (Mobley, 2002; Rebahi et al., 2023).
As maintenance is a cost driver in many industries with clear
benefits (Lowin & Mihale-Wilson, 2021), data-driven predictive
maintenance seems to be the optimal solution. This new approach
aims at detecting machine failures, degraded performance, or a
downtrend in product quality before one of these occurs (Lughofer
& Sayed-Mouchaweh, 2019). Predictive maintenance is feasible
nowadays, thanks to the advances related to internet connectivity,
IoT platforms, cloud computing, and data analytics (Rebahi et al.,
2023). It is based on analyzing the data collected by the sensors, and
building models that can learn the machine behavior using past data
from the machine (Zhu et al., 2019; Rebahi et al., 2023). As the
amount of data generated by the sensors is in general huge, utilizing
artificial intelligence and machine learning techniques appears to be
conclusive and mandatory. As an example, in Gorenstein and
Kalech (2022), several algorithms and AI techniques are proposed
for economical replacement purposes. The authors look in particular
at the adjacency of the components as replacing adjacent
components could be efficient. The evaluation of the proposed
solution was achieved on a real-world water transmission network.
In Almobarek et al. (2023), a methodological framework for a
predictive maintenance program for commercial buildings is
proposed. The solution is developed for chilled water systems
(CWS) and includes three parts, the setup, machine learning, and
quality control. The results of the implemented framework seem to
be encouraging as the accuracy of the prediction model is more than
98% for each CWS component.

It is worth to mention that the use of supervised or unsupervised
learning depends on the availability of data labels reflecting related
previous occurred failures information. If preventive maintenance is
frequently applied, it would be very difficult to obtain such labels.
For this reason, unsupervised learning seems to be a more reasonable
approach to tackle data-driven predictive maintenance (Hilliger et al.,
2023). As the current paper explores predictive maintenance in
controlled environments, it is possible to generate data labels, and
therefore the use of supervised learning appears to be the optimal option.

As anomaly detection is at the core of predictivemaintenancewith
the focus on detecting anomalies in machines and equipment, Kamat
and Sugandhi (2020) provided a survey describing the challenges
related to the traditional strategies in this field. They also proposed a
novel deep learning technique to detect a priori such anomalies.
Another systematic literature review of machine learning methods
applied to predictive maintenance was conducted by Carvalho et al.
(2019). In their chapter, Sohaib et al. (2021) provide an overview of
the deep learning algorithms utilized in predictive maintenance.
Quality prediction was also addressed in the literature. Examples of
applications range from quality predictions during production using
sensor data to automated quality inspection in the field using
measurement data. A comprehensive and systematic review of
related scientific publications between 2012 and 2021 was conducted
by Tercan and Meisen (2022). On the other side, activities covering
condition-based maintenance were undertaken for instance by
Sharma et al. (2022). After reviewing the related work in this field,
they noticed that explainable artificial intelligence can help in

providing unique insights and opportunities for addressing critical
difficulties in maintenance, and leading to more informed decisions.
With other respects, Hilliger et al. (2023) and Cardoso et al. (2023)
discussed in detail some examples of long short-term memory
(LSTM) techniques used for detecting anomalies in machines and
how these techniques can be part of a global predictive maintenance
solution.

3. Predictive Maintenance for Smart Pipes:
The SANDMAN Solution

The predictive maintenance algorithm that we have developed
has two main goals. The first goal is to predict whether a pipe is
leaky, using vibration sensor data. The second goal is to classify
the location and size of a leak, once it was detected. These goals
were achieved using very similar techniques, namely extensive
preprocessing and deep learning LSTM networks.

3.1. The LSTM approach

LSTM networks, introduced by Hochreiter and Schmidhuber
(1997), are a type of recurrent neural network (RNN) architecture
specifically designed to capture and model sequences of data,
making them particularly effective for tasks involving time-series
data, natural language processing, and speech recognition. LSTMs
address some of the limitations of traditional RNNs, such as the
vanishing gradient problem, which can hinder the ability of the
network to learn long-range dependencies in sequences.

At its core, an LSTMunit is composed of four main components:
a cell state, an input gate, an output gate, and a forget gate. These
components work together to allow LSTMs to remember and forget
information over varying time scales, making them capable of
maintaining relevant context information even across long sequences.

To bemore concrete, it is beneficial to look at each of these cells
in more detail. An overview of the LSTM algorithm is depicted in
Figure 3.

Cell State: The cell state serves as the long-term memory of the
LSTM unit. It runs through the sequence and is updated at each time
step. Information can be added or removed from the cell state using
the input gate, output gate, and forget gate.

Input Gate: The input gate decides which information from the
current input and the previous hidden state should be added to the cell
state. It calculates a candidate update that can be added to the cell state
and determineswhich parts of the candidate update should be included
based on its sigmoid activation.

Forget Gate: The forget gate determines which information
from the previous cell state should be retained and which should
be discarded. It decides what information is irrelevant for the
current time step. The forget gate takes the previous hidden state
and current input as inputs and outputs a forget factor for each
element in the cell state.

Output Gate: The output gate decides what the next hidden
state should be and what should be output based on the current
input and the updated cell state. It uses the sigmoid activation to
decide which parts of the cell state should be included in the
output and then applies the hyperbolic tangent function to squish
the values to the desired output range.

How these components interact with each other and how the
information, and signal flow through one LSTM unit is also
displayed in Figure 3 (Data Base Camp, 2022). There, the
information flows from left to right, with the inputs into the unit
being the input x at timestamp t and the hidden and cell state from
the previous time step. Then, the signal is passed through the
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forget gate, input gate, and output gate, before the hidden and the cell
state of the current timestamp are calculated.

The key advantage of LSTMs lies in their ability to learn and
adapt to long-range dependencies in sequences. The cell state
allows them to store relevant context information over many time
steps, and the gates enable them to control the flow of information
into and out of the cell state, allowing them to remember or forget
information as needed.

3.2. LSTM network for predicting leaks

The first goal of the SANDMAN solution is to predict whether
there is a leak in a pipe. For this, a simple LSTM network is chosen,
with 5 hidden LSTM layers and an input and output layer. The LSTM
layers are in decreasing size, this enables the LSTM to create many
hidden views of the data first. A large number of parameters are also
useful to prevent overfitting as Belkin et al. (2019) have shown in
their recent research.

To make sure all the parameters are utilized to learn the
objective, a 50% dropout is applied after each LSTM layer. An
overview of the networks structure can be found in Figure 4.

If the output of this network prediction is a leak, then the data is
fed through another LSTM network which prediction the size and
position of this leak.

3.3. LSTM network for predicting size and
distance of a leak

This LSTM network for size and distance prediction is the
second part of the SANDMAN solution. Here, a very similar but
smaller neural network was chosen. This is because of a lack of
data for this use case, and therefore faster convergence of the
smaller network. Similar to the LSTM network from the leak
prediction, a 50% dropout is applied after each LSTM layer. An
overview of the networks structure can be found in Figure 5.

4. Experimental Setup

4.1. Testbed description and data collection

To train and test the LSTM network, an appropriate dataset was
generated. To simulate different leakage conditions, an experimental
measurement setup was put in place. It consists of

• Two pipes to simulate different vibration conditions
• Four taps distant from each other andwith different size to simulate
different leak conditions

• The measurement board containing the accelerometer sensor.

An overview of the test setup is depicted in Figure 6.

Figure 3
LSTM overview

Figure 4
LSTM network for leak detection
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Using this test bed setup, data were collected in two test campaigns.
The first run included several scenarios depicted in Table 1. Here, we can
note that the first four scenarios are rather simple, like opening one
specific tap slowly or abruptly. Scenarios 5–7 are more complex,
because there are multiple leaks (tap openings) at once.

In the second test campaign, data were collected using two sensors
and the water flow was inverted to the first test campaign and three
scenarios were performed. First, all four taps were opened and closed
one after the other. In the second and third tests baseline, vibration
measurements were collected, where the vibration from the
surroundings was measured and then the vibration from the pump.

Overall, these two test runs combined create a dataset with close
to 47 million datapoints, each with one or two vibration values, and
labels according to which taps were opened.

4.2. Data preprocessing

Before the vibration data can be used to train an LSTMnetwork,
some preprocessing needs to be done. First, the data have to be
concatenated, so a single dataset from both test campaigns can be
retrieved.

Then, the leaks are transferred into a distance and size values,
based on the data shown in Figures 6 and 7. The distance will be
measured in meters from the position of the sensor, in the
direction of the flow. Because of this, sensor 1 of the second test
campaign will have negative distances as the sensor is before the
leaks. When multiple taps are opened, the bigger taps have the
dominating value. Once the dataset is completed, the data can be
preprocessed. For this, a more classical machine learning

approach is chosen, where meaningful features are engineered first
before a neural network is trained. In this case, a fixed time
interval is defined, like half a second, and then takes the mean,
squared mean, standard deviation, as well as frequency-based
features of the time interval. This reduces the data significantly
and helps the neural network to converge faster as meaningful
features are already constructed.

After the features are created, the data will also be scaled, as this
will make it easier for the neural networks to train on the data. Last, for
bothmodels, input sequences have to be created. The data are reshaped
to be compatible with the architecture of LSTM networks. The input
data to the LSTM network will be a three-dimensional tensor with the
following form: [data_samples, time_steps, features].

Once the preprocessing is done, the data will be used to train
different models. For the first model, the goal is to predict
whether there is a leak in the pipe. The architecture for this is
described in Section 3.2. The second model will have the goal to
predict the size and distance of the leak, with the architecture
shown in Section 3.3.

5. Experiments Evaluation

5.1. Implementation details

The goals of the experiment were to be able to accurately predict
whether there is a leak in a pipe and when there is a leak to accurately
predict the size and the distance from the sensor. To address these
goals, the above-mentioned approach will be used to train the
LSTM networks.

Figure 5
LSTM network for size and distance prediction
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As mentioned, this approach relies heavily on preprocessing the
data, before training a neural network with this preprocessed data.
Before any features could be engineered, the dataset had to be
constructed. For this, a dataset from the first test campaign (setup
shown in Table 1 and Figure 6) was merged with the second test
campaign (shown in Figure 7). Because the second test campaign has
two sensors that recorded the data, the data from each sensor were
appended to the dataset. So, a dataset with always only one
measurement is retrieved. On this base dataset, the feature engineering
is done. To achieve this, an interval of 500 ms was chosen and then
summarized by taking certain properties of that interval. The features
created were chosen in such a way to have a high correlation with
leakage detection and position. The features chosen for the final
implementation were the squared mean, the standard deviation, and
the minimum and maximum values. Also, frequency dependent
features were chosen. For this, fast-Fourier-transform was applied and
then of each 100 Hz interval the standard deviation, minimum, and
maximum values were taken. As the sampling rate of the sensor was
6700 Hz, this resulted in 109 features. This is a big reduction from the
3500 sensor values recorded in this 500 ms timeframe.

After the features are created, the data were scaled between 0 and
1. This leads to a dataset of 16365 rows and 109 columns. The dataset
was then split into train and test dataset. The test dataset contains runs
5, 6, and 7 fromTable 1 and the beginning of each leakage in Figure 7.
The training dataset includes all the rest. This results into 10756 rows
used for training. It is important to mention that due to the relatively
short time, the taps were opened in the second test campaign as shown
in Figure 4; there aremuch less data available for this test campaign. In
numbers, there are only 1630 values belonging to each sensor in the
second test campaign, while 1150 of these values are used for training.
Compared to the 7500 values that are used for training from the first
test campaign, it becomes clear that the model will have much more
difficulties to learn the behavior of the second test campaign. Because
of this and the big difference between the two test campaigns, the
results will be measured separately for each test campaign.

To start creating a model, an unsupervised anomaly detection
approach was tested. For this, a LSTM autoencoder was trained

on 6282 rows of the dataset because all the rows where the tap
was opened were removed, so the autoencoder only learns what
normal (not leaky) data look like. The approach for the
autoencoder was not successful. The reason for this is the fact that
the autoencoder is able to reconstruct the data where the tap is
opened very well and does not have a bigger reconstruction error.

Because of this issue, a supervised approach was chosen, with
one predicted feature, which says whether there is a leak in the pipe
with the mentioned 10756 rows used as a training dataset, while the
rest is used as a test dataset, on which the results will be measured.

According to some recent research (Belkin et al., 2019), large
neural networks are less prone to overfitting and generalize better.
Because of this, a large neural network with 5 LSTM layers, 1
output layer, and overall, 2,320,289 parameters were trained for
about 1000 epochs.

The models were trained on the platform Kaggle3, which is a
platform to write python jupyter notebooks online. The advantage
is the models can be trained on their dedicated hardware. To train
the models, CPUs, GPUs, and TPUs are available. To get the
fastest training results, it is best to use the TPUs, but as they are
only limited TPUs available and sometimes long-waiting times,
most of the models, which used the preprocessed features, were
trained on GPUs. The GPUs were only slightly slower than the
TPUs. In numbers, the training on the CPU takes about 1 second
per step, while the training on the GPU takes around 60
milliseconds and on the TPU takes around 45 milliseconds per step.

Besides detecting whether there is a leak in the pipes, another
objective was to learn to predict the size and distance of a leak. For
this, the data were filtered and all the datapoints without a leak were
removed. Despite this, all the steps from before were repeated with
the only difference that the predicted features, in this case, contain
two variables, one for the size and one for the distance. The
distance can be negative as well, so the leak is predicted in a
distance with the direction of flow.

Figure 7
Setup and scenarios for the second test campaign

3https://www.kaggle.com/
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After the values are fed through the network, a prediction is
received for each 0.5 s, but because there is quite a lot of variance
and some outliers, only the median value of each 10 s will be
taken, and all the other values will not be used to measure the results.

5.2. Experiments results

With the supervised approach, all the leaks can be detected
although sometimes the model also detects a leak when there is
none. We believe the reason for this behavior is probably a lack
of data. To go more into detail, a look at the test scenarios and the
training data needs to be taken. As mentioned, there are three
scenarios 5, 6, and 7 from Table 1 which are completely used as
test data. These scenarios are from the first test campaign, with a
lot of training data available as scenarios 1–4 are used for training
the network. The results of the algorithm for scenario 5 can be
seen in Figure 8. It shows the predicted (blue) and measured (red)
values. One can see that the network predicts the leak, quite
accurately, but there are three positions which need to be
discussed, as shown by the dotted squares. In the first square, it
takes the network 24 s to realize a tap was opened for the second
dotted box, the network shortly thinks that the tap was closed
again. This is not true, but from reviewing Table 1 again, it seems
around this time an extra tap was opened, so maybe this caused a
change in the data, thus leading the network to the wrong
prediction. The same thing is likely what happened in the third
dotted square. These spikes do not represent a major issue, as
long as the network is generally correct, and only few of those
appear because it is still pretty clear from the blue line to see at
which time a tap was opened.

For the sixth scenario, it seems similar problems appear, and
they look more severe than in scenario 5. As shown in Figure 9, it

is still possible to see that there is quite different behavior when
the taps are opened, especially since there are no false positives.
Still during the time the taps were indeed opened, the network
predicts this more than half of the times, and just reviewing the
blue line an operator would be quite certain there is a leak
around 06:04. This is a 68 s delay from when the leak actually
occurred.

Similar results are produced by scenario 7, shown in Figure 10.
There, the network still detects the leakage but only after a long time
of 110 s, the score seems to be conclusive.

The results for these three test runs are also shown in the second
column of Table 2. In the other two columns, the results for the size
and distance prediction are shown. For this, a much smaller LSTM
network with only 58.000 parameters was trained. The network size
was reduced because the training set for this use case is even smaller,
as only data with an opened tap were used. This resulted in a training
set of only 3235 rows. Nonetheless, the results show that the
approximation is quite accurate, with the median absolute error of
the scenarios of the first test campaign smaller than 0.04 inch for
the size, and the distance prediction with an accuracy of 0.5 m.
The median absolute error was chosen in this case because there
are sometimes outliers in the prediction as it can be seen in an
exemplary plot for scenario 7 shown in Figure 11.

Besides these three scenarios from the first test campaign, the
leakage scenario from the second test campaign shown in
Figure 7 was also used to test the algorithm. But as mentioned
earlier, since the scenario has such little data, the results related to
this scenario are unsatisfactory as expected and the results will be
displayed separately. As this was the only scenario with a leak, in
this test campaign, this scenario was split up into training and test
sets, with the time around the first occurrence of a leak used only
for testing. Because the data were recorded with two sensors, a

Table 1
Recorded data scenarios for the first test campaign
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picture for each sensor is shown. Figure 12 shows the leak detection
results for sensor 1. With these results, an operator could potentially
predict a leak in the first and the third of these graphs. But the second
and especially the fourth leak are problematic. The main problem in

the fourth graph is that in the beginning the network predicts a leak,
although there is no leak. This has not happened in any of the cases
before and makes it much harder to decide if there is a leak or not,
without the measured values.

Figure 8
Results for scenario 5

Figure 9
Results for scenario 6

Figure 10
Results from scenario 7
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For the other sensor in this scenario, the data look quite similar,
with accurate leak detection in the first and third plots of Figure 13
and inaccurate detection for the second and fourth plots because of
false positives.

The results for the leak detection are again summarized in
Table 3.

As shown in Table 3, the results for the size and distance
prediction of the second test campaign are much less encouraging.

This is once again probably due to the lack of training data
because each tap was only opened for 2 min leading to 180
training samples per tap as 60 samples were used for testing. With
a larger dataset, better results could probably also be achieved
there. Another notable point about this test case is especially the
fact that for sensor 1, the results get better with the leak being
closer to the sensor because tap 4 is the tap that is the furthest
from sensor 1, while tap 1 is the closest. For sensor 2, this is not
the case.

To sum this section up, leakage detection and size and distance
prediction is quite accurate, for the first test campaign with much
training data, but on the other hand, the same models struggle
with these tasks when there is only little data available as in the
second test campaign. Once it was detected, there is a leak in the
pipe; this leak can then be predicted according to distance and
size of the leak. Both these functionalities are highly dependent
on the training data and a sufficient training set needs to be
created. This was devised by the relatively bad results for the
scenario “leakage” in Table 3 compared to the other scenarios in
Table 2.

Table 2
Results from first test campaign

Scenario

Time to
recognize
leak in s

Leak size prediction
median of absolute
error in inches

Leak distance
prediction median
of absolute error in

meter

5 24 0.03 0.15
6 68 0.03 0.43
7 110 0.002 0.39

Table 3
Results from second test campaign

Scenario
Time to recognize

leak in s
Leak size prediction median of absolute

error in inches
Leak distance prediction median of absolute

error in meter

Leakage 4 sensor 1 13 0.75 7.09
Leakage 3 sensor 1 Not possible 0.34 3.07
Leakage 2 sensor 1 2 0.38 2.14
Leakage 1 sensor 1 Not possible 0.14 0.36
Leakage 4 sensor 2 33 0.32 4.25
Leakage 3 sensor 2 Not possible 0.21 1.24
Leakage 2 sensor 2 2 0.16 2.34
Leakage 1 sensor 2 Not possible 1.33 4.15

Figure 11
Leak size and distance prediction results for scenario 7
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6. Conclusion

In this paper, we have proposed a solution for dealing with water
waste due to leakage in pipes as it is becoming a real menace for our
daily life. To be more concrete, we have discussed a predictive
maintenance solution for smart pipes. We have argued that
incorporating appropriate sensors (such as vibration sensors) into
water pipes networks can lead to predicting potential water leakage
early enough and in an accurate way. The pipes conditions are
continuously monitored, and the collected sensors data are analyzed
using deep learning techniques. Our solution is validated through
an experimental layout put in place in the EKSO S.R.L premises in
Italy. The testbed is composed of two pipes where vibration sensors
are integrated and a number of taps that simulate the leaks when
they are open. Our experiments, in particular, the developed LSTM
models, have shown that the detection of the leaks, their sizes, and
their distances from the sensors are quite accurate when enough
training data are used. But before this technology can make its way
into industry, further testing is needed with the creation of bigger

and more diverse dataset with more diverse leak sizes and
positions, and with test pipes underground.

It is expected that the developed solution significantly
contributes to the preservation of water resources, mitigates the
effects of water scarcity, and minimizes the carbon footprint
associated with water treatment and transportation.
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Figure 12
Leakage detection for sensor 1 of leakage scenario of Figure 7

Figure 13
Leakage detection for sensor 2 of leakage scenario of Figure 7
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