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Abstract:Kernelmethods are widely used inmachine learning. They introduce a nonlinear transformation to achieve a linearization effect: using
linear methods to solve nonlinear problems. However, typical kernel methods like Gaussian process regression (GPR) suffer from a memory
consumption issue for data-intensive modeling: the memory required by the algorithms increases rapidly with the growth of data, limiting their
applicability. Localized methods can split the training data into batches and largely reduce the amount of data used each time, thus effectively
alleviating the memory pressure. This paper combines the two approaches by embedding kernel functions into local learning methods and
optimizing algorithm parameters including the local factors and model orders. This results in the kernel-embedded local learning (KELL)
method. Numerical studies show that compared with kernel methods like GPR, KELL can significantly reduce memory requirements for
complex nonlinear models. And compared with other non-kernel methods, KELL demonstrates higher prediction accuracy.

Keywords: kernel methods, Gaussian process regression, data-intensive modeling, local learning, KELL, complex nonlinear models,
prediction accuracy

1. Introduction

Kernel methods have been widely applied in the field of machine
learning (Hofmann et al., 2008; Schölkopf & Smola, 2018). The main
idea is to introduce a nonlinear transformation to achieve a linearization
effect, so as to solve nonlinear problems using linear methods. These
methods have achieved remarkable results in many practical
applications, such as support vector machines (SVMs) (Cortes &
Vapnik, 1995; Vapnik, 2013) and Gaussian process regression
(GPR) (Rasmussen & Williams, 2005). However, typical kernel
methods like GPR face a memory usage problem for data-intensive
modeling: as the amount of training data increases, the memory
resources consumed by the algorithm increase rapidly, which limits
the application of the algorithm in data-intensive modeling scenarios
(Lawrence, 2009; Quiñonero-Candela & Rasmussen, 2005).

On the other hand, localization methods are also an effective
learning strategy. The basic idea is to divide the training data into
batches, which greatly reduces the amount of data used each time,
thereby effectively alleviating memory pressure. Localization
methods have been successfully applied in many fields, such as
online learning (Cesa-Bianchi & Lugosi, 2006; Shalev-Shwartz,
2012) and incremental learning (Muhlbaier et al., 2009; Polikar,
2006). However, these methods are often limited in dealing with
high-dimensional complex nonlinear problems, because they do
not use kernel functions to achieve linearization (Bousquet &
Elisseeff, 2002; Schölkopf et al., 1999).

More recent related works are mainly focused on improving the
scalability of existing methods. Explicit feature maps have emerged as
a substitute for traditional kernel-based methods (Francis & Raimond,

2021). The neural network approximation captures the location,
orientation, and shape of the solution transition near a localization,
while the standard RK approximation models the smooth part of the
solution (Baek et al. 2022). Matrix-induced regularization is suggested
to enhance the complementarity between base kernels (Qiu et al. 2023).

This paper proposes a newmethod that combines kernel functions
with local learning methods, thus achieving kernel-embedded local
learning (KELL). Specifically, we embed kernel functions in
local learning methods and optimize algorithm parameters like local
factors and model orders to improve model prediction accuracy. In
other words, this work also focuses on improving the scalability so
that large amounts of data could be properly handled in a reasonable
time, without losing the quality of the results.

To verify the effectiveness of the KELL method, we first take a
set of synthetic data as an example to demonstrate the superiority of
the KELL method in dealing with complex nonlinear models. For
this dataset, we find that compared with kernel methods like GPR,
the KELL method can greatly reduce memory requirements;
compared with other non-kernel methods, the KELL method has
higher prediction accuracy.

Next, we apply the KELL method to real datasets and compare
it with other kernel methods and non-kernel methods. The results
show that while reducing memory requirements, the KELL
method can still maintain high prediction accuracy. This indicates
that the KELL method has broad application prospects.

2. KELL Method

2.1. Algorithm description

This paper proposes amultivariate local learning algorithmwith
embedded kernel functions (i.e., KELL). The goal is to build a model*Corresponding author: Changtong Luo, Institute of Mechanics, Chinese
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that can accurately predict unknown data based on known datasets
and pending datasets, with less memory cost. To achieve this
goal, the following steps are taken:

First, perform some necessary data transformations on the known
and pending datasets, such as standardization and normalization, to
facilitate subsequent calculations and analysis. Second, divide the
known dataset into three subsets: training set, validation set, and test
set. The training set is used to construct the model, the validation set
is used to evaluate the learning effect of the model, and the test set is
used to calculate the model’s prediction performance metrics. Then,
calculate the distance between each point in the validation set and
each point in the training set, and store them in a distance matrix.
This distance matrix is an important basis for subsequent steps.

Next, determine the optimal neighborhood dataset, kernel
function weights, and multivariate low-order model by adjusting
two important parameters: local factor and model order. The local
factor determines the size of the neighborhood dataset for each
validation point, and the model order determines the complexity
of the multivariate low-order model. The model order could be 0,
1, or 2, which correspond to moving average, linear, and
quadratic models, respectively. The neighborhood dataset refers to
a portion of the training points that are closest to the validation
point. The number of neighboring points (Nneighbors) in the neighbor-
hood dataset depends on a preset local factor range, which is [0.05,
0.5] in this paper. The kernel function weights (Kλ xnew; xið Þ) refer to
the weights assigned to each neighboring point according to the ker-
nel function and distance matrix. The multivariate low-order model
(fθ �ð Þ) refers to a weighted multivariate polynomial function con-
structed using the neighborhood dataset and given model order.

The local estimate (regression) at a new location xnew is defined
as ŷ ¼ fθ̃ðxnewÞ, where θ̃minimizes the residual sum-of-squares (RSS)

RSS fθ; xnewð Þ ¼
XNneighbors

i¼1

Kλ xnew; xið Þðyi � fθ xið ÞÞ2

Note that only “local” kernelmatrices are computed tomake predictions
at new locations. That is, only a small part data (not all data) are used to
construct the local model. Thus, it requires much less memory.

To find the optimal parameter combination, the following steps
need to be repeated under different parameter values: determine
neighborhood dataset, determine kernel function weights, construct
multivariate low-order model, and evaluate learning effect. The
learning effect is evaluated by calculating the coefficient of
determination R2 of the model on the validation set. The larger this
coefficient, the better the model can explain the variation in the
validation data. When the parameter combination that maximizes
R2 is found, the tuning can be stopped. The evaluation of the
learning effect is based on the test set. Calculate the model’s
prediction performance metrics, i.e., the coefficient of determination
R2 of the model on the test set. The coefficient of determination R2

is determined by the RSS and total sum-of-squares (TSS) on the

test set defined as R2 ¼ 1� RSS
TSS, where RSS ¼ PNtest

i¼1
ðyi � ŷiÞ2,

TSS ¼ PNtest

i¼1
ðyi � ȳÞ2, and ȳ ¼ 1

Ntest

PNtest

i¼1
yi. The larger this coefficient

(R2), the better the model can predict the variation in unknown data.
Finally, fine-tune the model using all known data under the

optimized local factor and model order and recalculate the model
coefficients. Then, use the fine-tuned model to calculate the
predicted results of the pending dataset, and inverse transform the
predicted results back to the original data scale. At the same time,
output the prediction performance metrics to evaluate the model.

2.2. Algorithm steps

The algorithm steps for multivariate local learning with
embedded kernel functions (i.e., KELL) are as follows:

1) Input: Read known dataset, pending dataset
2) Data transformation: Perform standardization, normalization

on known and pending datasets
3) Data splitting: Split known dataset into training set, validation

set, and test set
4) Calculate distance matrix: Calculate distance between each

point in validation set and training set
5) Optimize local factor and model order:

According to certain local factor and model order, do
5.1) Determine neighborhood dataset: Determine neighborhood

dataset based on local factor
5.2) Determine kernel weights: For each point in validation

set, determine weights through kernel function and
distance matrix

5.3) Multivariate low-order approximation: Construct
multivariate low-order model based on neighborhood
dataset and given model order

5.4) Evaluate learning effect: On validation set, calculate
model’s R2, larger R2 means better effect

5.5) Record the best local factor and model order for
prediction

5.6) Tuning: Adjust local factor andmodel order within [0.05,
0.5] and {0, 1, 2}, respectively repeat this step until
optimal local factor and model order are reached

6) Calculate prediction metrics: Based on test set, calculate
model’s R2

7) Model fine-tuning: Under optimized local factor and model
order, use all data to fine-tune model coefficients

8) Prediction: Calculate predicted results of pending dataset
under fine-tuned model

9) Output: Inverse transform predicted results, print out inverse
transformed results, and output prediction metrics (R2)

2.3. Algorithm flowchart

The algorithm flowchart for multivariate local learning with
embedded kernel functions (i.e., KELL) is shown in Figure 1.

2.4. Kernel functions

KELL can adopt any of the following five (or other) kernel
functions:

(1) Sigmoid kernel

Kðxi; xjÞ ¼
2π

e� xi�xjk k þ e xi�xjk k

(2) Gauss kernel

Kðxi; xjÞ ¼
1ffiffiffiffiffiffi
2π

p e�0:5 xi�xjk k2

(3) Laplace RBF kernel

Kðxi; xjÞ ¼
1ffiffiffiffiffiffi
2π

p e�
ffiffi
2

p
xi�xjk k
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(4) Logistic kernel

Kðxi; xjÞ ¼
1

ð1þ e� xi�xjk kÞ þ ð1þ e xi�xjk kÞ

(5) Silverman kernel

Kðxi; xjÞ ¼
1
2
e�

xi�xjk kffiffi
2

p
sin

xi � xj
�� ��ffiffiffi

2
p þ π

4

 !

Figure 1
Flowchart of kernel-based local learning
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3. Numerical Results

3.1. Test problems and model performance

To verify the effectiveness of the KELL method, we first take a
set of synthetic data as an example to test the performance of the
KELL method in establishing complex nonlinear models and the
influence of its parameters.

The synthetic data use the Himmelblau’s function (Houssein
et al., 2021) (Figure 2) as the target model. Using 2023 as the
random seed, 100, 1000, 2000, 5000, and 10,000 training samples
(including training set and validation set) are randomly generated
uniformly in the spatial subset �4; 4 �� ½ � 4; 4½ � of R2, respectively,
for the learning and adaptive training of the model. Another 100 test
samples (test set) are randomly generated to test the performance of
models obtained by various machine learning methods. The main
metrics used to judge model performance are root mean square error
(RMSE), relative RMSE, coefficient of determination (R2),
and log 1� R2ð Þ.

3.2. Influence of KELL algorithm parameters

It is noted that KELL mainly contains three hyperparameters:
kernel function, local factor, and model order. Among them, the
kernel function has little influence on KELL’s performance (see
comparison between Figure 3(a) and (c), Figure 3(b) and (d));
thus, it is ignored in algorithm optimization (Figure 1). In the
following test comparisons, the Gaussian kernel function is used
as the kernel function.

The influence of local factor and model order is
demonstrated below.

Comparing Figure 3(a) and (b), Figure 3(c) and (d), it can be
seen that using different model performance parameters (such as
relative RMSE and log 1� R2ð Þ in the figures) leads to consistent
evaluation results.

Model order and local factor both have significant influence on
the model. Thus, they are important hyperparameters of the KELL
algorithm (Figure 1).

3.3. Comparison between KELL and Kernel
methods

To evaluate the performance of the KELL method, we first
compared the memory requirements of KELL and typical kernel
methods represented by GPR (Fairbrother et al., 2022) (Table 1).
The results show that the memory usage of GPR increases
exponentially with the increase of sample data; the memory usage
of KELL method increases linearly with the increase of sample
data. For the same amount of data, the memory required by KELL
is much less than the memory requirements of kernel methods
like GPR.

3.4. Comparison between KELL and different
machine learning methods

Furthermore, we compare KELL with different machine
learning methods (Table 2). Twenty-one machine learning
methods were compared, including GPR (Liu et al., 2020),
artificial neural networks (Schmidhuber, 2015), extra trees

Figure 2
Landscape of Himmelblau’s function

Table 1
Comparison of Memory Requirements between

Kernel-Embedded Local Learning (KELL) and Gaussian
Process Regression (GPR)

Number of
samples

Memory required

Kernel-embedded local
learning

Gaussian process
regression

100 98.86 KiB 237.41 KiB
1000 469.27 KiB 22.91 MiB
2000 775.55 KiB 91.60 MiB
5000 1.65 MiB 572.32 MiB
10,000 3.13 MiB 2.24 GiB

Table 2
Comparison of model accuracy between different

machine learning methods

No. ML methods RMSE R2

1 Kernel-based local learning 0.9987 0.9998
2 Gaussian process regression 8.65779 0.95615
3 Artificial neural networks 19.6701 0.9511
4 Extra trees regressor 249.9066 0.8639
5 Gradient boosting regressor 329.7487 0.8216
6 SVM regressor 341.6532 0.8166
7 Random forest regressor 373.1002 0.8016
8 K neighbors regressor 494.4949 0.7272
9 AdaBoost regressor 564.0466 0.6778
10 Decision tree regressor 638.0672 0.6486
11 Light gradient boosting machine 1567.1942 0.1515
12 Orthogonal matching pursuit 1549.9326 0.1089
13 Elastic net 1669.8326 0.0701
14 Lasso regression 1721.1153 0.05
15 Lasso least angle regression 1699.4507 0.0494
16 Bayesian ridge 1722.6574 0.0489
17 Ridge regression 1728.5235 0.0478
18 Least angle regression 1737.6063 0.0436
19 Linear regression 1737.6065 0.0436
20 Huber regressor 1743.9313 0.0198
21 Passive aggressive regressor 1886.135 −0.0689
22 Dummy regressor 2015.8817 −0.1483
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regressor (Mastelini et al., 2022), gradient boosting regressor
(Natekin & Knoll, 2013; Friedman 2001), SVM regressor
(Rodríguez-Pérez & Bajorath, 2022), random forest regressor
(Breiman, 2001), K-nearest neighbors regressor (Ertuğrul &
Tağluk, 2017), AdaBoost regressor (Koduri et al., 2019), decision
tree regressor (Pekel, 2020), light gradient boosting machine
(Taha & Malebary, 2020), orthogonal matching pursuit (Zarei &
Asl, 2021), elastic net (Zou & Hastie, 2005), lasso regression
(Yazdi et al., 2021), lasso least angle regression (El Sheikh et al.,
2021), Bayesian ridge regression (Yang & Yang, 2020), ridge
regression (Arashi et al., 2021), least angle regression (Fernández-
Delgado et al., 2019), linear regression (Hope, 2020), Huber
regressor (Sun et al., 2020), passive aggressive regressor
(Crammer et al., 2006), and dummy regressor (Schepers, 2016).
The default parameters are used for each machine learning method
(Ali, 2023).

It can be seen that compared to other methods, KELL has higher
prediction accuracy.

3.5. Application of KELL in atmospheric data
inversion

We used KELL to learn and model data derived from the direct
numerical simulation of rarefied gas dynamics, which served as our
training dataset. Subsequently, we used it to invert atmospheric data
collected from a flight experiment or our pending dataset. This
involved deducing the density and temperature of the atmosphere
by analyzing the pressure (p) and heat flux (q) coefficients at

various measurement locations on the aircraft’s exterior. The
training set comprised 87,365 sampling points and took into
account 10 features, namely: p1, p2, p3, p4, q1, q2, and so on up
to q6. The pending dataset, which was to be inverted (or
predicted) by KELL, consisted of only 43 points scattered along
the flight path. A comparison with atmospheric models (as shown
in Figure 4) revealed a high level of agreement, suggesting that
KELL has successfully predicted the results.

4. Discussion

In the field ofmachine learning, dealingwith complex nonlinear
problems has always been an important challenge. Kernel methods
achieve a linearization effect by introducing nonlinear
transformations, thus achieving remarkable results in many
problems. However, as data volume continues to increase, the
memory pressure brought by kernel methods is also growing,
which poses limitations on the application of algorithms. The
KELL method proposed in this paper provides an effective
approach to address this problem by combining kernel functions
with local learning methods, achieving high prediction accuracy
while reducing memory requirements. This will help promote the
development of kernel methods in the field of data-intensive
modeling and provide more possibilities for solving practical
problems.

The key of the KELL method lies in embedding kernel functions
into local learning methods and optimizing parameters like local factors
and model orders. In practical applications, we can select appropriate
kernel functions and corresponding local learning methods according

Figure 3
The influence of different algorithm parameters on kernel-based local learning for the Himmelblau’s problem: different kernels and

different local factors

(a) (b)

(c) (d)
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to the characteristics of different problems. In addition, parameter
optimization is also an important feature of the KELL method. We
can use methods like grid search and Bayesian optimization for
parameter tuning to achieve optimal prediction performance.

It is worth noting that although the KELL method shows
superiority in reducing memory requirements, there may be more
cost in computation time. Unlike global learning methods such as
Gaussian Process Regression (GPR), local learning methods require
repeated modeling. For each prediction point, these methods sample
a small batch of data based on its current location information.
Consequently, the total computation may increase. However, in the
case of data-intensive modeling, the limitation of memory resources
is often more critical than computation time, so the KELL method
still has high practical value.

In future research,wewill further optimize theKELLmethod and
explore more combinations of kernel functions and local learning
methods. At the same time, we will also try to apply the KELL
method to other fields such as image recognition and natural
language processing to verify its generalization ability in different
scenarios. In addition, we will also study how to implement the
KELL method in a distributed computing environment to make full
use of existing computing resources and improve algorithm efficiency.

5. Conclusions

This paper proposes a KELL method that achieves high
prediction accuracy while reducing memory requirements by
combining kernel functions with local learning methods. We
conducted experiments on synthetic data and real datasets. The
results show that compared with kernel methods like GPR, the
KELL method has lower memory requirements when dealing with
complex nonlinear problems; compared with other non-kernel
methods, it has higher prediction accuracy. This provides strong
support for the application of the KELL method in data-intensive
modeling scenarios.

Although the KELL method has achieved significant results in
reducing memory requirements, computation time may need further
optimization. Future research can focus on how to reduce
computation time while maintaining prediction accuracy to
improve the applicability of the algorithm. In addition, we will
also explore more combinations of kernel functions and local
learning methods to expand the application scope of the KELL
method to different problems and fields.

The proposal of the KELL method provides an effective
approach to solving nonlinear problems in data-intensive
modeling scenarios, combining the advantages of kernel methods
and local learning methods. By optimizing parameters like local
factors and model orders, the KELL method significantly reduces
memory requirements while maintaining high prediction accuracy.
This will help promote the development of kernel methods in the
field of data-intensive modeling and provide more possibilities for
solving practical problems.

The successful application of the KELL method will bring new
opportunities to the field of machine learning, especially when facing
complex nonlinear problems in data-intensive modeling scenarios.
We believe that through continuous optimization and expansion of
the KELL method, more breakthroughs can be achieved in the
future, making greater contributions to high-precision prediction
of complex nonlinear systems.

Funding Support

This work was supported by the National Natural Science
Foundation of China (Grant No. 12072353).

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The author declares that he has no conflicts of interest to this
work.

Data Availability Statement

Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

References

Ali, M. (2023). PyCaret3.0: An open source, low-code machine
learning library in Python. Retrieved from: https://www.pyca
ret.org

Figure 4
Comparison of atmospheric local parameter inverted results and atmospheric model

Density comparison Temperature comparison

(a) (b)

Artificial Intelligence and Applications Vol. 2 Iss. 1 2024

43

https://www.pycaret.org
https://www.pycaret.org


Arashi, M., Roozbeh, M., Hamzah, N. A., & Gasparini, M. (2021).
Ridge regression and its applications in genetic studies. PLos
One, 16(4).

Bousquet, O., & Elisseeff, A. (2002). Stability and generalization.
The Journal of Machine Learning Research, 2, 499–526.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Baek, J., Chen, J., Susuki, K. (2022). A neural network-enhanced

reproducing kernel particle method for modeling strain
localization. arXiv Preprint: 2204.13821.

Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and
games. USA: Cambridge University Press.

Cortes, C., & Vapnik, V. (1995). Support-vector networks.Machine
Learning, 20(3), 273–297.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer Y.
(2006). Online passive-aggressive algorithms, Journal of
Machine Learning Research, 7(19), 551–585.

El Sheikh, A. A., Barakat, S. L., & Mohamed, S. M. (2021). New
aspects on the modified group LASSO using the least angle
regression and shrinkage algorithm. Information Sciences
Letters, 10(3), 527–536.

Ertuğrul, Ö. F., & Tağluk, M. E. (2017). A novel version of k nearest
neighbor: Dependent nearest neighbor. Applied Soft
Computing, 55, 480–490.

Fairbrother, J., Nemeth, C., Rischard, M., Brea, J., & Pinder, T. (2022).
GaussianProcesses.jl: A Nonparametric Bayes package for the
Julia language. Journal of Statistical Software, 102(1), 1–36.

Fernández-Delgado,M., Sirsat,M. S., Cernadas, E., Alawadi, S., Barro,
S., & Febrero-Bande, M. (2019). An extensive experimental
survey of regression methods. Neural Networks, 111, 11–34.

Francis, D. P., & Raimond, K. (2021). Major advancements in kernel
function approximation. Artificial Intelligence Review 54,
843–876.

Friedman, J. H. (2001). Greedy function approximation: A gradient
boosting machine. Annals of Statistics, 29(5), 1189–1232.

Hofmann, T., Schölkopf, B., & Smola, A. J. (2008). Kernelmethods in
machine learning. The Annals of Statistics, 36(3), 1171–1220.

Hope, T.M. (2020). Linear regression. In A.Mechelli & S. Vieira (Eds.),
Machine learning. (pp. 67–81). Academic Press.

Houssein, E. H., Gad, A. G., & Wazery, Y. M. (2021). Jaya algorithm
and applications: A comprehensive review. In N. Razmjooy, M.
Ashourian & Z. Foroozandeh (Eds.), Metaheuristics and
Optimization in Computer and Electrical Engineering,
(pp. 3–24). Springer Cham.

Koduri, S.B.,Gunisetti, L.,Ramesh,C.R.,Mutyalu,K.V.,&Ganesh,D.
(2019). Prediction of crop production using AdaBoost regression
method. Journal of Physics: Conference Series, 1228(1).

Lawrence, N. D. (2009). The Gaussian process latent variable model.
In Gaussian processes (pp. 133–165). USA: CRC Press.

Liu, H., Ong, Y. S., Shen, X., & Cai, J. (2020). When Gaussian
process meets big data: A review of scalable GPs. IEEE
Transactions on Neural Networks and Learning Systems,
31(11), 4405–4423.

Mastelini, S. M., Nakano, F. K., Vens, C., & de Leon Ferreira, A. C.
P. (2022). Online extra trees regressor. IEEE Transactions on
Neural Networks and Learning Systems, 34(10), 6755–6767.

Muhlbaier, M. D., Topalis, A., & Polikar, R. (2009). Learn++.
MF: A first step towards incremental learning in
nonstationary environments. In 2009 International Joint
Conference on Neural Networks, 2615–2622.

Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a
tutorial. Frontiers in Neurorobotics, 7, 21.

Pekel, E. (2020). Estimation of soil moisture using decision tree
regression. Theoretical and Applied Climatology, 139(3–4),
1111–1119.

Polikar, R. (2006). Ensemble based systems in decision making.
IEEE Circuits and Systems Magazine, 6(3), 21–45.

Qiu, J., Xu,H., Zhu,X.,&Adjeisah,M. (2023). Localized simplemultiple
Kernel K-means clustering with matrix-induced regularization.
Computational Intelligence and Neuroscience, 2023.
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