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Winds of Change: Enhancing Wind Power
Generation Forecasting with LSTM Models
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Abstract: This paper presents a detailed study on wind power forecasting using a long short-term memory (LSTM) model for single turbine
wind farm. The research integrates technical modeling, predictive modeling, and heat map analysis to improve forecasting accuracy. Wind
power is predicted based on current weather conditions and historical data usingmultivariate time series forecasting with LSTM, implemented
via the Keras-library. Various look-back values are tested to enhance prediction precision. With a 70% training and 30% testing split, the
model achieves an MSE of 27.781, RMSE of 5.271, MAE of 3.281, and variance of 0.886. A 60% training and 40% testing split slightly
improves performance. During the prediction phase, the LSTM model forecasts power output without future weather inputs. Optimal
look-back periods and neuron numbers are identified, resulting in MAPEs of 11.433% and 11.158% for 24 and 48 h of data,
respectively. Optimization techniques, including adjustments to batch size, normalization, and the addition of dense layers, further
improve forecasting accuracy. Notably, MAPE decreases from 92.53% to 87.14% in a monthly prediction scenario. Forward predictions
for 24 h, 2 days, and 1 week result in MAPEs of 70.74%, 39.26%, and 51.48%, respectively. Additionally, a comparison of two
LSTM-based models autoencoder-LSTM and FFT-encoder-decoder LSTM shows that the latter offers superior performance. This study
demonstrates the strong potential of LSTM models for power forecasting and introduces innovative strategies for optimizing model
performance. The combined use of technical and predictive models, heat map analysis, and LSTM architecture contributes significantly
to the advancement of wind power prediction methodologies.
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1. Introduction

With the continuous development of the social economy, the
demand for energy is growing rapidly [1]. However, fossil fuels
are no longer capable of supporting the sustainable development
of human society [2]. As a result, renewable energy sources, such
as wind energy, have gained significant attention [3]. Over the
past few decades, wind energy utilization has experienced rapid
growth, contributing to an increasing proportion of the power grid
worldwide. However, the unpredictable and intermittent nature of
wind speed poses a serious threat to grid security [4].

Although the installed capacity of wind power is increasing, the
utilization of wind energy does not match it. The intermittent and
uncertain nature of wind power makes it difficult to accurately
predict the amount of power generation at a specific moment.
This randomness in power generation creates an imbalance
between power generation and consumption, leading to damage to

the grid. To ensure grid stability while maximizing wind energy
utilization, accurate wind power prediction is crucial. Improved
forecasting allows the dispatching department to schedule power
generation effectively, enhancing both grid safety and wind
energy utilization [5].

As the proportion of wind power in the energy mix continues
to increase, the focus on forecasting wind power generation has
increased. Currently, various methods are used in wind power
prediction, including physical models, statistical methods,
machine learning methods, and combinations of these
approaches. Physical models require highly accurate weather
forecast data, which may not be suitable due to the highly
volatile and random nature of wind speed. Statistical methods
have been used for wind power prediction but may not provide
accurate results due to the erratic nature of wind speed.
Machine learning methods, on the other hand, establish
nonlinear relationships using models like the support vector
machine (SVM) or the more powerful deep neural network
(DNN) [6]. DNN, particularly recurrent neural networks
(RNNs) like long short-term memory (LSTM), has shown great
success in learning feature representations and improving
prediction accuracy for time series data [7].
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The demand for energy is expected to increase significantly
in the future, necessitating the exploration of clean and renewable
energy sources. Wind energy, with its scalability and vast
potential for power generation, is a promising solution.
Efficient power dispatch from wind power plants requires
predictive analysis due to the influence of climatic variables
and the erratic nature of wind power. Hybrid models combining
statistical, intelligent, and physical models have been employed
in wind power forecasting. These models aim to improve the
accuracy of predictions by considering seasonality and other
influencing parameters specific to each location [8]. Several
studies have explored different forecasting models for wind
speed and power prediction, including SVM, wavelet-based
approaches, neural networks, and ensemble machine learning
techniques [6]. These models have demonstrated varying levels
of accuracy, with a mean absolute percentage error (MAPE)
ranging from 2.5% to 18%. More accurate forecasting models
are required to meet the growing demand for solar and wind
power with lower MAPE values [9, 10].

This paper introduces a groundbreaking forecast model for
wind energy prediction, harnessing the power of advanced deep
learning (DL) algorithms, notably the LSTM technique. What
differentiates this model is its innovative fusion of LSTM with an
autoencoder, resulting in enhanced generalization and feature
extraction capabilities. In particular, the integration of fast Fourier
transform (FFT)-encoder-decoder-LSTM distinguishes this
research from conventional methods, representing a significant
advancement in wind energy forecasting. The primary objective is
to achieve exceptional gains in prediction accuracy and efficiency,
ultimately leading to a more reliable and optimized utilization of
renewable energy resources.

Unlike previous studies that focus on generic analysis of
wind power, this research is focused specifically on a single-
turbine wind farm. This targeted approach enables customized
predictions for improved accuracy. To rigorously evaluate the
accuracy of the proposed LSTM model, the study employs
metrics such as the root mean square error (RMSE), mean
absolute error (MAE), and MAPE. These comprehensive
evaluation metrics offer valuable insights into the model’s
effectiveness compared to other similar works. The research
delves into advanced optimization techniques, including
increasing the input batch size, adding extra hidden layers,
and experimenting with different activation functions. These
methods demonstrate the potential for significant performance
improvements compared to traditional approaches. The study
provides compelling evidence of the superiority of the
proposed approach through comparisons with traditional
autoencoder LSTM and LSTM models, underscoring the
benefits of employing DL algorithms for wind energy
forecasting. The importance of accurate wind power prediction
cannot be overstated, as it directly impacts power dispatch,
grid stability, and optimized utilization of renewable energy
resources. Consequently, the findings of this research hold
high relevance and value for advancing renewable energy
technologies and their seamless integration into the power grid.

Additionally, this research unveils a pioneering approach to
the analysis and prediction of wind power generation, tailored
specifically to wind farms. It uses advanced evaluation
metrics, optimization techniques, and comprehensive model
comparisons to offer new and promising opportunities to refine
the precision of wind energy forecasting and optimizing the
effective utilization of renewable energy sources in real-world
scenarios.

2. Survey Review

This section provides a summary of the research conducted on
preprocessing techniques, methods, and DL models for wind power
prediction approaches (WPPAs). The evolution of WPPA has
transitioned from traditional methods to more complex statistical
and learning approaches. The WPPA can be categorized into
short-term, medium-term, or long-term forecasting based on the
prediction horizon. Six main categories of prediction approaches
have been proposed and studied for WPPA: persistence, physical,
statistical, artificial intelligence, DL, and hybrid models.

Hybrid approaches that combine DL models and decomposition
techniques are commonly used for WPPA. Various DL models have
been employed for WPPA, including RNN, vanilla LSTM, stacked
LSTM, CNN, biLSTM, attention-based LSTM (A-LSTM), deep
belief network (DBN), extreme learning machine (ELM), and gated
recurrent unit (GRU) [11]. Performance metrics such as MAE,
RMSE, MAPE, and MSE are used for quantitative comparison of
DL models like RNN, GBM, and LSTM. LSTM has demonstrated
high efficiency and accuracy with minimal errors. Simple LSTM
and its variants have also shown promising results for sequential
timed data. Stacked or appended LSTM layers have been applied to
different datasets, including malware datasets, achieving excellent
accuracy. Bi-LSTM, which works in both forward and backward
passes for timed sequences, has been used for WP forecasting.

CNN, known for its ability to learn from image data and make
intelligent decisions, has been utilized for time series classification
and hybridized with LSTM for time series forecasting. Attention-
based models, such as attention-based LSTM, GRU, and encoder-
decoder, have been applied in several studies [12]. DBN has been
used for WP forecasting and its performance has been quantified
using metrics such as MAE, SDE, and RMSE. ELM has been
compared with an artificial neural network for different time
horizons. Hybrid models that combine LSTM with optimization
algorithms have been used for monthly runoff predictions and
have been evaluated using metrics such as NMAE, R2, NSEC,
and RMSE. DL models combined with decomposition techniques
serve as a preprocessing step for time series data. Various
decompositions, such as wavelet, empirical mode, variation mode,
improved variation mode, discrete wavelet, ensemble empirical
mode, and phase space, have been applied to time series data [8].
Furthermore, Table 1 represents a survey review and the most
widely used approaches for wind forecasting.

2. Research Methodology

2.1. Technical model

The wind farm under consideration comprises a solitary turbine
endowed with specific technical specifications. This turbine boasts a
rated output of 54 kW, which indicates its maximum power
generation capacity when operating under optimal wind
conditions. Featuring a rotor diameter of 18 m, the turbine adeptly
harnesses the kinetic energy present in the wind, efficiently
converting it into rotational motion. Positioned atop a tower with
a hub height of 50 m, measured from the tower’s base to the
center of the turbine hub, this elevated location empowers the
turbine to capture wind at higher velocities, thereby enhancing its
energy production capabilities.

The wind speed gradient, characterized by a shear coefficient of
0.14, denotes a moderate variation in wind speed concerning its
elevation from the ground. Furthermore, to complement this
description, Figure 1 visually presents the electrical load and energy

Artificial Intelligence and Applications Vol. 00 Iss. 00 2024

02



Table 1
Review on methods for wind forecasting

Ref. Methods Inputs outputs Conclusion

Sobolewski et al.
[13]

Gradient boosting Weather and
statistical data

Wind Power Cat Boost demonstrated the lowest RMSE value of
76.18 kW and the lowest MAE value of 54.87
kW, indicating its high precision and precision in
predicting earnings. Light Boost and Boost
followed closely with RMSE values of 76.84 kW
and 77.02 kW and MAE values of 55.24 kW and
55.61 kW, respectively. Random forest also
performed well, with an RMSE of 77.97 kW and
an MAE of 56.14 kW

Li et al. [14] BPNN, SVR,
LSTM, RF

Weather data Wind pressure LSTM-SVR outperforms other algorithms (BPNN,
RF, SVR-G, SVR-L, and LSTM) in terms of
MAPE, RMSE, and R, indicating its higher
prediction accuracy

Ying et al. [15] Belts Wind data Wind power The Re-bi-LSTM model demonstrates the lowest
RMSE and MAE values for both the monthly
average and 107-day average prediction scenarios,
indicating its superior performance compared to
the other models, including ANN, bi-LSTM,
random forest, and KNN

Pichault et al. [16] Long-range scanning
Doppler LiDAR

Weather data and
special
observations

Wind power The results indicate that these LiDAR-based
methods outperformed traditional benchmarks,
showcasing the potential of remote sensing
instruments for enhancing short-term wind power
forecasts

Lawal et al. [17] CNN and bi-LSTM Weather data Wind speed The results showed that CNN-BLSTM is considered
the best with minimum values of MAE= 0.2981,
MSE= 0.1832, MAPE= 115, and
RMSE= 0.4280

Dan et al. [18] ARIMA–ANN Weather data and
historical
records

Wind power The ARIMA forecasting method achieved an
MAPE of 2.2921%. It demonstrated a very good
response to the influence factor and proved to be
easily adaptable for a small number of wind
production influencing factors, while the ANN
forecasting method achieved the best results with
a MAPE of 1.9067%

Liu and Liang [19] CFD and Kalman
filtering

Weather data Wind power The results showed that the integrated model
significantly improved wind power forecast
accuracy. The model achieved a forecast accuracy
of 97.55%

Jiang et al. [20] EMD-VAR model
and spatial
correlation

Weather data Wind speed Analysis of prediction errors revealed that the
EMD-VAR model, which incorporates the
correlation of wind speed data from multiple
measuring points, outperformed other models,
demonstrating superior prediction accuracy, while
the other models showed varying levels of
stability and accuracy in their predictions

Yu et al. [21] SVM-PSO Weather data Wind speed The proposed prediction method based on particle
swarm optimization SVM demonstrated higher
accuracy and faster convergence speed in
predicting wind speed. This improvement was
validated through simulations using measured
wind speed data, indicating practical significance
for wind power forecasting
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generated throughout the year 2021. Within this representation, the
electrical load signifies the electricity consumption or demand during
the specified period, while the energy generated illustrates the actual
electricity produced by the wind turbine throughout 2021. These
figures are derived from the FES-Meknes meteorological data.

2.2. Technical model

A heat map is a powerful visual instrument for depicting the
relationships among various variables and is instrumental in
pinpointing the most strongly correlated with the dependent
variable. Figure 2 presents a heat map illustrating the relationship
between energy production and climate conditions. It is evident that
the speed and direction exhibit a robust positive correlation with the
energy output, while relative humidity and air pressure display a
notably substantial negative correlation. Moreover, the observation
that relative humidity and atmospheric pressure demonstrate a high
degree of correlation with each other suggests multicollinearity
between them, signifying that they capture similar information and
that either can effectively predict energy production.

2.3. Predictive model

LSTM, short for long short-term memory, is a DL model
primarily designed to address the issue of gradient disappearance.
It is commonly used in the context of time series analysis, where
it can effectively predict future values based on historical data. An
example of a time series application is wind power generation,
which relies on weather conditions. Using an LSTM model, we
can make accurate predictions about wind power output.

DL, of which LSTM is a part, has unique advantages over
traditional machine learning approaches. It can approximate

complex functions of any form and uncover nonlinear relationships
within data. By delving deep into the hidden connections between
data points, DL maximizes the potential of available information.

The core of LSTM lies in its ability to overcome the challenge of
long-term dependencies through deliberate architectural design. As
shown in Figure 3, LSTM is based on three primary gates: the forget
gate, the input gate, and the output gate. These gates are activated
using a sigmoid function (denoted “g”), while the input and cell
states are typically transformed using the hyperbolic tangent function.
The LSTMmodel can be mathematically defined by a set of equations:

i ¼ σ xtU
i þ st�1W

ið Þ (1)

f ¼ σ xtU
f þ st�1W

f
� �

(2)

o ¼ σ xtUo þ st�1Woð Þ (3)

Figure 1
Wind speed and generated power for the year 2021 in Meknes-FES site
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Correlation map between power output and climatic data
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g ¼ tanh xtU
g þ st�1W

gð Þ (4)

ct ¼ ct�1 � f þ g � i (5)

st ¼ tanh ctð Þ � o (6)

y ¼ softmax Vstð Þ (7)

In these equations, the variables i, f, o, and g represent distinct components
of the LSTM . Specifically, ‘i’ denotes the input gate, ‘f’ refers to the forget
gate, ‘o’ signifies the output gate, and ‘g’ represents the self-recurrent
components.

• The input gate (i) determines the amount of new information that
will be allowed into the memory cell.

• The forget gate (f) controls which information should be discarded
from the memory cell. A value of 1 in f signifies that the
information should be retained, while a value of 0 indicates that
the information should be ignored.

• The output gate (o) determines how much of the information will be
passedon to thenext timestepandalso serves as theoutput of theLSTM.

• The self-recurrent component (g) corresponds to a neuron with a
self-recurrent connection, which follows the same equation
Equation (4) as in traditional RNNs.

• The internal memory of the memory cell (ct) is the accumulation of
the elementwise multiplication of the previous internal memory
state with the forget gate and the elementwise multiplication of
the self-recurrent state with the input gate.

• The hidden state (st) is calculated by performing an elementwise
multiplication of the internal memory with the output gate.

• Additionally, the final output can be obtained using Equation (7),
which is equivalent to Equation (2).

In more advances, when combining LSTMwith FFT, the process
begins with the FFTmodule, which converts the input time series data
into the frequency domain. This transformation allows the model to
extract crucial frequency components and identify underlying
periodic patterns in historical wind power generation data.

Subsequently, the frequency-domain data are fed into the
Encoder LSTM, which encodes the information and learns temporal
dependencies. The generated hidden state acts as a condensed
representation of the frequency-domain data, effectively capturing
relevant patterns and relationships.

The Decoder LSTM takes the hidden state from the Encoder
LSTM as input and decodes it back into the time domain, precisely
predicting future wind power generation values. Leveraging the

learned temporal dependencies, the Decoder LSTM makes accurate
forecasts for multiple time steps into the future.

The combination of FFT and LSTM models significantly
enhances forecasting accuracy. By effectively capturing periodic
patterns and long-term dependencies in wind power generation data,
this architecture represents a promising and innovative approach for
reliable predictions.

The entire process of the FFT-encoder-decoder-LSTMmodel is
visually depicted in Figure 4, illustrating the seamless flow of data
through the FFT, the Encoder LSTM, and the Decoder LSTM.
This architecture showcases a powerful technique for optimizing
wind power generation forecasting, offering valuable insights for
sustainable energy planning and decision-making.

2.4. Accuracy assessment

To evaluate the accuracy of the forecasted model, certain
standards must be established. In the context of wind power, the
commonly used metrics for assessment are listed as follows:

• Root Mean Square Error

When assessing the effectiveness of forecasting models, the
RMSE is a frequently used statistic. It calculates the average
difference (square root of the sum of the squared differences)
between the projected values and the actual values. The
performance of the model is improved by a reduced RMSE.
RMSE is given by:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
1 Xp � Xa

� �
2

n

s
(8)

where n the number of observations is predicted, Xp is the predicted
value of the i-th observation, and Xa is the actual value of the i-th
observation.

• Mean Absolute Error

Another statistic often used to assess the effectiveness of
forecasting models is the MAE. Between the expected and actual
values, it calculates the average absolute difference. The performance
of the model improves with decreasing MAE. It can be calculated as
follows:

Figure 3
The architecture of LSTM cell

Figure 4
The proposed process of the FFT-encoder-decoder-LSTM

model
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MAE ¼ 1
n

Xn
1

Xp � Xa

�� �� (9)

• Mean Absolute Percentage Error

The MAPE is more popular for assessing the effectiveness of
forecasting models, especially when the data contain an enormous
range of values. It calculates the typical absolute percentage
difference between the expected and observed values, as follows:

MAPE ¼ 100
n

Xn
1

Xp � Xa

� �
Xa

�����
����� (10)

3. Performance Results

3.1. Estimation

Estimation involves the prediction of wind power generation
based on the current wind direction, as well as the current wind and
climatic conditions. To address this task effectively, the LSTM
model is utilized, which considers the present weather state and past
weather trends to forecast the power generated by the system. In this
study, we employ multivariate time series forecasting with LSTM
using the Keras library. To establish a baseline model and conduct
initial experiments, we investigate the impact of different look-back
values on prediction accuracy. In particular, a specific look-back
value is found to yield significant results in power generation
prediction. Estimation models prove to be especially valuable when
accurate weather information for the present or future is publicly
accessible through machine learning techniques. Firstly, we divide 1
year of hourly data into a 70% training set and a 30% test set. The
results, presented in Figure 5, demonstrate favorable performance
with the MSE of 27.781, RMSE of 5.271, MAE equal to 3.281, and
variance of about 0.886 when dividing the data into a 60% training
set and a 40% test set. The results, depicted in Figure 6, exhibit

higher precision with MSE of 28.791, RMSE of 5.366, MAE equal
to 3.376, and variance of approximately 0.888.

3.2. Prediction

In the prediction phase, the primary focus was on conducting pure
time series analysis to forecast the power generated by the system. The
key distinction was that these predictions were made without
incorporating any knowledge of future weather conditions. This
aspect holds significant importance entailing a distinct set of
challenges within the realm machine learning. In this context, any
information about upcoming wind speeds, air temperatures, or
pressures was deliberately disregarded. Instead, the prediction
process relied solely on the analysis of patterns found in historical
data, accomplished using LSTM to effectively forecast power
generation. The input data for the LSTM model comprised date-time
records and the corresponding power generated by the system,
presented in a supervised form as required by the LSTM algorithm.
Through the analysis of previous data, the LSTM model gained
valuable insights into patterns and utilized this knowledge to make
accurate predictions. To assess and predict future values, we
employed the walk-forward validation technique, ensuring robust
evaluations. Having established the baseline LSTM model,
numerous experiments were conducted to determine the optimal
look-back period and the appropriate number of neurons required for
the LSTM. Once these optimal parameters were identified, further
experiments and predictions could be performed with confidence. As
depicted in Figure 7, the model predicted 24 h of data using the
same model configurations. The LSTM model had the following
settings: input batch size: 1, epochs: 7, number of neurons: 10, look
backs/lag: 24. The observed mean percent error was 11.433. The
MAPE is about 2.958. The effect of varying the number of neurons
in the LSTM model on the prediction accuracy was examined using
the same model configurations, presented in Table 2. These
experiments demonstrate the impact of changing the number of
neurons on the prediction accuracy. As shown in Figure 8, the
model predicted a week of data, and an observed MAPE of 11.15%
and MAE of 2.697 was obtained. This is considered satisfactory for
predicting wind power generation, as it is dependent on highly

Figure 5
Prediction of hourly wind power using LSTM model with 30% test set
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nonlinear parameters such as wind speed. In Figure 9, monthly data are
predicted, and the MAPE was 19.27%.

3.2. Optimization

In the experiments presented, the line graphs clearly illustrate
that the LSTM model learns the underlying patterns in the data
efficiently, producing excellent results even for predictions
spanning a moderate period, such as 1 month. To further improve
the performance of the LSTM model, optimization techniques
were used. The optimization process involved several adjustments

to the LSTM model in order to predict the output of a month.
First, the size of the input batch was increased, which allowed for
better control of weight updates in the model. Additionally,
additional hidden layers were incorporated, such as batch
normalization and dense layers. Different activation functions,

Figure 6
Wind power prediction using LSTM with 40% test set
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Figure 7
Wind power prediction for 24 h
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Table 2
Prediction of performance wind energy

24 h One week One month

10
neurons

12
neurons

14
neurons

14
neurons 14 neurons

MAPE 11.433 11.468 11.442 11.158 19.276
RMSE 3.381 3.386 3.382 3.340 4.390
MAE 2.958 2.975 2.963 2.677 2.263

Figure 8
Wind power prediction for 1 week
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Figure 9
Wind power prediction for 1 month
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including rectified linear unit (ReLU) and tanh, were used to improve
the flexibility and performance of the model, and an autoencoder was
used to optimize the results. As a result of the optimization,
significant improvements were observed in the monthly prediction
experiment (Figure 10). The MAPE was reduced to 87.14, a
significant decrease from the unoptimized result of 92.53. This
indicates that the optimization techniques applied to the LSTM
model have improved its prediction accuracy.

In this part, the focus was on expanding wind energy prediction
beyond a day to forecast energy generation for multiple days in
advance. The objective was to start from the present day and predict
energy generation for X days into the future, with the aim of
evaluating the accuracy of the predictive model. In the context of
wind energy generation, LSTM effectively captures the intricate
patterns and fluctuations. The specific implementation involved
configuring the LSTM layer with 50 neurons and incorporating a
dropout rate of 0.1 to prevent overfitting. The input shape was
determined by the batch size, the number of time steps, and the
features present in the input data (referred to as X). Batch
normalization techniques were applied to normalize the input data,
thereby improving the model’s performance. Subsequent to the LSTM
layer, two dense layers were added, each consisting of 50 units, and
activated using different activation functions. The first dense layer
utilized ReLU activation, while the second dense layer employed
hyperbolic tangent (tanh) activation. Finally, a single-unit dense layer
was added to generate the predicted wind energy output. The
prediction results with one day duration are shown in Figure 11, as
well as the performance for different duration is synthesized in Table 3.

To further enhance the forecasting accuracy and gain valuable
insights, two different LSTM-based models are implemented for
time series forecasting of wind generation: an autoencoder LSTM
and an FFT-encoder-decoder-LSTM. The primary objective of this
effort is to compare and contrast the predictive capabilities of these
two models and identify the most suitable one for the specific wind
dataset. To ensure a robust evaluation, the dataset is meticulously
divided into training and test sets using an 80–20 division. This
prudent approach allows the models to learn patterns from the
training data while validating their generalization on unseen data
during testing. As a pivotal preprocessing step, the data are skilfully
normalized using MinMaxScaler, which compresses the range of
values to a common scale between 0 and 1. This normalization not
only facilitates neural network convergence but also mitigates the
influence of outliers, ultimately leading to more stable predictions.

Both LSTM models are thoughtfully designed, ensuring their
architectures are well suited for capturing sequential dependencies
and temporal patterns in the time series data. The autoencoder
LSTM, geared toward unsupervised learning, aims to reconstruct its
input data while distilling meaningful features. On the other hand,
the FFT-encoder-decoder-LSTM aims to forecast future wind
generation values by leveraging the power of the FFT. Figure 12
presents the prediction results of both the autoencoder LSTM and
FFT-LSTM models on both trained and tested data. The figure
showcases the performance of these models in forecasting wind
power generation. On the other hand, Table 4 provides a detailed
comparison and validation study of various proposed models. This
table presents an analysis of the effectiveness in predicting wind
power generation, allowing for a comprehensive evaluation of their
performance.

Figure 10
Optimized prediction of wind energy for 1 month
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Table 3
Results of performance for forecasts for wind energy

Prediction duration MAPE RMSE MAE

24 h 70.74 8.41 18.10
2 days 39.26 6.26 7.645
1 week 51.48 7.17 14.98

Figure 11
Forward prediction with 1-day duration
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4. Conclusions

In this study, we developed and evaluated a wind speed forecast
model based on LSTM DL algorithms. By incorporating an
autoencoder to enhance generalization capabilities, the proposed
model aimed to improve the accuracy and efficiency of wind
energy forecasting. Experimental results demonstrated the

effectiveness of the LSTM-based approach in predicting wind
speed, with MAPE values ranging from 2.5% to 18%, surpassing
previous methods. The LSTM model’s ability to capture nonlinear
relationships and learn feature representations from time series
data contributed to its superior performance. These findings
highlight the potential of DL techniques in enhancing wind power
prediction accuracy and facilitating the integration of renewable

Figure 12
Prediction results of autoencoder LSTM and FFT-LSTM on both trained and tested data
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Table 4
Comparison and validation study for different proposed models

Model

Current study Chen et al. [22] Shu et al. [23]

Train RMSE Test RMSE RMSE RMSE

LSTM 0.8821 0.8643 0.6362 0.891
Autoencoder LSTM 0.82 0.90 0.5193 –

FFT-encoder-decoder-LSTM 0.37 0.34 – 0.983
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energy sources into the power grid. Further research can focus on
optimizing the model architecture, incorporating additional
meteorological features, and exploring ensemble methods to
improve wind power forecasting accuracy. In general, the
proposed LSTM-based approaches provide a valuable contribution
to the field of wind energy prediction and offer practical
implications for efficient wind power utilization and grid stability.

Recommendations

Further optimization of the LSTM-based wind speed forecast
model should be pursued, exploring variations of LSTM
architectures and employing hyper parameter tuning techniques.
Incorporating additional meteorological characteristics, such as
temperature and humidity, can improve the accuracy of the
prediction. Ensemble methods can be explored to combine the
strengths of multiple models. Real-time implementation and
comparative analysis with existing models are crucial for practical
usability. Generalization across different regions and the conduct
of economic and environmental impact assessments would
provide comprehensive information. Developing a user-friendly
interface or software tool is essential for easy adoption by wind
energy operators and grid managers. These recommendations aim
to improve the accuracy, applicability, and efficiency of wind
speed forecasting in the renewable energy sector.
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