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Abstract: Machine learning (ML)-based prediction models have the potential to revamp various industries, and one such promising area is
healthcare. This study demonstrates the potential impact of ML on healthcare, particularly in managing patients with chronic obstructive
pulmonary disease (COPD). The experimental results showcase the remarkable performance of ML models, surpassing doctors’
predictions for COPD patients. Among the evaluated models, the gradient-boosted decision tree classifier emerges as the top performer,
displaying exceptional classification accuracy, precision, recall, and F1-score compared to doctors’ experience. Notably, the comparison
between the best ML model and doctors’ predictions reveals an interesting pattern: ML models tend to be more conservative, resulting
in an increased probability of patient recovery.
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1. Introduction

The research aims to investigate the impact of machine learning
(ML) methods on optimizing the classification of patients with
chronic obstructive pulmonary disease (COPD). COPD is a highly
significant and preventable chronic lung disease that substantially
burdens patients’ daily lives and healthcare systems worldwide
(Safiri et al., 2022). Patients with COPD often experience
exorbitant medical costs and endure a significant physical
perception of pain. Presently, there is a lack of standardized
clinical methods to improve patients’ self-examination and
cognitive abilities to mitigate the disease’s progression.

It is necessary to create links between the patient’s clinical
characteristics and the desired outcomes to accomplish early
identification of COPD and significantly reduce patient
hospitalization rates (Fromer, 2011). Due to time and resource
limitations, medical professionals may find it challenging to track
and monitor patients’ health status promptly and effectively. The
vast amount of information about COPD patients, including
medical records, clinical measurements, diagnostic tests, patient
histories, and other pertinent data, primarily relies on
understanding and managing scarce human resources (López-
Campos et al., 2016). Therefore, the development of tools capable
of accurately predicting disease progression holds immense value
as it can guide patients toward appropriate care within a home

setting, ultimately reducing the strain on the healthcare system by
minimizing unnecessary hospitalizations.

The application of personalized medicine, with ML as its core
technology, is considered a crucial direction in medical
advancement. It can facilitate COPD patients in self-examination
and assess the likelihood of disease exacerbations, providing
medical staff with more accurate decision support (Bertens et al.,
2013). This approach alleviates the burden on the healthcare
system and decreases dependency on human intervention. By
enhancing work efficiency, expanding the scope of health
monitoring, and providing personalized services to each patient,
this study explores the feasibility of a novel model using a well-
established COPD dataset. The paper is organized as follows:
Section 2 provides an overview of the previous work in this field.
Section 3 presents the detailed experiments, while Section 4
discusses the results and findings. Finally, Section 5 concludes the
work and outlines potential future research directions.

2. Previous Work

In recent years, the development of computer operations and the
rapid advancement of “big data” have greatly facilitated the
application of artificial intelligence (AI) and ML technologies in
various fields, including healthcare (Esteva et al., 2019). The
utilization of AI techniques, such as the construction of “expert
systems” and diagnostic software, has been shown to achieve
accuracies surpassing those of pulmonary physicians in
diagnosing and testing for COPD (Braido et al., 2018; Topalovic
et al., 2019). Random forest (RF) and support vector machine
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(SVM) algorithms have been used to explore and analyze patients’
genetic data to identify dependencies between COPD and lung
function, enabling screening, diagnosis, classification, and
assessment of COPD (Matsumura & Ito, 2020).

ML models have been employed to determine factors
contributing to exacerbation, hospitalization, and risk of
readmission in COPD patients. Logistic regression (LR) models
have been utilized to estimate the risk of COPD exacerbation
within 2 years (Bertens et al., 2013). Wang et al. (2023)
conducted an analysis and trained ML models using CT scan
images to predict the risk of COPD.

Swaminathan et al. (2017) presented aML strategy for the early
detection and classification of COPD deterioration. The study
evaluates nine classification algorithms, the most effective ones
being LR and gradient-boosted decision trees (GBDTs). The
experimental results show that ML performs well in predicting
COPD deterioration and triage. However, the authors
acknowledge the limitations of applying ML to real-world
scenarios. Further research is needed to enhance its practical
implementation.

Cavailles et al. (2020) explored factors influencing
rehospitalization risk in COPD patients using a decision tree (DT)
model. Their analysis highlighted the significance of the patients’
initial 2-year hospitalization period in predicting readmission
probability. Factors like age, gender, hospitalization frequency,
and anxiety were identified as influential contributors to COPD
patient readmissions. Their work guides feature engineering in
ML models for accurate readmission risk prediction. This study
underscores the importance of these factors in predictive
modeling, offering valuable insights for COPD patient management.

Hussain et al. (2021) developed a diagnostic system for
predicting COPD severity using ML techniques, including RF,
SVM, K-nearest neighbors (KNNs), gradient boosting, and
extreme gradient boosting (XGB). They addressed overfitting and
underfitting issues by employing soft polling integration and used
synthetic minority oversampling technique (SMOTE) to solve the
data imbalance problem, which improved the system’s accuracy
by 4.73%. These findings demonstrate the effectiveness of
integration, RFE, and SMOTE for accurate prediction. However,
further experiments are required to validate the model’s real-world
performance.

Dhar (2021) proposed the multistage ensemble model (MSEN)
as a solution for detecting COPD patients. The MSEN model, also
known as the voting model, combines the outputs of eight trained
classifiers through weighted voting. This strategy allows the
MSEN model to capitalize on the unique strengths of each
classifier, facilitating accurate predictions for samples that pose
difficulties for individual classifiers. Each classifier presents
distinct advantages. LR enables quick and precise data
classification, KNN demonstrates resilience against outliers, and
boosting algorithms such as GBDT effectively handle anomalous
and challenging data by leveraging nonlinear transformations. The
amalgamation of these diverse classifiers offers a promising
avenue to enhance the accuracy of prediction tasks.

Preprocessing techniques have enhanced data quality and
accuracy, including classification, clustering, and data
augmentation. Data augmentation generates additional data for
ML models, reducing reliance on training data and improving
model performance (Maharana et al., 2022). Data augmentation is
widely applied in computer vision, where researchers perform a
series of operations on the original images, such as rotation,
cropping, and brightness adjustment, to obtain more data (Asperti
& Mastronardo, 2017). In natural language processing, researchers

enhance the data by employing methods such as paraphrasing,
adding appropriate noise, and sampling while ensuring the data’s
effectiveness, aiming to improve ML efficiency (Li et al., 2022).

Even though many studies have looked at COPD using ML
models, this study used a wide variety of classifiers and applied
approaches for data augmentation for a more thorough analysis.
The study broadens classifiers’ scope and uses data augmentation
to acquire a more in-depth understanding of COPD prediction and
management.

3. Experimental Details

The study investigates two research questions for people with
COPD: identifying patient deterioration and determining the
required level of care. The study utilizes rigorous dataset analysis,
preprocessing, multiple classifier models, and label refining to
maximize accuracy and achieve the most insightful results.

3.1. Dataset description

This study uses the dataset from published literature on COPD
(Swaminathan et al., 2017). It is obtained through resource
integration, expert evaluation, linear modeling, and Monte Carlo
simulation. Multiple experts jointly review the dataset’s features
and labels to ensure objectivity and minimize personal cognitive
bias. Moreover, machine-generated patient cases, closely aligned
with real-world scenarios as specified by relevant literature and
experts, are included.

The dataset is organized into two folders, encompassing
training and testing data. The training folder consists of 39 Excel
documents containing patient health data and labels assigned by
different doctors. To address issues of repetition and disorderly
distribution, a subset of 24 Excel tables is selected as the final
training set for this project, encompassing a total of 2,400 samples
labeled by five doctors. The testing folder comprises nine Excel
tables with 101 identical sample health data. Nine doctors
independently labeled these samples, and all 101 samples from
the test set for this project.

3.2. Data preprocessing

Data preprocessing can correct specific problems in the dataset
to improve the model’s performance and make the data easier to
process by the data model. It selects and processes features by
browsing and experimenting with different combinations of
columns from the dataset. Due to the limited 2400 sample size of
the dataset, it is expanded through data augmentation after data
preprocessing.

3.2.1. Feature selection
Through feature selection, the experiment will eliminate

irrelevant or redundant features to improve the model’s accuracy
and reduce the running time. Selecting the truly relevant features
and simplifying the model will also help understand the data
generation process. In this experiment, by browsing the dataset to
view data, searching for appropriate research cases, and
constructing a classifier model experiment, features are selected
based on their practical significance, code feasibility, and
classifier processing ability (Gunen et al., 2005; Matkovic et al.,
2012; Piquet et al., 2013; Wang et al., 2014).

By analyzing the data contained in each feature, the features
with similar content are merged, and the complex features are
split. For instance, the two columns of data that use feet and
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inches to represent the height of the sample jointly are combined into
one column by inch according to the conversion between the two
units. The text data description of the “Sputum” column includes
whether the color changes and whether the sputum volume
increases. According to the extraction of specific words in the
text, it is replaced by two features, which are “Change in Sputum
Color” and “Increased Sputum Volume”.

This study used the wrappers feature selection method, which
has high classification accuracy but slow speed (Hsu et al., 2011).
Based on the analysis of factors influencing the classification of
COPD labels from a healthcare perspective, a total of 31 features
were extracted, encompassing four aspects: patient profile,
comorbidities, symptoms, and vital signs (Figure 1).

3.2.2. Feature processing
Based on data exploration and analysis, the original variables

consist of continuous and categorical features. Variations in features
are addressed due to their different characteristics. Analyzing the
data revealed that the baseline features in the original dataset
contain numerous invalid values, and Gellish et al. (2007) indicated
that various factors affect the accuracy of these measurements.
Hence, the continuous features were directly processed, and more
appropriate features were selected from related original variables
such as oxygen saturation, FEV1, and heart rate.

Categorical features include ordinal and unordered categories.
Ordinal categorical features were encoded as “1,” “2,”, and “3” based
on their rankings. For the unordered categorical features, the
experiment primarily utilized the one-hot (or one-of-k) method to
convert each unordered feature into a numerical vector. To make
the dataset more comprehensible and easier for the classifier to
handle, the feature columns were reshaped, with each risk factor
represented as a separate feature and using a binary classification
of the one-hot method to indicate whether the current patient
possesses that particular risk factor. In addition, the features’ null
values and “Unknown” data were imputed with the mean or mode
of the respective features.

3.2.3. Label processing
The dataset was annotated with two labels. They consist of a

binary classification problem to determine whether COPD patients
have “exacerbation” (Label1) and a multi-class classification

problem to determine “4 nursing levels” (Label2). As the data
lack real value as labels, the training set labels were independently
annotated by five doctors, while the validation set labels were
annotated by nine doctors. Relying on the predictions of a single
doctor as labels could introduce bias in the test results. Therefore,
in the experiment, the label patterns for each annotated sample
were determined by the consensus of the nine doctors as the
labels for the validation set to mitigate individual doctor biases.
Additionally, after summarizing statistical data, the sample sizes
for each classification in the training and testing datasets are
imbalanced, with the ratio of samples for the exacerbation label
being 2:1 and the nursing levels being approximately 1:2:4:3.

3.2.4. Data augmentation
Data augmentation techniques are applied to expand the dataset.

It obtains more data by making minor changes to the existing dataset,
which will help optimize the model (Moreno-Barea et al., 2020). The
methods for data augmentation in the experiment include randomly
changing the patient’s age, height, and weight within a small range.
Because COPD is a chronic disease, there is a possibility of latent or
apparent symptoms when the patient’s sample is collected; reducing
or increasing their age by 1 or 2 years can be explained. Height
measurement may have errors due to the thickness of the sole and
hair. At the same time, weight may also have a range of errors
due to the weight of clothing or the amount of food consumed
during the day the sample was measured. Data augmentation can
help experiments avoid being limited by a fixed sample size. In
addition, combining SMOTE can also fill the problem of
imbalanced sample sizes in various categories of the original
dataset, so that each classification in the ML process is trained fairly.

3.3. Classifier selection

The 18 classifiers used in this experiment can be categorized
based on their underlying principles of classification as follows:

• Linear Models: LR and stochastic gradient descent (SGD)
• Support Vector Machines: support vector machines with
polynomial kernel, support vector machines with linear kernel,
and support vector machines with Gaussian kernel

• Decision Trees: DT, RF, GBDTs, extra trees (ETs), XGBoost,
AdaBoost, and CatBoost

• Naïve Bayes: Naïve Bayes with Gaussian distribution (GNB),
Naïve Bayes with Gaussian and sigmoid distributions (GNB-S),
multinomial Naïve Bayes with Laplace smoothing, and
Bernoulli Naïve Bayes (BNB)

• Other Classifiers: KNN and voting classifier.

These classifiers were selected based on their specific
algorithms and characteristics, which align with the requirements
and objectives of the experimental study. In the experiment,
K-fold model cross-validation technology was used to effectively
utilize all raw data, and the optimal parameter set that met the
target was selected through grid search combined with manual
parameter adjustment.

3.4. Evaluation criteria

Experimental results are evaluated using five criteria: confusion
matrix, accuracy, precision, recall, and F1-score. The confusion
matrix visually displays predicted and actual results for
comprehensive analysis (Deng et al., 2016). Accuracy measures
the proportion of correct predictions among all samples, while

Figure 1
The 31 features
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precision identifies the false positive rate for each category. Recall
quantifies the classifier’s ability to correctly predict samples in
each category, and F1-score provides a comprehensive measure of
classifier sensitivity by considering both false positive and false
negative rates.

4. Results and Discussions

4.1. Results analysis

We expanded the dataset to 6000 samples in the experiment and
observed a significant improvement in the accuracy of most of the
models by 2–3%. The results of the experiments involving 18 ML
classifiers were analyzed and evaluated based on two sets of labels.
The classification results were compared with those of human
doctors to verify the usability and potential application of the ML
models. Additionally, another method for generating labels was
experimented with, which aimed to mitigate the bias introduced by
the influence of human doctors on the labels. The analysis of the
results demonstrated the effectiveness of the ML models in
accurately classifying the data. The classification performance of
the models was found to be comparable, and in some cases even
superior, to that of human doctors. This suggests that ML models
have the potential to be utilized as valuable decision-support tools
in medical applications.

Among all the classifiers tested, GBDT achieved the highest
prediction accuracy. It combines weak learners into strong
learners and calculates the negative gradient based on the
residual between the current model’s prediction results and the
target value, following the direction of the negative gradient, in
order to minimize the residual and ultimately optimize the
prediction results (Rao et al., 2019). But while improving the
prediction results, it usually comes at the cost of longer training
time (Wu et al., 2021). When conducting local experiments
based on the same hardware and software, GBDT used the
longest train-test computational time.

4.1.1. Whether Exacerbation
In the evaluation of the Whether Exacerbation classification

experiment with 18 ML classifiers, the results were recorded and

analyzed. The findings are presented in a bar chart that
summarizes the classifiers’ accuracy along with the accuracy of
nine doctors (Figure 2).

In the bar chart, the black bars represent the classifier models,
while the white bars represent human doctors. From the color
distribution in the figure, it is evident that most ML models
perform similarly to human doctors in this classification problem.
The best classifier, GBDT, achieves an accuracy of 96%, while
the best doctor, Doctor 10, has an accuracy of 94%. GBDT has a
slightly higher accuracy than the best doctor. The results indicate
that the majority of classifiers have an accuracy of over 90%.
Among these classifiers, models based on DT algorithms, such as
GBDT, ET, RF, AdaBoost, CatBoost, XGBoost, and DT, exhibit
higher accuracy. BNB has an accuracy lower than 80%. This may
be due to the dataset containing multiple features that introduce
interference factors for this classifier. This conjecture is supported
by the improved accuracy of BNB when the dataset with reduced
features was tested. The bar chart displays the best accuracy
achieved by BNB with the reduced set of features.

To provide a more detailed analysis of the classification
performance, the experiment compares GBDT (the best classifier)
and Doctor 10 (the doctor with the highest accuracy) using
evaluation metrics such as accuracy, precision, recall, and
F1-score (Table 1). The comparison shows that GBDT outperforms
Doctor 10 in all the listed evaluation metrics. However, for this
simple binary classification problem, the difference in predictive
performance between the best doctor and GBDT is not substantial.

The confusion matrix (Figure 3) can be used to further analyze
their classification results. The best doctor misclassified two samples

Figure 2
The bar chart results of Whether Exacerbation

Table 1
Interpretation of the mean scale for belief, concern, and practice

GBDT Doctor 10

Precision Recall F1 Precision Recall F1

0 0.94 0.94 0.94 0.93 0.88 0.90
1 0.97 0.97 0.97 0.94 0.97 0.96
Average 0.95 0.95 0.95 0.94 0.92 0.93
Accuracy 96% 94%
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as class 1 (severe) instead of the true class 0 (non-severe) among the
101 validation samples. This suggests that the best ML model
outperforms the best doctor in classifying whether it is severe or
not. However, the overall comparison between the two is difficult

to assert due to factors such as the small size of the validation set
and the uncertainty of the label accuracy in the validation set. In
this training and testing, the optimal GBDT model parameters
were taken as learning_rate of 0.03, n_estimators of 100,
max_depth of 4, and max_feature of “log2”.

From the learning curve, it can be seen that on the Whether
Exacerbation label, the training and validation curves of the model
converge to a higher value and tend to stabilize (Figure 4).
Simultaneously, according to the curve of the accuracy of the test
set changing with the number of training samples, the model
gradually becomes more accurate and stable (Figure 5).

4.1.2. Nursing grades
Based on a dataset of 6000 samples, 18 ML classifiers were

tested for classifying Nursing Grades labels. The best
classification results of each classifier and the classification
accuracy of nine doctors were summarized and displayed in a bar
chart (Figure 4).

The results indicate that both ML models and human doctors
exhibit lower accuracy in multi-class problems compared to
binary classification tasks. The color distribution of the black bars
(classifiers) and white bars (doctors) reveals a trend where most
ML models outperform human doctors in the four-class problem.
The best-performing classifier, GBDT, achieves an accuracy rate
of 84%, while the highest-performing human doctor achieves a
77% accuracy rate (Figure 6). Boosting algorithms show more
significant potential and research value in predicting the two
labels of ML models. GBDT, CatBoost, AdaBoost, and voting
classifiers using boosting algorithms demonstrate high accuracy in
these four classification experiments, surpassing the best-
performing doctor. DT-based classifiers perform exceptionally
well. Linear classifiers SGD and LR results fall short of the
highest accuracy. Still, their performance on this problem is on
par with top-tier human doctors. SVM models and Naive Bayes
also do not exhibit outstanding performance. Among the 11 ML
models, more than two-thirds achieve a classification accuracy
exceeding 70%. Among the doctors, three doctors achieve a
classification accuracy of over 70%. ML generally provides more
stable classification performance at the nursing level than doctors.
BNB shows the lowest performance in predicting the Nursing
Grades label. This result is consistent with the best results
obtained using reduced feature data.

GBDT and Doctor 10, the classifiers with the highest accuracy
rates and the human doctors, are analyzed and compared using
evaluation metrics (Table 2). When faced with a multi-
classification task, GBDT and Doctor 10 exhibit a more
significant discrepancy than the binary classification results.
GBDT outperforms Doctor 10 in accuracy, precision, recall, and
F1-score, as shown in the confusion matrix (Figure 7).

Figure 3
The confusion matrices of GBDT and Doctor 10 in Whether

Exacerbation label

Figure 4
The learning curve of Whether Exacerbation label

Figure 5
The test curve of Whether Exacerbation label

Table 2
The evaluation value of GBDT and Doctor 10 in Nursing Grades

label

GBDT Doctor 10

Precision Recall F1 Precision Recall F1

1 1.00 1.00 1.00 0.50 1.00 0.67
2 0.87 0.68 0.76 0.64 0.74 0.68
3 0.83 0.86 0.84 0.80 0.80 0.80
4 0.83 0.89 0.86 0.95 0.71 0.82
Average 0.88 0.71 0.87 0.72 0.81 0.74
Accuracy 84% 77%
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The confusion matrix reveals that GBDT tends to make more
mistakes in classifying the second and third levels. The GBDT
classifier incorrectly classifies five samples as lower-level classes
and misclassifies 11 samples as higher-level classes. On the other
hand, Doctor 10 is more prone to errors in classifying the third
and fourth levels. He misclassifies 20 samples as lower-level
classes and three as higher-level classes. These results suggest that
the misclassification of Grades labels may be attributed to the
ambiguity in the boundaries between nursing levels, making it
challenging to define them clearly. Compared to Doctor 10,
GBDT tends to be more conservative when assigning samples to
higher-level categories, considering this ambiguity. The optimal
GBDT model parameters were taken as learning_rate of 0.08,
n_estimators of 140, max_depth of 2, and max_feature of “log2”.

From the learning curve, it can be seen that on Nursing Grades
label, the training and validation curves of the model converge to a
relatively stable value, but the accuracy has decreased (Figure 8).
This may be due to the use of data augmentation, resulting in
more false data appearing in the data. The label is more complex
than the first, which makes this impact more obvious. However,

according to the curve of the accuracy of the test set changing
with the number of training samples, the model gradually
becomes more accurate and stable (Figure 9). This indicates that
the model has a certain degree of robustness to noise and has a
certain degree of generalization ability when facing complex
real data.

According to the comparison of feature importance of the best
models of the two labeling studies, the “Vital Signs” features
mentioned in Section 3.2.1 generally have a significant impact on
GBDT, followed by the “Symptoms” (Figure 1). Among them,
oxygen saturation has the highest weight among the 31 features,
accounting for about a quarter. Shortness of breath, wheeling, and
cough in “symptoms” are also important influencing factors that
deserve attention.

Figure 6
The bar chart results of Nursing Grades

Figure 7
The confusion matrices of GBDT and Doctor 10 in Nursing

Grades label

Figure 8
The learning curve of Nursing Grades label
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4.1.3. Second labeling method
The previous results were based on a validation set with labels

annotated by nine doctors, which served as reference labels for
prediction and comparison. This labeling method reduces
individual biases among doctors. However, this labeling method
gives an advantage to doctors when comparing them with
classifiers. In this case, ML models still outperform doctors,
effectively demonstrating the practicality of ML models.
Therefore, to further compare them on an equal basis with human
doctors, another labeling method was employed, which involved
using the mode between the best predictions of each classifier and
the results of the nine doctors as the labels.

With this labeling method, the performance of the best
classifier, GBDT, and the best doctor remains unchanged for the
“Whether Exacerbation” problem (Table 1). GBDT and Doctor 10
remain the best classifiers and doctors, respectively. This result is
because the final labels determined from the validation set of 101
samples did not change, i.e., the mode agreement between doctors
and classifiers remains consistent with the previous labeling
method. Additionally, their original accuracies were already at a
high value, and the difference between them is essentially only
two samples, resulting in the minimal impact of the new labeling
method on the final results.

With this labeling method, GBDT achieves an accuracy rate of
91% on the “Nursing Grades” label, while the best doctor becomes
Doctor 4 with an accuracy rate of 75% (Table 3). This demonstrates
that with the inclusion of GBDT, the correctness of some human-
annotated labels in the validation set is called into question,

thereby subtly showcasing how ML models can collaborate when
human doctors make decisions.

4.1.4. Balanced dataset
After multiple and varied data augmentation experiments and

incorporating the results of various classifiers, it was found that
the accuracy of the balanced dataset was slightly lower than the
sample proportion of each class in the original dataset during
testing. And the result is even higher in model cross-validation.
This may be due to the uneven expansion of data samples to
balance the dataset, resulting in spurious data that affect the
quality of the dataset and model to a certain extent. Another
possible reason is the inconsistent distribution of the training data
and the used test data after balancing, as the distribution of each
class of samples in the test dataset is close to that of the original
dataset.

However, when testing on imbalanced data, various ensemble
algorithms, DTs, RF, and SVMs have better predictive performance,
especially GBDT, due to their inherent noise immunity for
imbalanced data. The experiments in the study of Sun et al.
(2021) were also conducted on imbalanced data, and GBDT
performed better. In real situations, collected data often cannot
achieve complete balance. Using algorithms with stronger anti-
interference properties can enhance the generalization ability of
ML models, making it easier to apply them to a wide range of
real-world problems.

4.2. Discussions

4.2.1. Practical significance
The study investigation demonstrates that ML models exhibit

predictive performance that surpasses human predictions.
Introducing ML models into the healthcare industry can
significantly assist in reducing hospital readmission rates and
anticipating future health conditions. Compared to doctors’
predictive effectiveness for COPD, most ML models demonstrate
superior performance. In prediction experiments for different
questions, such as patient deterioration and required care level,
most classifiers outperform multiple doctors in accuracy. ML can
better forecast patients’ health conditions, adjust their
physiological awareness and medical plans at an earlier stage, and
prevent further deterioration of future illnesses.

Moreover, GBDT performs best among the classifiers,
surpassing the highest accuracy, precision, recall, and F1-score.
The confusion matrix of their predictions illustrates the
conservative nature of GBDT’s predictions. Although patients
may not receive the most accurate treatment plans, receiving a
higher level of care ensures that they are not subject to relapses
due to missed effective treatments, increases the likelihood of
recovery, and reduces the probability of readmission.

Higher accuracy allows patients to obtain more precise medical
plans, avoiding additional healthcare expenses. With the
development and application of ML models, they can aid in self-
diagnosis for patients and provide references for doctor decisions,
thereby relieving the pressure on medical resources and reducing
costs to some extent. ML can also reduce some patient expenses;
statistics show that 21% of COPD patients in the United States
are readmitted, usually incurring 18% higher costs than their
previous admissions (Min et al., 2019). Although the results
indicate that ML models focusing on assigning patients to higher
levels of care may incur additional costs during treatment,
reducing readmission rates will save patients more costs.
Additionally, with the current technological advancements,

Figure 9
The test curve of Nursing Grades label

Table 3
The evaluation value of GBDT and Doctor 4 in Nursing Grade

label with second labeling method

GBDT Doctor 4

Precision Recall F1 Precision Recall F1

1 1.00 1.00 1.00 1.00 0.75 0.86
2 0.93 0.78 0.85 0.62 0.28 0.38
3 0.87 0.96 0.91 0.71 0.83 0.76
4 0.97 0.91 0.94 0.83 0.91 0.87
Average 0.94 0.91 0.92 0.79 0.69 0.72
Accuracy 91% 75%
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training ML models to possess highly accurate judgment abilities
will incur lower costs than training human doctors.

4.2.2. Advantages
This study investigates ML models, including the universality

of classification results and the representativeness of selecting the
best classification results. This study uses 18 different ML
models. Compared with previous similar studies, introducing more
classifiers can more rigorously obtain the wide availability of ML
models in the healthcare field. After simple data augmentation of
the dataset size, the accuracy of most classifiers has increased by
1–3%. Through rigorous analysis, this research selects the optimal
classifier and representative doctor for conducting in-depth data
analysis. By completing a comparative analysis of metrics such as
accuracy, precision, recall, F1-score, and confusion matrix using
two labeling methods, this study comprehensively evaluates the
advantages of the ML models deployed, enhancing the
persuasiveness of the experimental findings.

4.2.3. Gaps
A particular gap exists between the study’s implementation and

simulation and its actual application. Notably, data collection for
chronic diseases poses difficulties. However, if the actual patient
states can be accurately recorded as labels, it would reduce the
noise on the labels and, to some extent, decrease the noise ratio
during data augmentation. Training the classifiers with accurate
labels would result in more precise training.

Furthermore, although the experimental results demonstrate the
powerful predictive performance of the ML models, these results are
generated on specific datasets. The characteristics of the datasets
were specifically processed in the early stages based on the data’s
properties. It is uncertain whether ML models can produce the
same results when faced with more complex data. Studying to
determine the common and exact factors contributing to COPD
would greatly facilitate the widespread application of ML models
in daily life. Identifying fixed high correlational factors would be
beneficial for training and maintaining the accuracy of the models.

Additionally, the interpretability of ML models is relatively
low. It is challenging to clearly explain the influences that lead to
the final classification results, interactions between datasets, and
their impact on ML models. In order to comprehensively explain
the effect of applying ML models in the healthcare domain,
further research on the interpretability of these models is
necessary. This is a crucial question for the widespread adoption
of ML models.

4.2.4. Challenges
There are still some challenges that cannot be ignored in the

application of ML in the real world. First, patients are unable to
trust the prediction results provided by ML models
unconditionally. The low interpretability of machine decision-
making makes it difficult for machines to make a sound judgment
of the condition and provide transparency in the process of
judging the state. When the process is explained correctly,
patients can gradually accept suggestions from the machine.

When usingML technology to predict patients, it is inevitable to
use a large amount of actual data to train and test the model. Ensuring
the privacy and security of patients is a necessary consideration. The
loss or leakage of any critical data may lead to serious adverse
consequences, which have significant negative impacts on patients
and medical institutions using machine assistance.

From amoral and legal perspective, when usingML for medical
assistance, prediction bias may lead to specific errors. Clarifying the

division of responsibilities when errors occur and ensuring that the
rights and interests of patients and medical institutions are protected
is a must before ML is put into practical application.

5. Conclusion and Future Work

Following themodelingwith 18ML classifiers and two labeling
methods for the “Whether Exacerbation” and “Nursing Grades”
labels, the results of all models were recorded, and the accuracies
of the classifiers and nine doctors were summarized and ranked.
According to the benchmark, the best classifier in the experiment
is GBDT. Using the first labeling method, the GBDT classifier
achieved the highest result of 96% for the Exacerbation label. In
comparison, doctors had the highest result of 94%. For the
Nursing Grades label, the highest result for the classifier was
84%, while the highest result for doctors was 77%.

Following the principle of establishing validation set labels on
an equal basis between classifiers and human doctors, the second
labeling method was used. The results for the Exacerbation label
remained unchanged. However, the GBDT classifier achieved a
classification accuracy of 91% on the Grades label. There were
significant improvements in precision, recall, and F1-scores.
Additionally, due to the influence of GBDT on the validation set
labels, the best doctor transitioned from Doctor 10 to Doctor 4.
This validates the assistive role of ML in human decision-making.

The results demonstrate that with the COPD dataset, ML models
can make relatively accurate predictions. Notably, not only the GBDT
classifiers but also most of the other classifiers exhibit consistently
reliable predictions, surpassing the summarization of doctors’
experiences. This observation serves as compelling evidence that ML
models can achieve predictive performance that exceeds human
experiential predictions, highlighting the transformative potential of
these models in various domains, including healthcare. Furthermore,
the predictive results of ML models can also be enhanced with
inexpensive training to increase their relatively conservative nature,
i.e., even if the nursing grade classification is incorrect, it can still be
assigned to a higher grade without delaying the patient’s condition. If
such a model could be practically applied in home testing or
collaborative decision-making in hospitals, it would significantly
control patient readmission rates and reduce healthcare costs.

ML applications in the healthcare field are becoming increasingly
mature. In the future, with the widespread use and deployment of ML,
ML models may better assist doctors in making decisions, thereby
increasing healthcare accuracy and helping reduce hospital costs. It
also aids patients in self-testing at home, alleviating the pressure on
COPD healthcare personnel and assisting patients in reducing
consultation costs. Suppose the predicted probability of patient
deterioration is high. In that case, patients can take timely self-
management measures to control and alleviate their condition,
avoiding readmission and reducing the cost of hospitalization. This
indicates thatML can positively affect healthcare costs and readmissions.

Experiments are limited by sample size, with training samples only
annotated by doctors based on their experience. The experiments only
expanded the sample size through simple data augmentation. With the
continuous improvement of modern health data and the development of
cloud computing, there will be more opportunities to accumulate and
obtain more patient condition data samples and train ML algorithms
on larger real datasets. This will significantly improve the accuracy
and stability of existing algorithms, laying the foundation for the
application and deployment of future algorithms. Furthermore, the
current algorithm model can still be improved by adding or
generalizing more new classification models, integrating various
algorithm models, or reshaping existing models. Various neural
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network models may enhance classification performance, thereby
enhancing the performance of ML methods in diagnosing COPD
patient conditions and nursing levels. The participation of more data
resources will also validate the improved models, which will be
more conducive to scalable model development and may be
promoted in a wider medical environment or different patient groups.
Moreover, training the machine based on more balanced real data
and continuously adjusting model parameters during this process
may strike a balance between its conservative methods and the
professional knowledge of doctors to obtainmore appropriate decisions.

Currently, theML algorithms of this study have not been deployed
in mobile applications. In the future, the algorithms of this study can be
deployed inmobile applications for use by patients, doctors, and nurses.
Patients can use this mobile application to assess the severity of their
condition, prevent anxiety among patients who are healthy and do
not require hospitalization, and help alleviate the psychological
pressure on patients. Doctors and nurses can understand patients’
basic health conditions and assist doctors in evaluating patients’
conditions. At the same time, through further training, the
application of ML models can continuously track patients’ diseases
and assist doctors in providing personalized healthcare plans that
meet different patient preferences based on the information provided
by patients, including recommendations for drugs and certain
lifestyle interventions. Additionally, the clinical effectiveness of
mobile applications in real patient populations should be further
explored in the future as they are introduced into the healthcare
sector to improve patient decision-making and reduce the severity
and frequency of COPD deterioration in a clinical environment.

Although at this stage, doctors’ diagnostic opinions are the
primary criterion for most clinical decisions, including the diagnosis
of COPD exacerbation and the determination of nursing levels, the
active cloud training that combines patient data in electronic
medical records with ML and existing scientific knowledge will
likely provide specific COPD condition predictions and nursing-
level recommendations to support medical decision-making.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to this
work.

Data Availability Statement

The data that support the findings of this study are openly 

available in PLOS ONE at https://journals.plos.org/plosone/
article?id=10.1371/journal.pone.0188532.

References

Asperti, A., & Mastronardo, C. (2017). The effectiveness of data
augmentation for detection of gastrointestinal diseases from
endoscopical images. arXiv Preprint: 1712.03689.

Bertens, L. C., Reitsma, J. B.,Moons, K. G., vanMourik, Y., Lammers,
J. W. J., Broekhuizen, B. D., : : : , & Rutten, F. H. (2013).
Development and validation of a model to predict the risk of
exacerbations in chronic obstructive pulmonary disease.
International Journal of Chronic Obstructive Pulmonary
Disease, 8, 493–499. https://doi.org/10.2147/COPD.S49609

Braido, F., Santus, P., Corsico, A. G., Di Marco, F., Melioli, G.,
Scichilone, N., & Solidoro, P. (2018). Chronic obstructive
lung disease “expert system”: Validation of a predictive tool
for assisting diagnosis. International Journal of Chronic
Obstructive Pulmonary Disease, 13, 1747–1753. https://doi.
org/10.2147/COPD.S165533

Cavailles,A.,Melloni, B.,Motola, S.,Dayde, F., Laurent,M., LeLay,K.,
: : : , & Flament, T. (2020). Identification of patient profiles with
high risk of hospital re-admissions for acute COPD
exacerbations (AECOPD) in France using a machine learning
model. International Journal of Chronic Obstructive Pulmonary
Disease, 15, 949–962. https://doi.org/10.2147/COPD.S236787

Deng, X., Liu, Q., Deng, Y., & Mahadevan, S. (2016). An improved
method to construct basic probability assignment based on the
confusion matrix for classification problem. Information Sciences,
340-341, 250–261. https://doi.org/10.1016/j.ins.2016.01.033

Dhar, J. (2021). Multistage ensemble learning model with weighted
voting and genetic algorithm optimization strategy for
detecting chronic obstructive pulmonary disease. IEEE
Access, 9, 48640–48657. https://doi.org/10.1109/ACCESS.
2021.3067949

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M.,
Chou, K., : : : , & Dean, J. (2019). A guide to deep learning in
healthcare. Nature Medicine, 25(1), 24–29. https://doi.org/10.
1038/s41591-018-0316-z

Fromer, L. (2011). Diagnosing and treating COPD: Understanding
the challenges and finding solutions. International Journal
of General Medicine, 4, 729–739. https://doi.org/10.2147/
IJGM.S21387

Gellish, R. L., Goslin, B. R., Olson, R. E.,McDonald, A., Russi, G. D.,
& Moudgil, V. K. (2007). Longitudinal modeling of the
relationship between age and maximal heart rate. Medicine &
Science in Sports and Exercise, 39(5), 822–829. https://doi.
org/10.1097/mss.0b013e31803349c6

Gunen, H., Hacievliyagil, S. S., Kosar, F., Mutlu, L. C., Gulbas, G.,
Pehlivan, E., : : : , & Kizkin, O. (2005). Factors affecting
survival of hospitalised patients with COPD. European
Respiratory Journal, 26(2), 234–241. https://doi.org/10.1183/
09031936.05.00024804

Hsu, H. H., Hsieh, C. W., & Lu, M. D. (2011). Hybrid feature selection
by combining filters and wrappers. Expert Systems with
Applications, 38(7), 8144–8150. https://doi.org/10.1016/j.eswa.
2010.12.156

Hussain,A., Choi, H. E., Kim,H. J., Aich, S., Saqlain,M.,&Kim,H.C.
(2021). Forecast the exacerbation in patients of chronic
obstructive pulmonary disease with clinical indicators using
machine learning techniques. Diagnostics, 11(5), 829. https://
doi.org/10.3390/diagnostics11050829

Li, B., Hou, Y., & Che, W. (2022). Data augmentation approaches in
natural language processing: A survey. AI Open, 3, 71–90.
https://doi.org/10.1016/j.aiopen.2022.03.001
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