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Abstract:An accurate image segmentation in noisy environment is complex and challenging. Unlike existing state-of-the-art methods that use
superpixels for successful segmentation, we propose a new approach for noise-robust simple linear iterative clustering (SLIC) segmentation
that incorporates a Canny edge detector. By leveraging Canny edge information, the proposed method modifies the pixel intensity distance
measurement to overcome boundary adherence challenge. Furthermore, we adopt a selective approach to update cluster centers, focusing on
pixels that contribute less to the noise. Extensive experiments on synthetic noisy images demonstrate the effectiveness of our approach. It
significantly improves SLIC’s performance in noisy image segmentation and boundary adherence, making it a promising technique for vision
processing tasks.
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1. Introduction

Computer vision is used in various fields like disease diagnosis
(Roy et al., 2022), text detection (Nandanwar et al., 2021; Roy et al.,
2023), etc., to automate tasks for faster and accurate life. Image
segmentation is an important aspect for various complex deep
learning tasks to spot the region of interests, which are difficult to
spot sometimes with human eye. Segmenting region of interest in
the images of different situations and application is an integral part
of image understanding and image captioning. For an accurate
segmentation of vital region that signifies dominant information,
superpixel segmentation has been introduced as a preprocessing
step for various computer vision applications, including object
tracking, object localization, segmentation, and image co-saliency
detection. This is because superpixels represent vital information in
images. It involves grouping pixels with similar low-level features,
such as similarity in color or position, into coherent regions called
superpixels. By operating at the superpixel level instead of
individual pixels, computations and decisions can be made more
efficiently. For instance, simple linear iterative clustering (SLIC) is
widely preferred due to its computational efficiency and ability to
generate visually meaningful superpixels. When evaluating the
quality of superpixel segmentation algorithms, several important
criteria are considered. First, it is crucial that the boundaries of
resulting superpixels align accurately with the boundaries in the
original image, ensuring boundary adherence of images (Figure 1).
Second, the resulting superpixels should be compact and have
regular shapes. Finally, a good superpixel algorithm must be

straightforward and computationally efficient. By fulfilling these
criteria, SLIC and other effective superpixel algorithms enable
improved performance in various computer vision tasks. Their
ability to generate meaningful superpixels enhances the accuracy
and efficiency of subsequent image processing and analysis.

However, most of the existing SLIC-based methods may not be
effective for noisy images because the existing SLIC is sensitive to
noise and background complexity. Therefore, there is a need for

Figure 1
Illustration of the problem associated with Euclidean distance.
The distance, which considers both color and spatial proximity,
between a cluster center ck and a pixel pi is smaller than the
distance between another cluster center ct and the same pixel pi.

Consequently, the pixel pi might be wrongly assigned to
the cluster associated with ck instead of ct. Consequently, the

generated superpixels may not accurately preserve
the boundaries between the two regions
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extending the present SLIC to work on noisy images. Thus, this work
aims at improving the existing SLIC based on Canny edge features
and pixel intensity distance to perform grouping for superpixels
segmentation. Hence, the contribution of the proposed works is as
follows. (i) Use of Canny edge features to find fine details in the
noisy images is new compared to superpixel segmentation. (ii)
Proposing distance between pixels intensity values based on
Canny edge information to group actual image pixels in noisy
images is another contribution of the proposed work.

The paper is structured as follows: Section 2 provides a succinct
overview of related works, while Section 3 delves into the proposed
method. The experimental findings are presented in Section 4, and
the paper concludes with Section 5.

2. Literature Review

Superpixels are groups of pixels that exhibit similarities in terms
of color or position. These superpixels have gained popularity in
computer vision due to their wide range of applications, particularly
in image segmentation as a crucial preprocessing step. Numerous
methods have been developed for superpixel segmentation, which
can be broadly categorized into graph-based methods and
clustering-based methods (Achanta et al., 2012; Felzenszwalb &
Huttenlocher, 2004; Levinshtein et al., 2009; Shi & Malik, 2000;
Tan et al., 2013; Vedaldi & Soatto, 2008; Wang et al., 2013).

2.1. Graph-based methods

In certain image processing approaches, an image is represented as
a graphG= (V,E), withV representing the nodes andE representing the
edges. Each pixel in the image I is represented as a node vi ∈ V, and
neighboring pixels are connected by edges ej ∈ E. The weight of
each edge (say w) between two nodes is determined by the
similarities in pixel position and color. The superpixels are generated
by minimizing the cost of weighted edges. The normalized cuts
algorithm (Vedaldi & Soatto, 2008), proposed by Shi et al.,
recursively partitions the graph of all the pixels in an image based on
contour and texture cues. It optimizes a criterion that considers the
total similarity and dissimilarity between different groups, resulting
in superpixels with regular shapes. However, this algorithm fails to
preserve the boundaries of image and is computationally expensive,
involving a large number of matrix calculations with a time
complexity of O(N3/2) (Felzenszwalb & Huttenlocher, 2004). To
address these challenges, (Shi & Malik 2000) introduced a fast
graph-based algorithm utilizing a bottom-up clustering approach. In
this method, every pixel is considered as an initial cluster, and pixels
are merged with the application of a greedy algorithm. This approach
adheres well to image boundaries but produces superpixels that are
highly irregular in shape and size. Compactness is not explicitly
considered. The time complexity of this algorithm is O(NlogN). The
choice of algorithm depends on the specific requirements of the
application, balancing boundary adherence, computational efficiency,
and the desired characteristics of the resulting superpixels.

2.2. Clustering-based methods

Another approach to generate superpixels is through gradient
ascent methods, which generate superpixels based on gradients.
These approaches initiate the process with an initial set of K cluster
centers placed randomly across various pixels within the image.
The updation of the cluster centers is achieved until a convergence
criterion is reached, and the image is segmented into K clusters.
The mean shift (Levinshtein et al., 2009) clustering algorithm

associates each pixel with a probability density function and
clusters the pixels based on the image’s color modes and intensity
probability density function. This method is a nonparametric
clustering method and does not require the number of clusters to be
given beforehand. The clustering procedure is based on the
variation in the local density values, with each pixel being clustered
with other pixels having the same probability density value. This
method generates nonuniform-sized superpixels having irregular
shapes, and its time complexity is O(N2). The turbopixels algorithm
(Felzenszwalb & Huttenlocher, 2004) produces superpixels
efficiently by initializing seeds placed regularly on the image and
using a level set-based geometric flow evolution process that relies
on image gradients in order to establish evenly distributed
superpixels across the image plane. These superpixel boundaries
emerge at the intersections of two flow patterns. Although the time
complexity is O(N), this algorithm is relatively slow in practice and
generates superpixels with relatively poor boundary adherence.
Superpixels have gained popularity as an efficient method for image
processing and find widespread applications in various fields,
including medical imaging (Budak & Mençik, 2022; Faragallah
et al., 2023; He et al., 2022; Massari et al., 2023), marine Synthetic
aperture radar (SAR) imagery (Sun et al., 2023; Wang et al., 2022;
Xu et al., 2022), and Unmanned Aerial Vehicle (UAV)/drone
imagery (Behera et al., 2023; Sheela et al., 2023). In Giraud et al.
(2023) and Zhou et al. (2023), generalized decomposition approach
has been used for superpixel segmentation in omnidirectional
images (Giraud et al., 2023) and color, and gradient information is
used for vine spread for superpixel segmentation (Zhou et al.,
2023). The review on different methods of superpixel segmentation
indicates that superpixel-based methods are robust to different
situations. This observation motivated us to explore superpixel-
based methods for segmentation in this work.

3. Proposed Method

It is noted from the review on existing superpixels segmentation
that the methods are not robust to noise images. It is true that, when
we look at real-time applications, introducing noise while capturing
images is common due to faults in the devices and other external
environmental factors. It is also noted from the review that the
SLIC is the most popular approach for superpixels segmentation.
However, this method does not perform well for noisy images.
This is because the method works at pixel level. This observation
motivated us to propose modifications to the current SLIC such
that it can withstand the challenges of noisy images. Therefore,
the proposed model is a modified SLIC for superpixels
segmentation. The proposed work leverages Canny edge features
(shown in Figure 2) and modifies pixels intensity distance for
clustering actual image pixels despite the noisy pixel present in
the images. The intuition behind this approach is that Canny edge
operator detects the high gradient value, which represents edge
pixels in the images for edge detection. Therefore, the Canny edge
operator outputs edges though noise pixels are present in the images.

3.1. Overview of SLIC segmentation

This algorithm relies solely on the desired number of clusters,
denoted as K. The RGB image is first converted to the LAB color
space. In the initialization step, K cluster centers are evenly
sampled on a regular grid of S pixel spacing. The grid-spaced
S pixels represent the area surrounding each cluster center. The
grid interval is represented by S ¼ ffiffiffiffiffiffiffiffiffiffi

N=K
p

(N represents the number
of image pixels). The cluster centers are
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cj ¼ ljajbjxjyj
� �

T (1)

In Equation (1), the variables x and y are the pixel’s coordinate
position, while l, a, and b correspond to the respective channels in
the CIE Lab* color space. To ensure that the cluster centers do not
coincide with image edges, a precaution is taken. The centers are
adjusted within a 3 × 3-pixel neighborhood, aiming to position
them at locations with the lowest gradient. This prevents the
seeding of superpixels with noisy pixels or overlapping with
neighboring clusters. Each pixel pi is then associated with the
nearest cluster center cj. The algorithm focuses on calculating fea-
ture-based similarities only between each cluster center and the pixels
within a 2S × 2S search region, where the search region encompasses
the cluster center. This approach differs from the conventional K-
means clustering algorithm, where each of the cluster centers is com-
pared against all other pixels in the entire image. By limiting the com-
parisons to a smaller region, the algorithm significantly reduces the
number of feature-based similarity calculations, resulting in a notable
speed advantage. The time complexity of the algorithm isO(N), where
N represents the number of pixels in the image. This particular process
of association depends on the combination of spatial proximity and
color proximity calculations between each pixel pi and the nearest clus-
ter center cj. The color proximity is

dc cj; pi
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

⟦ lj � li
� �

⟧2 þ ⟦ bj � bi
� �

⟧2 þ ⟦ cj � ci
� �

⟧2
q

(2)

And, the spatial proximity is defined as:

ds cj; pi
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

⟦ xj � xi
� �

⟧2 þ ⟦ yj � yi
� �

⟧2
q

(3)

The combined (and normalized) proximity is

Dc cj; pi
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⟦
dc cj; pi
� �
m

⟧2 þ ⟦
dsðcj; pi

S
Þ2⟧

s
(4)

In Equation (4), the variable S represents the anticipated
maximum spatial distance within a designated cluster. The
constant m, which lies in the range of [1.40], denotes the

maximum color distance and can vary for each cluster or image.
After the initial clustering, the mean vector [labxy]T is used to
update the cluster centers, which represent the average values of the
LAB color channels and pixel coordinates within each cluster. To
measure the convergence of the algorithm, the residual error
denoted as Err is calculated. Err is the difference between the
new positions of the cluster centers and their previous positions
(Err ≤ threshold value incorrectly assigned to cluster ck instead of
with cluster center ct). The algorithm iterates until Err falls below a
specified threshold value. It is important to note that in the
iterations, some pixels may be incorrectly associated with a cluster
ck instead of their corresponding cluster center ct. Addressing this
issue is crucial as it reduces convergence time and improves the
overall quality of the image. Figure 1 provides a visual illustration
of this improvement. By refining the association of pixels to the
appropriate cluster centers, the algorithm can achieve faster
convergence and enhance the segmentation results, resulting in
improved image quality.

3.2. SLIC with Canny edge detector

SLIC employs the Euclidean distance metric for pixel
similarity, which can lead to missing boundaries of content-
sensitive superpixels. To address this limitation, the Canny
edge detector, a commonly used edge detection method, is
incorporated as an initial step in SLIC. The Canny edge
detector locates image edges by identifying local maxima in the
image gradient. By integrating Canny edge detection into SLIC,
the idea is to artificially decrease the feature-based similarity of
a pixel along the path to the closest cluster center if that path
consists of edge pixels identified by the Canny edge detector.
This approach leverages the intuition that incorporating Canny
edge detection can modify the feature-based similarity
measurement, reducing the impact of edge pixels on the
clustering process. By doing so, SLIC with Canny edge
detection aims to enhance the preservation of boundaries and
improve the accuracy of content-sensitive superpixel
segmentation. This approach addresses the problem of boundary
adherence commonly encountered in superpixels with content
sensitivity. Equation (4) is modified as:

Figure 2
Some sample images and the edges detected by Canny edge detector
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Dc cj; pi
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

⟦
dc cj;pið Þ

m ⟧2 þ ⟦
dsðcj ;pi

S Þ2⟧þ G cj;pið Þ
R

q
(5)

In Equation (5), G is 0 if the pixel is not an edge pixel and is
equivalent to the gradient magnitude calculated by the Canny
edge detector if it is an edge pixel. The segmentation results for
various values of R (see Equation (5)) show better results than
SLIC segmentation, thus solving the boundary adherence problem
(also illustrated in Figure 3 where the dotted yellow circle
highlights the effectiveness of the solution).

3.3. Noise-robust SLIC with Canny

To make the method noise-robust, we first consider the
lab½ �Tcolor intensities and calculate the mean and standard deviation
for each superpixel cluster. Let us assume the mean is mi and the
standard deviation is stdi for the ith cluster. Now, we select the pixels
p for updating the cluster center as:

pi 2 mi � a � stdi;mi þ a � stdi½ � (6)

In Equation (6), pi represents the lab½ �Tcolor intensities of pixel
p in the ith cluster. It is evident from Figure 4 that noise-robust
SLIC+Canny performs better than SLIC + Canny when noise is
incorporated into the image. The importance of this step is shown
in Figure 4.

4. Experimental Results

Dataset: The Berkeley Segmentation Dataset and Benchmark
(BSDS500) is a widely used dataset for superpixel segmentation in
computer vision research. It comprises 500 natural images of varying
sizes and resolutions, collected from diverse sources. The dataset is
divided into three subsets: 200 training images, 100 validation
images, and 200 test images. Each image in BSDS500 is
accompanied by manually annotated ground truth segmentations,
providing pixel-level labeling of superpixels. The ground truth
annotations are used for evaluating the performance of superpixel
segmentation algorithms. The BSDS500 dataset offers a challenging
and comprehensive benchmark for assessing the effectiveness and
accuracy of various superpixel segmentation methods across different

image types and scenes. Researchers often employ this dataset to
develop and compare different algorithms for image segmentation,
and it has significantly contributed to advancements in superpixel
segmentation techniques.

Peak signal-to-noise ratio (PSNR) is awidely usedmetric in image
and video processing to quantify the quality of a reconstructed or
compressed signal compared to its original, pristine version. It is
expressed in decibels and measures the ratio of the maximum
possible power of the original signal (denoted as Pmax) to the mean
squared error (MSE) between the original and the reconstructed
signals (denoted as MSE). The PSNR formula is given by:

PSNR ¼ 10 log10
Pmax ^2
MSE

� �

Thehigher the PSNRvalue, the better the reconstruction quality, as
it indicates a smaller difference between the original and reconstructed
signals, implying higher fidelity and lower perceptual distortion.

The study utilized the BSDS500 dataset to assess the effectiveness
of the proposed model in handling noise during segmentation. The
results presented in Figure 5 indicate that the noise-robust SLIC,
which incorporated a Canny edge detector, outperformed both the
standard SLIC and its enhanced versions in terms of segmentation
accuracy. Furthermore, Figure 6 demonstrates that the proposed
approach achieves comparable performance with other methods in
the absence of noise in normal images. However, when noise is
introduced into the image, the proposed approach outperforms other
methods. Furthermore, it is seen in Fulkerson et al. (2009) that SLIC
is computationally extremely fast, way faster than deep learning
counterparts and other segmentation methods giving comparative
results on standard datasets.

In the same way, Table 1 refers to PSNR values of the proposed
and existing methods calculated on the BSDS500 dataset. For the
noisy images, the proposed method reports the highest PSNR
value compared to the existing methods. However, for the images
without noise, the existing methods (Giraud et al., 2023; Zhou
et al., 2023) report better PSNR values than the proposed method.
This is due to the existing methods being developed for noise-free
images while the proposed method is developed for noisy images.
Therefore, one can infer that the proposed method is robust to
noisy images but not noise-free images.

Figure 3
Segmentation results of SLIC compared with SLIC+Canny. The highlighted region (yellow encirclement) illustrates the boundary

adherence problem overcome using the Canny edge detector
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Figure 4
Segmentation results of SLIC + Canny and noise-robust SLIC + Canny on a noise-incorporated image

Figure 5
Boundary recall score for the various methods on the BSDS500 dataset for noise added to the images

Figure 6
Illustration of the proposed superpixel segmentation technique on original image and noise-incorporated image
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5. Conclusion and Future Work

We have proposed a modified SLIC for segmenting noisy images.
To make the proposed method robust to noise, the proposed work
explores Canny edge features, and it modifies the distance between
pixel intensity values such that it groups actual image pixels despite
the presence of noisy pixels. The results on the standard dataset
show the segmentation performance of the proposed method is better
than existing methods, especially for noisy images. However, it is
noted that the Canny edge operator is sensitive to degradation and
poor-quality images. Therefore, for blurry images, the performance
of the method degrades. To further enhance this methodology, future
endeavors could explore utilizing more sophisticated and robust edge
detection algorithms instead of relying solely on the Canny edge
operator. Additionally, we plan to work on reducing the time
complexity of pixel filtering to make the algorithm more efficient for
real-time applications.

Supportive Materials

The codes will be made available at https://github.com/
AyushRoy2001/Noise-robust-SLIC-Segmentation-using-Canny-
edge-detector.git.
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