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Abstract:With increased resistant pests and low crop yields, farmers especially in sub-SaharanAfrica have greatly embraced usage of chemicals.
These chemicals include pesticides used in gardens for better yields and also in the stalls for longer shelf life by sellers of farm products especially
fresh perishables like tomatoes, cabbages, carrots, and green pepper vegetables. This, if not checked,may expose humans and animals to pesticide
residues. In this research, a model for detecting the presence of pesticide residues in edible parts of vegetables (tomatoes, cabbages, carrots, and
green pepper) was developed. A dataset consisting of 1094 images of both contaminated and uncontaminated vegetables including tomatoes,
cabbages, carrots, and green pepper with a scale magnification of 800 × 1276 pixels taken using InfiRay P2 pro Night Vision Go Mini Infrared
Thermal camerawith a thermal modulewas taken from different dailymarkets inMbarara city, SouthWestern Uganda. Image preprocessingwas
done by noise removal and grayscale conversion. Both the neural network andmedian filter were applied on the images. A python script was used
to cluster the dataset based on chemical concentrations rates of 0.1–0.8 mg/kg, 0.9–1.3 mg/kg, and 1.4–1.7 mg/kg, and this was done for both
training and testing dataset. Feature extraction was done to detect the presence of mancozeb, dioxacarb, and methidathion residues from the
cleaned images. To test the developed model, convolutional neural networks transfer learning models, Inception V3, VGG16, VGG19,
ResNet50, and the scratch model were used. From the results obtained, Inception V3 achieved better performance compared to other
transfer learning models with 96.77% followed by VGG16 at 86.98%, VGG19 at 87.56%, and ResNet50 at 82.11%, whereas the
developed scratch model achieved 89.13% classification accuracy.
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1. Introduction

Agriculture is the backbone of Uganda’s economy, employing
70% of the population and contributing half of Uganda’s export
earnings and a quarter of the country’s gross domestic product [1].
Some of the agricultural products include coffee, maize, sugar, tea,
and vegetables. Vegetables are one of the commonly produced and
consumed food items on the Ugandan market with at least 90% of
Ugandan households consuming tomatoes, green pepper, carrots, or
cabbages on a daily basis [2, 3]. These vegetables contribute to
national development through local and foreign exchange earnings
(mainly from neighboring countries like South Sudan, Democratic
Republic of Congo – DRC, Rwanda, Kenya, and Tanzania) but
also in achieving sustainable development goals 2030 (SDG 2 on
achieving food security, improving nutrition, and promoting
sustainable agriculture, and SDG 3 on ensuring healthy lives and
promoting well-being for all at all ages) and the parish

development model (PDM 1 on production, storage, processing,
and marketing). Vegetables are among the top priority commodities
supported under the National Development Plan III that is
prioritizing agriculture for inclusive economic development.
However, these vegetables are prone to chemical contamination,
which may affect the health of farmers and vegetable consumers
through direct exposure to pesticides and eating of contaminated
vegetables [3, 4].

In Uganda, there is inadequate monitoring and support on the
usage and management of chemical residues in vegetables.
Ugandan farmers tend to rely on colleagues for measurements of
doses, with the major focus being preservation of the vegetables
while neglecting the effects of the chemicals used [5, 6]. The
commonly used chemicals in vegetables include mancozeb,
dioxacarb, methidathion, and quinalphos [7]. Consumers of these
vegetables tend to avoid the side effects of the chemical residues by
washing the vegetables clean before consumption, but this does not
guarantee complete removal of the chemical residues, some of the
consumers and farmers are unaware of the damage the chemicals
may cause to their health, thus consuming contaminated vegetables
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[8, 9]. This paper presents a more accurate artificial intelligent model
that uses infrared technology in the detection of chemical residues in
vegetables.

2. Literature Review

This section discusses the different methods and technologies
used in the detection of chemical residues in vegetables. These
methods and techniques can be categorized into three, i.e.,
traditional, laboratory, and advanced.

2.1. Traditional methods

Consumers have been using age-old techniques to check for
pesticides on fruits before eating them ever since farmers began
applying them on fruits and vegetables. Consumers do not utilize
any tools; instead, they just use their eyes to detect the presence of
pesticides on any fruits or vegetables. Pesticides are then removed by
hand or rinsed with water when they are seen by the human eye.
These techniques are by no means the greatest for eliminating
pesticides. To remove up to 70% of pesticide residue, consumers
also utilize washing, scrubbing, baking soda and water, and saltwater
with vinegar [10, 11].

2.2. Laboratory methods

Chromatography (C), spectroscopy (S), and enzyme inhibition (EI)
are now the methods used most often to detect chemical residues. High-
performance liquid chromatography, gas chromatography-mass
spectrometry, and supercritical fluid chromatography are the most
frequently used techniques [12]. The major advantages of
chromatographic techniques are their very high sensitivity and
enhanced accuracy. They can also carry out multiple detections in a
sample, which makes them suitable for the analysis of complex
chemical residues [13]. However these laboratory methods are time
consuming, quite costly with each analet costing about 100,000
Uganda shillings ($28.5), and unavailable to consumers and sellers
[4, 14, 15].

2.3. Advanced methods

There are quite a number of advanced techniques used in
detecting chemical residues in vegetables, though these are not
popular in developing countries like Uganda due to their cost of
operation. In order to identify the kind and concentration of
pesticides, advanced approaches employ sensors, automation,
artificial intelligence, and machine learning algorithms.

Among these is the fluorescence spectroscopy approach, which
uses light wavelength measurement to identify a certain pesticide
kind. The sample’s molecules’ electrons are excited by the laser
beam, causing them to release light. A back propagation neural
network then analyzes the light that was emitted [14, 16].

In contrast to laboratory procedures, surface-enhanced Raman
scattering technology detects chemical residues significantly more
quickly and inexpensively [17, 18]. When electrons are energized
and vibrate, we may see a shift in their energy state, which is what
causes the Raman effect [19].

The need for a more precise model to identify chemical residues
in vegetables stems from the fact that, although these modern
approaches are quick, they still contain errors because of their
quick response times and smaller sample sizes for analysis,
making them less accurate than laboratory methods.

3. Methodology

3.1. Data collection

The dataset used for this study consists of 1,094 images of both
infected and healthy vegetables (tomatoes, carrots, green pepper, and
cabbages) obtained from different daily markets in Mbarara city,
South Western Uganda. The images have a scale magnification of
800 × 1276 pixels taken using InfiRay P2 pro Night Vision Go
Mini Infrared Thermal camera with a thermal module. The dataset
was collected in a balanced number of the three categories of
vegetables including fresh vegetables – those that were collected
from the garden on the day their images were taken, old
vegetables – those that had spent some days in stock, and rotten
vegetables – those that had gone bad.

3.2. Image preprocessing

In order to improve the image quality to facilitate further steps,
image preprocessing was undertaken on the collected dataset. This
step does not alter the image default composition; only two basic
tasks were done including noise removal and grayscale conversion.
The image is then exposed to Keras (enhancement neural network) –
a deep learning application programming interface written in Python
running on top TensorFlow library. This was used to standardize the
input image with a fixed resolution (resizing) and eliminate non-
vegetable images. An advanced image filtering techniques – median
filter is also applied at this stage for further de-noising. Furthermore,
healthy images, i.e., images which do not contain any of the
chemicals under investigation, are eliminated at this step.

To facilitate easymodel training and testing, a python script was
used to cluster the dataset based on chemical concentration rates
including 0.1 – 0.8 mg/kg, 0.9 – 1.3 mg/kg, and 1.4 – 1.7 mg/kg.
This was done for both training and testing dataset. Considering
the training subset, a total of 193 images had chemical
concentration between 0.1 mg/kg and 0.8 mg/kg, 463 images
between 0.9 mg/kg and 1.3 mg/kg while 194 images were
followed under 1.4–1.7 mg/kg cluster. The same process was
done for testing dataset where 49 images had between 0.1 and 0.8
mg/kg concentrations, 146 had between 0.9 mg/kg and 1.3 mg/kg
concentration rate, and 49 images followed between 1.4 mg/kg
and 1.7 mg/kg concentration.

3.3. Feature extraction

This step aims at recovering parameters/features used in
detection of mancozeb, dioxacarb, and methidathion chemicals
from the cleaned image. To achieve this, the cleaned images in
the training subset of the dataset were subjected to a segmentation
neural network with three layers: convolutional layer with
rectified linear unit (ReLu), max pooling layer, and full connected
layer presented in Figure 1.

The convolutional layer has a total of 32 filters (kernels) each
with a 3 × 3 dimension. The layers receive the cleaned image and
apply the layers to perform feature extraction. Due to many
obstacles created by filters, ReLu function is applied to improve
feature extraction accuracy.

The initial image dimensions were 800 × 1276 pixels, this
affected the model performance in extraction of trainable
parameters; hence, the formed image from the convolutional layer
was subjected to a 2 × 2 max pooling layer with a 2 pixel stride to
reduce the image size to 64 × 64 pixel. This was done to improve
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model performance in extracting trainable parameters while
maintaining image quality. Additionally, data augmentation
techniques like rotation, translation, zooming, and flip were applied
to the dataset to diversify the training dataset while reducing
overfitting. Furthermore, hyper parameter tuning which involved
systematically adjusting of hyper parameters i.e. learning rate, batch
size, loss function, and the optimizer were performed to find the
optimal configuration that maximized the model’s performance.

The output from the pooling layer is then exposed to a fully
connected layer to accomplish flattering operations, which helps
in converting the 2D matrix created by the pooling layer into a
vector of features, which is then fed into the classification model.
Thus, full connected layer is responsible for feeding the fluttered
vectors into the classifier.

3.4. Feature classification

The objective of this step is to find out the percentage
concentration of each chemical from the image. To achieve this, we
applied convolutional neural network (CNN)-based transfer
learning method considering four pre-trained models: Inception V3,
ResNet50, VGG16, and VGG19. Besides, we trained a model from
scratch that was later compared to transferring models using four
performance metrics: accuracy, precision, recall, and F1-score.
These were calculated using Equations (1–4). The output of the
step is classification metrics indicating mancozeb, dioxacarb, and
methidathion concentration measured in milligrams per kilogram
(mg/kg) of a particular vegetable. Figure 1 describes the actual
steps that were followed after subjecting the dataset to the model.

From Figure 1, an image in its original format is subjected to the
model at image input phase; preprocessing techniques for resizing
and cleaning are applied to eliminate the undesired parts and
grayscale conversion, respectively. At the future extraction phase,
the convolutional layer, ReLu, max pooling, and full connected
layers are enclosed in a single phase, which perform feature
extraction collectively as discussed in Section 3.3. The extracted
features are utilized to establish chemical composition for
mancozeb, dioxacarb, and methidathion.

In regard to this study:
Accuracy is the percentage of the suggested model that is

correctly detected i.e. the proportion of the training and testing
dataset that the suggested model was able to identify as having
the chemicals in question, and it is represented by the equation:

Accuracy ¼ Tpþ Tn
Tpþ Tnþ Fpþ Fn

(1)

Precision is a measure of the accuracy of positive prediction, i.e., the
percentage of accuracy prediction the model is able to classify as the
chemicals present in their correct concentration rate measured in
milligram per kilogram (mg/kg) and is denoted by the equation:

Precision ¼ Tp
Tpþ Fp

(2)

Recall is the percentage of data samples the proposedmodel correctly
identifies as belonging to a class of interest. In this case, the class of
interest is detecting the presence of mancozeb, dioxacarb, and
methidathion in vegetables and is denoted by the equation:

Recall ¼ Tp
Tpþ Fn

(3)

F1-score is the learning evaluation metric that measures the proposed
model’s accuracy by combining both precision and recall of the
model and is denoted by the equation:

F1� score ¼ 2
Precision � Recall
Precisionþ Recall

� �
(4)

where
Tp is the true positive value, Tn is the true negative value, Fp is

the false positive value, and Fn is the false negative value.

Figure 1
Overview of the proposed model
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4. Results and Discussion

The proposed model was trained and tested on a dataset
containing 1,094 images, of these images 210 were for cabbages,
337 for tomatoes, 257 for green pepper, and 290 for carrots.
Model architecture was inspired by CNNs transfer learning
models and scratch method approaches as presented in Figure 1.

From Figure 1, the model accepts input image in its original
format, resized, and then subjected to the enhancement neural
network for denoising and other preprocessing operations. The
cleaned image is then exposed to the feature extraction phase
containing three different layers: the convolutional layer, max
pooling, and full contented layer, which perform feature extraction
operations as discussed in the Section 3. At this step, the image is
studied to confirm whether it is healthy or contains any of the
chemicals under investigation (infected). A healthy image is
discarded at this level (demonstrated in Figure 1), whereas an
infected one is maintained and subjected to classification phase to
establish the percentage of concentration for each image.
A summary of model performance on both training and testing
dataset is presented in Tables 1 and 2 while the subsequent
Figures 2, 3, 4, 5, and 6 demonstrate visualization of model
performance using transfer learning models and scratch method,
respectively.

From Table 1, among transfer learning models, ResNet50
achieved the highest performance (98.97%) on testing the dataset
as compared to other transfer learning and scratch models,

followed by Inception V3 (96.81%), VGG16 (90.09%), and
VGG16 (89.45%). The good performance achieved using
ResNet50 is attributed to augmentation techniques that were to
manipulate the dataset size. ResNet requires much more dataset
than any other traditional learning models, thus increasing the
volume of dataset improved model performance. Compared to
other models used, VGG19 registered the worst performance and
this is attributed to a big number of layers presented by VGG19,
which paused much abstraction to input data hence affecting
feature extraction. The proposed scratch model achieved 90.73%
accuracy on training dataset, which is a better performance
compared to VGG16 and VGG19 transfer models.

From Table 2, Inception V3 performed better (96.77%) as
compared to other transfer learning models and the scratch model,
followed by VGG16 (86.98%), VGG19 (87.56%), and ResNet50
(82.11%). The training dataset ResNet50 achieved a poor
performance, this is because only 20% of the dataset was used for
training the model and thus it affected ResNet50 performance due
to its architecture that requires much more dataset. Thus, increasing
the volume of validation dataset would improve model performance.

Blocks in the Inception V3 can convolve an input tensor using
several filters, which improves feature extraction and enhances
model performance [20]. Therefore, Inception V3’s superior
performance in both training and testing scenarios is attributable
to its blocks’ effortless extraction of detection parameters. The
small dataset employed in this study and the fact that ResNet50’s

Table 2
Model performance on testing dataset

Models Precision Recall F1-score Accuracy
Testing
loss

Inception V3 0.9577 0.9576 0.9576 0.9577 0.2211
ResNet50 0.8212 0.8212 0.8211 0.8211 0.1791
VGG16 0.8698 0.8697 0.8698 0.8598 0.2341
VGG19 0.8756 0.8756 0.8756 0.8756 0.3321
Scratch 0.8913 0.8912 0.8913 0.8912 0.1914

Figure 2
Model performance using Inception V3
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Table 1
Model performance on training dataset

Models Precision Recall F1-score Accuracy
Training
loss

Inception
V3

0.9681 0.9523 0.9601 0.9681 0.2123

ResNet50 0.9897 0.9838 0.9867 0.9897 0.1891
VGG16 0.9009 0.9010 0.9009 0.9009 0.3129
VGG19 0.8945 0.8943 0.8944 0.8945 0.3213
Scratch 0.9073 0.9067 0.9070 0.9073 0.2123

Artificial Intelligence and Applications Vol. 2 Iss. 3 2024

199



Figure 4
Model performance using VGG16
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Figure 3
Model performance using ResNet50
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Figure 5
Model performance using VGG19
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architecture contains 50 layers, which presents additional learning
challenges for the model, are the main causes of the model’s low
performance on both training and testing data. A significantly
larger dataset is needed to lessen this effect. Taking into account
Visual Geometry Group (VGG) models, the architecture of
VGG19 is three layers heavier than that of VGG16. This explains
the differences in performance between the two models; in
particular, VGG16 would require more dataset and training time
to improve its performance; alternatively, VGG16 performance
would call for reducing filters which reduces obstacles to feature
extraction. The more the weight layer, the faster the training;
hence, less time and dataset are needed to improve model
performance.

Several studies have been carried out in the field of agriculture
especially to detect crop diseases, for example, a banana plant disease
classification model based on hybrid CNN was developed [21], in
this study, the concept of transfer learning was applied to test and
train the model using ResNet model. A method for determining
mancozeb deposition benchmark values on apple leaves to support
management of venturia inaequalis was proposed [22]. In this
method, the study images taken using infrared enabled camera
were used and TIRI benchmark model was applied to validate the
proposed model and a method for determining mancozeb residues
in vegetables using head space Fourier transform infrared
spectroscopy [23].

Although the above studies demonstrated a better performance
and the potential to improve techniques for chemical and disease
detection in crops/vegetables, their scope is either limited to a
single transfer learning model or a single crop/vegetable species.
In this study, we trained and tested the proposed model on four
different vegetable species using four different transfer learning
models and a scratch model, hence covering a wider range of
deep learning techniques used in detecting chemical residues in
vegetables.

5. Computation Complexity

The training and testing of the proposed model for the detection
ofmancozeb, dioxacarb, andmethidathion concentration in vegetables
were developed using PYTHON scripting language running in Jupiter

notebook environment on an I7 processor with 8 GB RAM equipped
with RTX 4070Ti 6GB AMD GPUs from NVIDIA.

The computation complexity of the proposed model is
presented in terms of space and time required for execution. In
regard to this study, time complexity describes the amount of
memory required by the model in terms of the amount of input to
the model, whereas space complexity is the number of elementary
objects required by the model to store during its execution. These
were computed asymptotically by analyzing the best, average, and
worst case scenarios of each model computed using Equations (5),
(6), and (7), respectively.

Best case θð Þ ¼ f nð Þ � cg nð Þ; for n � n 0 (5)

Average caseðΩÞ ¼ c0g nð Þ � f nð Þ � c00g nð Þ; for n � n 0 (6)

Worst case Oð Þ ¼ f nð Þ � cg nð Þ; for n � n 0 (7)

where n0 is the initial number (positive integer) of data input, n is
increase in n0, and c is a constant value.

The proposed model was trained and tested in Jupiter notebook
environment running on an i7 processor with 8 GB RAM equipped
with RTX 4070Ti 6 GB AMD GPUs from NVIDIA. During model
testing, 100 datasets were used for each epoch and performance
results for each model are presented in Table 3.

From Table 3, Inception V3 registered the best performance in
all cases (best, average, and worst), followed by VGG19 with
213600 milliseconds although its worst case score diverted from

Figure 6
Scratch model performance on both training and testing dataset
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Table 3
Model execution time per epoch

n0= 100 par epoch

Models θ(ms) Ω(ms) O(ms)

Inception V3 133800 221700 309600
ResNet50 273600 393600 513600
VGG16 328200 358200 388200
VGG19 213600 453600 693600
Scratch 239940 299640 359340
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the exhibited a better best case, the correspondingworst case diverted
from the constant. ResNet50 and VGG16 consumed more
computation resources during execution compared to other
transfer learning models used. The proposed scratch model best
case, worst case, and average execution time was 239940 ms,
359340 ms, and 299640 ms for 100 images per epoch, respectively.

Although the proposed model was run in an environment with
higher specifications, a laptop/desktop computer that is GPU enabled
with at least 4 GB RAM, 2.3 GHz speed plus 120 GB storage will be
capable of running each of the models used in this study with at most
100 datasets per epoch. However, the need for more computing
resources arises with an increase in the size of the dataset, i.e., the
bigger the dataset the more computing resources required and
execution time.

6. Conclusion and Future Works

Vegetable farming is one of the quick income generating
agriculture schemes practiced by farmers in Uganda. There are over
30 vegetable types grown in Uganda both on a large and small scale.
The fact that they can be planted in the same garden, a farmer can
plant varieties and these have ready markets especially in urban
settings. Although vegetable production has gained momentum, the
chemicals used to improve production put a health threat to the
consumers. To reduce consumer exposure to the chemicals,
computerized methods have been proposed to assist consumers in
detecting the presence of chemicals in vegetables; however, these
methods have been limited to detection of a single chemical while
others are trained on one model, which limits application scope of
these methods. To mitigate these limitations, in this study a model
for detecting mancozeb, dioxacarb, and methidathion using image
processing techniques has been proposed. To achieve the research
objectives, deep learning CNNs and scratch method were applied to
train and test the proposed model. From results obtained using
training dataset, ResNet50 achieved a better performance in detecting
the chemicals in question with 98.97% accuracy, whereas Inception
V3 performed better on testing compared to other models with
96.77% detection accuracy and excellent F1-score, precision, and
recall values, hence demonstrating the suitability of the proposed
model in detecting mancozeb, dioxacarb, and methidathion chemicals
in vegetables. To ease model accessibility and usability, a mobile
application was developed with friendly user interfaces that support a
better user experience with the model.

To complement study findings, future work should focus on
implementing a multi-tasking module of the proposed model to
support batch image analysis instead of analyzing a single image.
This will improve model suitability for bulk processing to support
detection of mancozeb, dioxacarb, and methidathion chemicals in
multiple images in a short period.
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