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Abstract: Electroencephalography (EEG)-based P300 speller aids in restoring the communication and control capabilities in patients
suffering from motor disabilities. However, the quality and quantity of the data collected from EEG recordings have a substantial
influence on the P300 speller’s performance. Hence, selecting the optimum number of recording electrodes, i.e., channels for each user,
is a significant difficulty for the P300 speller. There are two fundamental objectives of the channel selection process: (1) to extract the
most crucial information from the relevant channels, hence reducing the computing complexity of P300/non-P300 signal processing
operation, and (2) to lessen the potential overfitting that could result from using unwanted channels to boost performance. For obtaining
the best channel subsets, different channel selection techniques, including manual, filtering, wrapper, and embedded approaches, have
been applied by past researchers. This research provides an in-depth examination of recent advancements, status, challenges, and
potential solutions related to channel selection strategies in P300 speller systems. Each channel selection technique is thoroughly
explored, including detailed comparisons between them. The notable advantages and drawbacks of each method are emphasized along
with the discussion on the future direction and scope of work in the field of channel selection in P300 speller. The review underscores
that channel selection methods enable the use of a reduced number of channels without compromising classification performance. By
eliminating noisy or irrelevant channels, these approaches contribute to enhanced system performance.
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1. Introduction

Brain computer interface (BCI) schemes are utilized in various
applications, including communication, rehabilitation, neuro-
prosthetics, neurofeedback, etc., for people with neuromuscular
disabilities [1]. Electroencephalography (EEG) signals are highly
utilized inputs for a conventional BCI system because of their
portability, cost-effectiveness, and non-invasive EEG electrodes [2].
Furthermore, the positive deflection in recorded EEG at about 300
ms post-stimulus gives rise to the attention-based event-related
potential (ERP) known as the P300. Visual, auditory, or
somatosensory stimuli can be used in the P300 paradigm to elicit the
P300 response [3].

Among P300 BCI protocols, the Farwell and Donchin style
row-column (RC) speller [4] is famous and often used. The RC
P300 speller protocol exposes the user to a symbol matrix where
each row and column of the matrix intensifies separately within a
set time interval and in an arbitrary sequence. Only the row and
column intensifications with the targeted symbol are paid attention

to and counted by the subject. A P300 response is produced in the
patient’s EEG when they pay attention to and silently count the
infrequently occurring target stimuli in a series of target and non-
target stimuli. The targeted row and column may be determined,
and the intended symbol can be inferred by analyzing the P300
response.

The real-time implementation of the P300 speller is affected by
several factors, such as high equipment costs, high processing costs,
and low classification accuracy. Investigators have adopted different
approaches to handle these issues effectively. Two key variables that
might affect how effectively the P300 speller operates are the
recording electrode/channel locations and the number of
electrodes whose data are used for feature engineering and
classification [5]. The EEG signals are usually acquired using
multiple channels. For the further operation of ERP classification
and character detection, one can either use data from all the
channels used for recording or select a subset of channels. Even
though multiple-channel EEG recordings enable extensive options
for application, specialized channel selection is more effective for
better results. For clinical implementation, the P300 speller system
needs to employ an ideal number of electrodes to reduce cost and
complexity, improve user convenience and information transfer
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rate, and prevent redundant data that result from using irrelevant
electrodes. In this respect, channel selection techniques like
manual, filter-based, wrapper, embedded, and hybrid approaches
have been employed recently. The channel selection algorithms
use the most appropriate channels to increase P300 speller
performance.

Considering the importance of channel selection, the authors
got motivated to review the progress made in this field. Therefore,
a survey of major developments to channel selection in the P300
speller is presented in this work. Furthermore, a summary of
various methods adopted by past researchers is presented under
different heads like P300 detection or character detection
performance, the number of selected channels, the dataset, and the
classifier to compare the channel selection strategies. This review
may help researchers working in the field of P300 spelling to
choose suitable algorithms. Additionally, this study should also
aid in identifying the drawbacks of the current channel selection
techniques and lead the way for the creation of novel ones.

To the author’s best information, the presented study is the first
survey on channel selection techniques for P300 spellers. The
remaining parts of the article are structured as follows: Section 2
contains the importance of channel selection and motivation behind
writing the review, Section 3 covers the process of selecting the
research article for this survey, and different channel selection
strategies are covered in Section 4. Challenges associated with state-
of-the-art channel selection techniques and viable solutions are
presented in Section 5. Lastly, the authors conclude the study in
Section 6.

2. Motivation

Channel selection techniques involve choosing the most reliable
and relevant brain signal channels or electrodes for detecting the
P300 ERP, which occurs when a user focuses on a character in a
grid. The selection of EEG channels directly impacts the signal-to-
noise ratio, classification performance, and user experience. Thus, the
effective channel selection enhances signal quality, user comfort, and
spatial resolution, leading to accurate character selection and reduced
cognitive load. It also aids in calibration, adapting to individual
differences, and optimizing the overall usability of the system,
making it an essential step for achieving efficient and reliable
communication for users of the P300 speller. By comprehensively
analyzing the current state of channel selection methods within the
context of P300 spellers, this article aims to shed light on their
strengths, limitations, and impact on system performance. Through
guiding future research, this review article strives to advance the
field, optimize communication capabilities for those in need, and
contribute to the broader understanding of BCIs.

3. Inclusion/Exclusion Criterion

With the help of search terms like “P300 Speller,” “EEG
Speller,” and “Channel Selection in P300 Speller,” a thorough
search of the published literature was conducted for this study.
Based on the results volume, the following databases,
ScienceDirect, Google Scholar, IEEE Explore, and Web of
Science, were selected for the literature search. The search
considered all journal articles and conference proceedings
published since 1988. Additionally, other publications were
included from the references of research articles found through
electronic search. Several papers on channel selection in
EEG-based BCIs were obtained during the preliminary screening.
An exclusion condition was incorporated in the search thread to

extract only those studies focused on channel selection in P300
speller. The search turned up 362 papers in total from the chosen
databases. After importing the data into Mendeley, the duplicate
records were then deleted. The lasting 256 research articles were
evaluated manually for relevancy based on the title and abstract.
Publications that only addressed the P300 speller’s channel
selection were permitted, while works based on other P300 BCIs
were not. Based on the screening, 32 research articles were
deemed pertinent to this study. Figure 1 depicts the whole
database screening process through a flow diagram.

4. Channel Selection Techniques

Since the inception of the P300 speller, several strategies have been
employed by researchers for channel selection. As depicted in Figure 2,
the channel selection strategies may be grouped into four main
categories: (1) manual, (2) wrapper, (3) filter-based, and (4)
embedded method. In the manual approach, researchers have chosen
the channels based on the previous literature or their own expertise
[6]. In wrapper approaches, the candidate channel subsets produced
by the search algorithm are evaluated by a classification algorithm.
On the other hand, filtering approaches assess the candidate channel
subsets using self-determining assessment standards such as a Fisher
distance measurement, mutual information measurement, consistency
measurement, or dependency measurement. In embedded approaches,
channel selection is part of the classifier development; the channels

Figure 1
Flowchart depicting the process of literature selection
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are chosen according to criteria developed all through the learning
procedure of a particular classifier [6]. The channel selection and the
classification are brought together using embedded approaches. They
are less prone to overfitting and computationally costly. They are
built on the principle of recursive channel elimination, which keeps
only channels of valued magnitude. Few studies have used a hybrid
strategy that combines any of the four basic approaches covered
above. Figure 3 depicts the channel selection technique-wise
distribution of research articles reviewed in this study. The following
subsections discuss each channel selection strategy mentioned above
in detail.

4.1. Manual technique

Manual channel selection in a P300 speller involves the
deliberate and strategic choice of specific EEG channels or
electrodes to capture and detect the P300 ERP. This method
requires human expertise to identify the most relevant and reliable
channels for recording brain signals associated with the P300
response. In the earlier years of P300 speller BCI research, most
works concentrated on data collected from typical midline scalp
locations (i.e., Cz, Pz, Fz). Lately, Krusienski et al. [7]
investigated the utility of incorporating data from the electrode at
posterior locations (namely Oz, PO7, PO8). They concluded that
combining the posterior and central channel sets considerably
improves performance. Following the conclusions made in
Krusienski et al. [7], Nijboer et al. [8] manually chose electrodes
at locations P3, Pz, P4, Fz, Cz, Oz, PO7, and PO8 for the online
copy spelling task. El Dabbagh and Fakhr [9] employed a
recursive algorithm that, by removing a single channel at a time,
analyzes the effectiveness of the support vector machine (SVM)
classifier following its training process. The channel whose
removal improves the performance of the classifier is deleted.
Until all channels are removed once, they follow the same process
again to find the optimum set of electrodes.

In another study, to avoid the complicated calculation of 64
electrodes recorded data, Zahra et al. [10] selected Fz, C3, Cz, C4,
PO7, PO8, and Pz for their study on BCI-competition II dataset
using linear discriminant analysis (LDA) classifier. The choice of
channels was inspired by the first runner-up of the BCI

competition [11]. Nashed et al. [12] selected two parietal and two
occipital lobe electrodes as P7 and P8 are involved in processing
cognitive tasks, whereas O1 and O2 are involved in human vision.
The experimental results led them to conclude that their autoencoder
(AE)-based classification model improves single-trial classification
performance when choosing the combination of cognitive and visual
channels. Ramirez-Quintana et al. [13] opted for data from three
electrodes (O1, O2, and Oz) for convolutional neural network
(CNN)-based P300 classification in their BCI. Since the occipital
lobe contains significant cortical layers of the visual cortex that
compose the visual perception capabilities, they concluded that the
occipital lobe alone could produce a distinctive P300 signal. Won
et al. [14] chose Fz, Cz, Pz, CP1, and CP2 electrodes from the
frontal and parietal regions for the classification using stepwise LDA
(SWLDA). So, from the above literature, we can conclude that in
the manual approach of channel selection, researchers have majorly
chosen the electrodes that cover the central, parietal, and occipital
regions of the brain. Table 1 summarizes the various researches
adopting manual channel selection in terms of the dataset, number of
participants, channel selection techniques, number of the selected
channel, number of available channels, and classification performance.

4.2. Wrapper technique

The wrapper approach essentially treats the channel selection as
part of the classification process itself. It evaluates the quality of the
selected channels based on how well the classification algorithm
performs with those channels. The iterative nature of the wrapper
approach allows for dynamic refinement of the channel subset to
enhance the accuracy and effectiveness of the P300 speller system.
Figure 4 shows the generalized workflow of the wrapper approach.

Optimization techniques that draw their inspiration from natural
selection, for example, genetic and other population-based
algorithms, form a particular type of wrapper method [6]. An
optimization approach is a potent tool for obtaining the ideal
combination of operating circumstances and the required design
parameters [15]. A group of P300 speller researchers considered
the selection of channels as an optimization issue, and they
employed a variety of methodologies to identify the best possible
channel combination. Among numerous evolutionary optimization

Figure 3
Distribution of channel selection modalities used in literature for P300 speller
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approaches, particle swarm optimization (PSO) is popular due to its
more straightforward implementation, higher computing speed, and
more effective global optimizer quality. Jin et al. [16] used PSO to
find the ideal electrode configuration. They also used Bayesian LDA
(BLDA) to identify words in the P300 speller based on the Chinese
language. In a P300 speller for English, Arican and Polat [17] framed
the channel count reduction and classification accuracy improvement
as a binary optimization problem and employed binary PSO (BPSO).
PSO and BPSO were designed to accomplish a single objective
function. However, maximizing classification accuracy while
reducing the channel count is a multi-objective optimization issue.
In this regard, Chaurasiya et al. [18] adopted an approach based
on multi-objective binary PSO (MOBPSO). For choosing the ideal
channel sets in BCI applications, a unique multi-objective hybrid
algorithm was suggested by Martínez-Cagigal et al. [19]. Their
approach combines the salient features of multi-objective PSO and
forward selection. By performing the local search for each
channel, they improved the classification and reduced the
necessary number of channels. Recently, Martínez-Cagigal et al.
[20] compared 8 different single and multi-objective algorithms
like binary multi-objective PSO (BMOPSO) and pareto
evolutionary algorithm for incremental learning (PEAIL) for
channel selection process. They concluded that high inter-subject
variability in optimal channel sets necessitates optimization for
each individual rather than employing a single set for all of them.

Apart from optimization techniques, genetic algorithms (GAs)
have been adopted by few researchers for channel selection. GA

provides a significant deal of promise for studying inter-channel
relations and the combined outcome of different channel
combinations, given that the fitness value is unaffected by any
one channel. For a P300-based BCI, Kee et al. [21] developed an
automatic channel selection method utilizing GA and BLDA.
Atum et al. [22] used GA in a wrapper approach for channel
selection in subject-independent and subject-dependent settings
for single-trial classification. They used Fisher’s LDA (FLDA)
as a classifier in their experiments. The primary finding from
their research is that rather than customizing the channel subset
for individual subjects, a subject-independent subset of the
channels could be used without compromising the speller’s
performance. The parieto-occipital zone housed the most often
chosen channels in their study (Oz, Pz, PO8 and PO7). The
results show that for BCIs utilizing visual stimulus processing
like the P300 speller, information from the parietal and occipital
area is crucial.

Differential evolution (DE) is an evolutionary computing
technology that is straightforward and only needs two control
parameters to be tuned. It has been shown to be superior to
conventional evolutionary optimization techniques such as GA and
PSO for several real-world issues. For example, for Devanagari
script-based P300 speller, Chaurasiya et al. [23] and Chaurasiya
et al. [24] adopted a binary DE-based channel selection technique to
identify and use the finest channel subset in a weighted ensemble of
SVM (WESVM)-based classification. The same authors presented a
multi-objective binary DE (MOBDE) technique in a subsequent

Figure 4
Workflow of wrapper technique for channel selection

Table 1
Summary of manual channel selection for P300 speller

Reference Language Subject Technique TC SC Classifier Dataset
Classification
performance

Krusienski et al. [7] English 7 Manual 64 6 SWLDA Self-recorded MCA: 92.5%
Nijboer et al. [8] English 4 Manual 16 8 SWLDA Self-recorded MCA: 78.8%
El Dabbagh and
Fakhr [9]

English 2 Manual 64 1 SVM BCI comp.-III
dataset II

MCA: 97%

Zahra et al. [10] English 1 Manual 64 7 LDA BCI comp.-III dataset II MCA: 97.4%
Nashed et al. [12] English 2 Manual 14 4 AE with SoftMax Self-recorded MCDA: 54.68%

(single trial)
Ramirez-Quintana
et al. [13]

English 8 Manual – 5 CNN Self-recorded MCA: 96%

Won et al. [14] English 55 Manual 32 5 SWLDA Self-recorded —

Note: TC = total channel, SC = selected channel, MCA = mean classification accuracy, MCDA = mean character detection accuracy
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study [25] to address the trade-off between channel count and
classification performance.

In another wrapper approach, Salvaris and Sepulveda [26]
performed a sequential floating forward search (SFFS) strategy to
select an optimum number of channels for an ensemble of Fisher
linear discrimination (E-FLD)-based classification. The SFFS’s
most frequently chosen channels agree with the channels chosen
using the technique used by Rakotomamonjy and Guigue [11].
For both the datasets used in their study, electrodes from the
central and parietal regions, including POz, CPz, and Pz, were
selected. Additionally, in the BCI comp. III dataset, PO7 and PO8
were in the top four channels chosen for both subjects. Zhao et al.
[27] evaluated the effectiveness of regional smoothing block
sparse Bayesian learning (RSBSBL) for channel selection and
created a model for an automatic selection iteration technique to
save time. The experimental findings show that RSBSBL is
capable of choosing optimal channels, which results in good
recognition accuracy.

Table 2 summarizes the various research adopting wrapper
channel selection in terms of the dataset, number of participants,
channel selection techniques, number of the selected channel,
number of available channels, and classification performance.

4.3. Filtering technique

A filter-based approach for channel selection in the context of a
P300 speller involves evaluating the relevance of different EEG
channels or electrodes based on specific criteria before the
classification process. Figure 5 shows the generalized workflow of
the filter approach. Filter-based approaches for channel selection
rely on univariate statistics, mutual information, correlation, etc.
Scalability, higher speed, and independence from the classifier are
a few advantages of the filter technique. Among different
researchers employing filter-based approach for channel selection,
Shahriari and Erfanian [28] used mutual information as a channel
selection tool. They selected channels with maximal dependence
on the targeted class and minimal reliance on themselves.
Utilizing the joint distribution of the participants’ EEG data and
the labels, Speier et al. [29] found sets of electrodes using Gibbs
sampling. The association between the number of channels and
speller performance was demonstrated by offline evaluation using
a naive bayes classifier. The best four-electrode configuration
(PO7, PO8, POZ, CPZ) was prospectively assessed. Yang et al.
[30] used the Fisher distance between the target P300 ERP and
non-target NP300 ERP to select the dominant channels. Their

Table 2
Summary of wrapper channel selection methods for P300 speller

Reference Language Subject Technique TC SC Classifier Dataset Classification performance

Jin et al. [16] Chinese 11 PSO 36 8 BLDA Self-recorded MCA: 89.33%
Arican and Polat [17] English 2 BPSO 64 8 Boosted Tree BCI comp.-III

dataset II
MCA: 89.9%

Chaurasiya et al. [18] English 2 MOBPSO 64 30 SVM BCI comp.-III
dataset II

MCA: 90.75%

Martínez-Cagigal
et al. [19]

English 4 HMO 16 8 LDA Self-recorded MCA: 97%

Kee et al. [21] English 18 GA 64 4 BLDA Self-recorded MCDA: 90%
Atum et al. [22] English 2 GA 64 8 FLDA BCI comp.-III

dataset II
MCDA: 91.15%

Chaurasiya et al. [23] Devanagari 10 Binary DE 64 28 WESVM Self-recorded MCA: 87.2%,
MCDA: 92.2%

Chaurasiya et al. [24] Devanagari 9 MOBDE 64 26 SVM Self-recorded MCA: 92.6%
Chaurasiya et al. [25] Devanagari 10 Binary DE 64 26 SVM Self-recorded MCDA: 99%
Salvaris and
Sepulveda [26]

English 2\1 SFS 64 10 E-FLD BCI comp.-II
and III

MCDA: 95% (BCI-III)
100% (BCI-II)

Martínez-Cagigal
et al. [20]

English 2 LDA 64 20
14

BMOPSO
PEAIL

BCI comp.-III
dataset II

MCDA: 92.5%
MCDA: 94%

Zhao et al. [27] English 2/1 BLDA 64 AT RSBSBL BCI comp.-II
and III

MCDA: 97.5% (BCI-III)
100% (BCI-II)

Note: TC= total channel, SC= selected channel, MCA=mean classification accuracy,MCDA=mean character detection accuracy, AT= automatic

Figure 5
Workflow of filter technique for channel selection
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study uses the Fisher score-based channel selection method to
remove irrelevant EEG channels and improve the P300 detection
performance. Xu et al. [31] adopted a phase measurement (PM)
approach to demonstrate its efficacy in channel selection. Their
proposed approach splits EEG channels into clusters by analyzing
their phase connections. It then ranks the channels to ensure that the
first n channels accurately reflect the most significant sources. Xiao
et al. [32] applied the concept of xDAWN for channel selection.
They used multi-window discriminative canonical pattern matching
to choose the channel with high SNR for each subject to increase
the character detection accuracy with small training examples. The
xDAWN-based spatial filter used in their pre-processing
significantly aids in choosing the best channels. Colwell et al. [33]
and Ryan et al. [34] employed jump-wise channel selection
approach in a filter-based technique to obtain the best-performing
channels. Table 3 summarizes the various researches adopting
filtering-based channel selection in terms of the dataset, number of
participants, channel selection techniques, number of the selected
channel, number of available channels, and classification performance.

4.4. Embedded technique

Embedded techniques for channel selection involve
incorporating the channel selection process directly into the
training of the classification algorithm itself. This approach aims

to simultaneously optimize the selection of relevant channels and
the performance of the classification model within a unified
framework. In the embedded technique, channels are chosen using
criteria developed during the learning process of a particular
classifier. Figure 6 shows the generalized workflow of the
embedded approach for channel selection.

The channel selection module is aggregated within the
architecture in a few deep-learning classifiers. For example, a
P300 speller with channel selection aggregated within CNNs
was recently utilized by Cecotti and Gräser [35]. Using eight
chosen channels, they claimed a mean classification score of
87% for BCI competition III dataset II. In another embedded
approach, Kshirsagar and Londhe [2] used channel-wise
convolution to identify healthy and noisy channels and then
pooled the 8 high-rank channels for further processing in their
Devanagari script-based speller system.

Kabbara et al. [36] calculated classification performance-based
S score for each channel separately, and then channels exceeding the
threshold were chosen for final classification. Shojaedini and Adeli
[37] performed CNN-based recursive channel elimination for their
P300 speller. Table 4 summarizes the various researches adopting
embedded channel selection in terms of the dataset, number of
participants, channel selection techniques, number of the selected
channel, number of available channels, and classification
performance.

Table 3
Summary of filtering-based channel selection methods for P300 speller reviewed in this study

Reference Language Subject Technique TC SC Classifier Dataset
Classification
performance

Shahriari and
Erfanian [28]

English 2 Mutual information 64 8 SVM BCI comp.-III dataset II MCA: 96.7%

Speier et al. [29] English 15 Gibbs sampling 32 4 Naïve Bayes Self-recorded ITR: 20.83 BPM
Yang et al. [30] English 1 F score 64 55 SVM BCI comp.-II MCDA: 100%
Xu et al. [31] English 9 PM 32 8 FLDA Self-recorded –

Xiao et al. [32] English 25 XDAWN 64 16 DPCM Self-recorded AUC: 86.5%
Colwell et al. [33] English 18 Jump-wise regression 32 8 SWLDA Self-recorded MCA: 79.1%
Ryan et al. [34] English 36 Jump-wise selection 32 8 SWLDA Self-recorded MCA: 85.97%

Note: TC = total channel, SC = selected channel, MCA = mean classification accuracy, MCDA = mean character detection accuracy,
ITR = information transfer rate, BPM: bits per minute

Figure 6
Workflow of embedded technique for channel selection
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4.5. Hybrid technique

Apart from the approaches mentioned earlier, few studies have
incorporated a combination of any two approaches. Perseh and
Sharafat [38] adopted a two-stage strategy to locate the dominant
channels. They started by sorting channels utilizing the
Bhattacharyya distance and cutting off 50% with smaller distances.
Next, they determined which channels are more relevant, utilizing
the improved BPSO (IBPSO) algorithm on the remaining channels.
Thulasidas and Guan [39] first manually selected 25 out of 64
channels and then each channel’s Fisher channel score (FCS) was
calculated. Once they get the FCS, the channels were arranged in
order of increasing FCS. The channels with lower FCS and
negative impact on classification performance were then eliminated.
Embedded techniques offer the advantage of optimizing both
channel selection and classification simultaneously, potentially
leading to a more efficient and accurate P300 speller system.
Table 5 summarizes the various researches adopting hybrid channel
selection in terms of the dataset, number of participants, channel
selection techniques, number of the selected channel, number of
available channels, and classification performance.

5. Current Challenges and Proposed Solution

5.1. Current challenges

The recent developments and present status of channel selection
techniques in the P300 speller are described in Section 4. The extensive
analysis in this work has shown that it is feasible to employ a limited
number of EEG channels between 1 and 80%of the available channels
while still performing the classification/detection tasks with little to no
performance loss. In turn, shorter setup time and fewer electrodes will
retain the subject’s convenience while reducing processing
complexity. However, despite the intensive studies for more than
two decades, we still lack a system that can accurately select the
channels in EEG-based P300 speller for real-world applications.
Even though numerous research has been conducted, the results of
many studies [9, 10, 17, 18, 22, 26, 28, 35, 38] are somewhat
limited by size of the dataset. In addition, studies with fewer
participants may not adequately address the subject variability
brought on by more participants. In the case of the manual

approach [7–10, 12–14], selecting channels based on an
understanding of neurophysiology does not always produce the best
results.

Moreover, the wrapper approaches [16–19, 22–25, 28] have
proved effective in improving the efficiency of the speller, but due
to its time-consuming nature, it performs poorly in clinical
applications. The wrapping methods frequently over-fit and
become trapped in local optimums. Additionally, wrapper and, to
a smaller extent, embedding techniques [2, 35–37] have a high
computational overhead, adding significant limits when handling
many channels. The filter-based methods [28–34] disregard the
relationship between channels and thus suffer from poor
classification performance. Filter-based methods do not work with
the combination of multiple channels. Finally, the strategies
adopted in the studies reviewed for this article are not user-
friendly because the methodologies involve a complete set of
EEG channels for every subject prior to picking an optimal
channel subset.

A comparative summary of different channel attention
techniques comprising their methodology, merits, and demerits is
presented in Table 6.

5.2. Proposed solution and future direction

1) EEG signals collected from different people vary significantly
from one another and there is significant inter-subject
variability, robust approaches can be designed by large-scale
analysis using data from a sufficiently large number of subjects.

2) Most of the recent research uses healthy participants as their
foundation. More research is needed to learn how well these
approaches work on people with brain injuries.

3) A fully automated embedded channel selection-like approach is
desirable for handling the high variability in practical BCI
systems. More focus should be on designing embedded
channel selection techniques that could give acceptable
performance with optimum computational overhead.

4) Developing algorithms that, in response to the changing properties
of the EEG signals, dynamically modify the channel weights
during a P300 speller session is highly required to adapt to the

Table 4
Summary of embedded channel selection methods for P300 speller

Reference Language Subject Technique TC SC Classifier Dataset Classification performance

Cecotti and Gräser [35] English 2 CNN 64 8 CNN BCI comp.-III
dataset II

MCA: 87%

Kshirsagar and Londhe [2] Devanagari 10 CNN 16 8 CNN Self-recorded MCA: 95%
Kabbara et al. [36] English 10 CNN 64 24 CNN Self-recorded MCDA: 97.34%
Shojaedini and Adeli [37] Arabic 11 S score 19 – SVM Self-recorded MCA: 95%

Note: TC = total channel, SC = selected channel, MCA = mean classification accuracy, MCDA = mean character detection accuracy

Table 5
Summary of hybrid channel selection methods for P300 speller

Reference Language Subject Technique TC SC Classifier Dataset Classification performance

Perseh and Sharafat [38] English 2 IBPSO 64 22 BLDA BCI comp.-III dataset II MCA: 97.5%
Thulasidas and Guan [39] English 9 F score 64 10 SVM Self-recorded MCA: 99%

Note: TC = total channel, SC = selected channel, MCA = mean classification accuracy
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user’s cognitive state change and improvement in performance
over time. BCI applications have recently used channel attention
mechanisms to give relevant and healthy channels more
importance. Authors suggest using a channel-wise attention-
based channel selection approach in P300 speller as a possible
future direction. Attention-based channel selection can select the
relevant channels with higher weight instead of working with all
the channels. Such approaches can be easily aggregated with the
classifier model plus would not create a computation burden.

5) Techniques that consider user preferences, user-specific patterns,
and aspects of brain anatomy to customize channel selection for
each user. Personalized strategies can considerably improve
accuracy and user satisfaction.

6) Examining the strategies that would let the P300 speller system
adjust gradually as the user’s EEG data changed over time. For
instances involving long-term usage, this is especially important.

6. Conclusion

Effective channel selection strategies are essential for finding an
optimum channel subset for the intended BCI application because
EEG data are acquired from diverse brain regions. After thoroughly
reviewing the available research on channel selection in P300
speller, the authors conclude that channel selection methods allow
for using fewer channels without negotiating classification
performance. By removing noisy or irrelevant channels, channel
selection approaches improve system performance. The clinical
viability of P300 speller systems may be improved by optimizing
the count of recording electrodes to lower cost, setup time, and
processing needs. Despite the several efforts made by past
researchers, designing of an efficient and fast channel selection
strategy that could be embedded with the classifier model is still an
open research area. Lastly, this comprehensive review will overview
the channel selection techniques incorporated by previous
researchers in the P300 speller and help promising researchers
interested in P300 speller BCI.
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