Received: 22 May 2023| Revised: 9 October 2023| Accepted: 1 March 2024 | Published online: 4 March 2024

RESEARCH ARTICLE

Winds of Change: Enhancing
Wind Power Generation
Forecasting with LSTM

Artificial Intelligence and Applications
yyyy, Vol. XX(XX) 1-5
DOI: 10.47852 /bonview42021106

Models and Advanced )
Techniques in a Single E )
Turbine Wlnd Farm BON VIEW PUBLISHING

Abdel Ali Mana®”

1 Laboratory of Innovative Technologies, University Sidi Mohammed Ben Abdellah, Morocco

Abstract:

This article presents a comprehensive analysis of wind power generation using a Long Short-Term Memory (LSTM) model in the
context of a wind farm with a single turbine. The novelty of the research lies in the integration of a technical model, predictive
model, heat map analysis, and LSTM architecture to enhance forecasting accuracy. The performance of the forecasted model is
evaluated using standard metrics, including Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE). In the estimation phase, wind power generation is predicted based on current weather conditions and
historical trends. Leveraging multivariate time series forecasting with LSTM through the Kera library, different look-back values
are explored to optimise prediction accuracy. In particular, the study achieves favourable performance metrics, including MSE of
27.781, RMSE of 5.271, MAE of 3.281, and variance of 0.886 with a 70% training and 30% test split. Furthermore, a 60% training
and 40% test split yield improved accuracy with MSE of 28.791, RMSE of 5.366, MAE of 3.376, and variance of 0.888. In the
prediction phase, the LSTM model is employed to forecast power generation without relying on future weather information.
Through various experiments, the optimal look-back period and number of neurones for the LSTM model are determined.
Notably, the achieved mean absolute percent errors (MAPE) of 11.433% and 11.158% for 24 and 48 hours of data respectively
showcase the impact of varying neuron counts on prediction accuracy. To further enhance predictive capabilities, optimisation
techniques are implemented, involving adjustments to the LSTM model, including increased input batch size, batch normalisation,
and dense layers. This optimisation leads to a substantial decrease in MAPE from 92.53% to 87.14% in a monthly prediction
experiment. Furthermore, forward predictions are made for multiple days in the future, where LSTM successfully captures
patterns and fluctuations, resulting in MAPEs of 70.74% for 24 hours, 39.26% for 2 days, and 51.48% for 1 week. Additionally, a
comparison of two LSTM-based models, Autoencoder LSTM and FFT-Encoder-Decoder-LSTM, demonstrates the superior
performance of the latter in terms of RMSE. This study emphasizes the potential of LSTM models in wind power generation
prediction while introducing novel insights into optimizing model performance for accurate forecasting. The integration of
technical and predictive models, along with heat map analysis and LSTM architecture, sets the groundwork for advancing wind
power prediction methodologies.
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1. Introduction

With the continuous development of the social economy, the demand for energy is growing rapidly (L. Jiang et al,
2021). However, fossil fuels are no longer capable of supporting the sustainable development of human society
. As aresult, renewable energy sources, such as wind energy, have gained significant attention
Over the past few decades, wind energy utilization has experienced rapid growth, contributing to an 1ncreasmg
proportion of the power grid worldwide. However, the unpredictable and intermittent nature of wind speed poses a
serious threat to grid security

Although the installed capacity of wind power is increasing, the utilisation of wind energy does not match it. The
intermittent and uncertain nature of wind power makes it difficult to accurately predict the amount of power generation
at a specific moment. This randomness in power generation creates an imbalance between power generation and
consumption, leading to damage to the grid. To ensure grid stability while maximizing wind energy utilization, accurate
wind power prediction is crucial. Improved forecasting allows the dispatching department to schedule power generation
effectively, enhancing both grid safety and wind energy utilisation

As the proportion of wind power in the energy mix continues to increase, the focus on forecasting wind power
generation has increased. Currently, various methods are used in wind power prediction, including physical models,
statistical methods, machine learning methods, and combinations of these approaches. Physical models require highly
accurate weather forecast data, which may not be suitable due to the highly volatile and random nature of wind speed.
Statistical methods have been used for wind power prediction but may not provide accurate results due to the erratic
nature of wind speed. Machine learning methods, on the other hand, establish nonlinear relationships using models like
the Support Vector Machine (SVM) or the more powerful Deep Neural Network (DNN) (Mana et al, 2023). DNN,
particularly Recurrent Neural Networks (RNN) like Long Short-Term Memory (LSTM), have shown great success in
learning feature representations and improving prediction accuracy for time series data (Ahmed et al.,, 2022).

The demand for energy is expected to increase significantly in the future, necessitating the exploration of clean and
renewable energy sources. Wind energy, with its scalability and vast potential for power generation, is a promising
solution. Efficient power dispatch from wind power plants requires predictive analysis due to the influence of climatic
variables and the erratic nature of wind power. Hybrid models combining statistical, intelligent, and physical models have
been employed in wind power forecasting. These models aim to improve the accuracy of predictions by considering
seasonality and other influencing parameters specific to each location (Hu et al., 2022). Several studies have explored
different forecasting models for wind speed and power prediction, including SVM, wavelet-based approaches, neural
networks, and ensemble machine learning techniques (Mana et al, 2023). These models have demonstrated varying
levels of accuracy, with a mean absolute percentage error (MAPE) ranging from 2.5% to 18%. More accurate forecasting
models are required to meet the growing demand for solar and wind power with lower MAPE values

This paper introduces a groundbreaking forecast model for wind energy prediction, harnessing the power of
advanced deep learning algorithms, notably the LSTM technique. What differentiates this model is its innovative fusion of
LSTM with an auto encoder, resulting in enhanced generalization and feature extraction capabilities. In particular, the
integration of FFT-encoder-decoder-LSTM distinguishes this research from conventional methods, representing a
significant advancement in wind energy forecasting. The primary objective is to achieve exceptional gains in prediction
accuracy and efficiency, ultimately leading to a more reliable and optimised utilization of renewable energy resources.

Unlike previous studies that focus on generic analysis of wind power, this research is focused specifically on a single-
turbine wind farm. This targeted approach enables customized predictions for improved accuracy. To rigorously evaluate
the accuracy of the proposed LSTM model, the study employs metrics such as the root mean square error (RMSE), Mean
Absolute Error (MAE), and mean absolute percentage error (MAPE). These comprehensive evaluation metrics offer
valuable insights into the model's effectiveness compared to other similar works. The research delves into advanced
optimisation techniques, including increasing the input batch size, adding extra hidden layers, and experimenting with
different activation functions. These methods demonstrate the potential for significant performance improvements
compared to traditional approaches. The study provides compelling evidence of the superiority of the proposed approach
through comparisons with traditional autoencoder LSTM and LSTM models, underscoring the benefits of employing deep
learning algorithms for wind energy forecasting. The importance of accurate wind power prediction cannot be overstated,
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as it directly impacts power dispatch, grid stability, and optimized utilization of renewable energy resources.
Consequently, the findings of this research hold high relevance and value for advancing renewable energy technologies
and their seamless integration into the power grid.

Additionally, this research unveils a pioneering approach to the analysis and prediction of wind power generation,
tailored specifically to wind farms. It uses advanced evaluation metrics, optimisation techniques, and comprehensive
model comparisons to offer new and promising opportunities to refine the precision of wind energy forecasting and
optimizing the effective utilisation of renewable energy sources in real world scenarios.

2. Survey Review

This section provides a summary of the research conducted on pre-processing techniques, methods, and deep
learning (DL) models for wind power prediction approaches (WPPA). The evolution of WPPA has transitioned from
traditional methods to more complex statistical and learning approaches. The WPPA can be categorized into short-term,
medium-term, or long-term forecasting based on the prediction horizon. Six main categories of prediction approaches
have been proposed and studied for WPPA: persistence, physical, statistical, Artificial Intelligence (Al), DL, and hybrid
models.

Hybrid approaches that combine DL models and decomposition techniques are commonly used for WPPA. Various
DL models have been employed for WPPA, including Recurrent Neural Network (RNN), Vanilla LSTM, Stacked LSTM, CNN,
Bi-LSTM, Attention-based LSTM (A-LSTM), Deep Belief Network (DBN), Extreme Learning Machine (ELM), and Gated
Recurrent Unit (GRU) (Gu & Li, 2022). Performance metrics such as MAE, RMSE, MAPE, and MSE are used for quantitative
comparison of DL models like RNN, GBM, and LSTM. LSTM has demonstrated high efficiency and accuracy with minimal
errors. Simple LSTM and its variants have also shown promising results for sequential timed data. Stacked or appended
LSTM layers have been applied to different datasets, including malware datasets, achieving excellent accuracy. Bi-LSTM,
which works in both forward and backward passes for timed sequences, has been used for WP forecasting.

CNN, known for its ability to learn from image data and make intelligent decisions, has been utilised for time series
classification and hybridised with LSTM for time series forecasting. Attention-based models, such as Attention-based
LSTM, GRU, and encoder-decoder, have been applied in several studies (Garg & Krishnamurthi, 2023). DBN has been used
for WP forecasting and its performance has been quantified using metrics such as MAE, SDE, and RMSE. ELM has been
compared with an Artificial Neural Network (ANN) for different time horizons. Hybrid models that combine LSTM with
optimisation algorithms have been used for monthly runoff predictions and have been evaluated using metrics such as
NMAE, R2, NSEC, and RMSE. DL models combined with decomposition techniques serve as a preprocessing step for time
series data. Various decompositions, such as wavelet, empirical mode, variation mode, improved variation mode, discrete
wavelet, ensemble empirical mode, and phase space, have been applied to time series data (Hu et al., 2022). Furthermore,
Table 1 represents a survey review and the most widely used approaches for wind forecasting.

Table 1: Review on methods for wind forecasting.

R Methods Inputs outputs Conclusion

ef.

(S Gradient Weather and Wind Cat Boost demonstrated the lowest RMSE value of 76.18
obole boosting statistical data Power kW and the lowest MAE value of 54.87 kW, indicating its high
wski et precision and precision in predicting earnings. Light Boost and
al,, Boost followed closely with RMSE values of 76.84 kW and 77.02
2023) kW and MAE values of 55.24 kW and 55.61 kW, respectively.

Random Forest also performed well, with an RMSE of 77.97 kW
and an MAE of 56.14 kW
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J. BPNN, SVR, Weather data Wind LSTM-SVR outperforms other algorithms (BPNN, RF, SVR-
Li et LSTM,RF Pressure G, SVR-L, and LSTM) in terms of MAPE, RMSE, and R, indicating
al,, its higher prediction accuracy.

2022)

(Y Belts Wind data Wind The Re-BiLSTM model demonstrates the lowest RMSE and
ing et power MAE values for both the monthly average and 107-day average
al., prediction scenarios, indicating its superior performance
2023) compared to the other models, including ANN, BiLSTM, Random

forest, and KNN.

(P long-range Weather data Wind The results indicate that these LiDAR-based methods
ichault  scanning Doppler and special power outperformed traditional benchmarks, showcasing the potential
et al, LiDAR observations of remote sensing instruments for enhancing short-term wind
2021) power forecasts.

(L CNN and Bi- Weather data Wind The results showed that CNN-BLSTM is considered the best
awal et LSTM speed with minimum values of MAE = 0.2981, MSE = 0.1832, MAPE =
al., 115, and RMSE = 0.4280.

2021)

(D ARIMA- ANN Weather data, Wind The ARIMA forecasting method achieved an MAPE of
an et and historical power 2.2921%. It demonstrated a very good response to the influence
al,, records factor and proved to be easily adaptable for a small number of
2021) wind production influencing factors. while the ANN forecasting

method achieved the best results with a MAPE of 1.9067%.

(L CFD and Weather data Wind The results showed that the integrated model significantly
iu & Kalman filtering power improved wind power forecast accuracy. The model achieved a
Liang, forecast accuracy of 97.55%.
2021)
(Z EMD-VAR Weather data Wind Analysis of prediction errors revealed that the EMD-VAR
. Jiang  model and spatial speed model, which incorporates the correlation of wind speed data
et al, correlation from multiple measuring points, outperformed other models,
2021) demonstrating superior prediction accuracy, while the other
models showed varying levels of stability and accuracy in their
predictions.
(Y SVM- PSO Weather data Wind The proposed prediction method based on particle swarm
uetal, speed optimisation SVM demonstrated higher accuracy and faster
2021) convergence speed in predicting wind speed. This improvement

was validated through simulations using measured wind speed
data, indicating practical significance for wind power
forecasting.

3. Research Methodology

3.1. Technical Model

The wind farm under consideration comprises a solitary turbine endowed with specific technical specifications.
This turbine boasts a rated output of 54 kW, which indicates its maximum power generation capacity when operating
under optimal wind conditions. Featuring a rotor diameter of 18 meters, the turbine adeptly harnesses the kinetic energy
present in the wind, efficiently converting it into rotational motion. Positioned atop a tower with a hub height of 50
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metres, measured from the tower's base to the centre of the turbine hub, this elevated location empowers the turbine to
capture wind at higher velocities, thereby enhancing its energy production capabilities.

The wind speed gradient, characterized by a shear coefficient of 0.14, denotes a moderate variation in wind speed
concerning its elevation from the ground. Furthermore, to complement this description, Figure 1 visually presents the
electrical load and energy generated throughout the year 2021. Within this representation, the electrical load signifies the
electricity consumption or demand during the specified period, while the energy generated illustrates the actual

electricity produced by the wind turbine throughout 2021. These figures are derived from the FES-Meknes meteorological
data.

Figure 1: Wind speed and generated power for the year 2021 in Meknes-fez site.
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3.2. Technical Model

A heat map is a powerful visual instrument for depicting the relationships among various variables and is
instrumental in pinpointing the most strongly correlated with the dependent variable. Figure 2 presents a heat map
illustrating the relationship between energy production and climate conditions. It is evident that the speed and direction
exhibit a robust positive correlation with the energy output, while relative humidity and air pressure display a notably
substantial negative correlation. Moreover, the observation that relative humidity and atmospheric pressure demonstrate
a high degree of correlation with each other suggests multicollinearity between them, signifying that they capture similar
information and that either can effectively predict energy production.

Figure 2: correlation map between power output and climatic data.

Power Generated - Wind speed Wind Direcition Air femp, Presure

3.3 Predictive Model

LSTM, short for long short-term memory, is a deep learning model primarily designed to address the issue of gradient
disappearance. It is commonly used in the context of time series analysis, where it can effectively predict future values
based on historical data. An example of a time series application is wind power generation, which relies on weather
conditions. Using an LSTM model, we can make accurate predictions about wind power output.

Deep learning, of which LSTM is a part, has unique advantages over traditional machine learning approaches. It can
approximate complex functions of any form and uncover nonlinear relationships within data. By delving deep into the
hidden connections between data points, deep learning maximizes the potential of available information.

The core of LSTM lies in its ability to overcome the challenge of long-term dependencies through deliberate architectural
design. As shown in Figure 3, LSTM is based on three primary gates: the forget gate, the input gate, and the output gate.
These gates are activated using a sigmoid function (denoted "g"), while the input and cell states are typically transformed
using the hyperbolic tangent function. The LSTM model can be mathematically defined by a set of equations:

i= o(xU' + 54 W) 1)
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f= o(xU" + s, W) ()
0= a(xU° +s_1W°) 3)
g = tanh (xU?9 + s;_{W9) 4)
C=Cq f+g i (%)
sy = tanh(c) o (6)
y = softmax(Vs;) ©)

The variables i, f, 0, and g in these equations correspond to the input gate, the the gate, the forget gate, output gate, and
the self-recurrent components of the LSTM.

e The input gate (i) determines the amount of new information that will be allowed into the memory cell.

e The forget gate (f) controls which information should be discarded from the memory cell. A value of 1
in f signifies that the information should be retained, while a value of 0 indicates that the information should be
ignored.

e The output gate (o) determines how much of the information will be passed on to the next time step
and also serves as the output of the LSTM.

e The self-recurrent component (g) corresponds to a neurone with a self-recurrent connection, which
follows the same equation (Eq. 2.1) as in traditional RNNs.

e The internal memory of the memory cell (¢;) is the accumulation of the elementwise multiplication of
the previous internal memory state with the forget gate and the elementwise multiplication of the self-recurrent
state with the input gate.

e The hidden state (S) is calculated by performing an elementwise multiplication of the internal memory
with the output gate.

e Additionally, the final output can be obtained using Eq.7, which is equivalent to Eq.2.

Figure 3: The architecture of LSTM cell.

In more advances, when combining LSTM with FFT; The process begins with the FFT module, which converts the input
time series data into the frequency domain. This transformation allows the model to extract crucial frequency
components and identify underlying periodic patterns in historical wind power generation data.
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Subsequently, the frequency-domain data is fed into the LSTM Encoder, which encodes the information and learns
temporal dependencies. The generated hidden state acts as a condensed representation of the frequency-domain data,
effectively capturing relevant patterns and relationships.

The Decoder LSTM takes the hidden state from the Encoder LSTM as input and decodes it back into the time domain,
precisely predicting future wind power generation values. Leveraging the learned temporal dependencies, the Decoder
LSTM makes accurate forecasts for multiple time steps into the future.

The combination of FFT and LSTM models significantly enhances forecasting accuracy. By effectively capturing periodic
patterns and long-term dependencies in wind power generation data, this architecture represents a promising and
innovative approach for reliable predictions.

The entire process of the FFT-Encoder-Decoder-LSTM model is visually depicted in Figure 4, illustrating the seamless
flow of data through the Fast Fourier Transform, the Encoder LSTM, and the Decoder LSTM. This architecture showcases
a powerful technique for optimizing wind power generation forecasting, offering valuable insights for sustainable energy
planning and decision-making.

Figure 4: The proposed process of the FFT-Encoder-Decoder-LSTM model.
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3.4 Accuracy Assessment

To evaluate the accuracy of the forecasted model, certain standards must be established. In the context of wind power, the
commonly used metrics for assessment are listed as following:

. Root Mean Square Error

When assessing the effectiveness of forecasting models, the Root Mean Square Error (RMSE) is a frequently used statistic.
It calculates the average difference (square root of the sum of the squared differences) between the projected values and
the actual values. The performance of the model is improved by a reduced RMSE. RMSE is given by:
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,n —¥\2
RMSE = M (8)

Where n the number of observations is predicted, X, is the predicted value of the i-th observation, and X, is the actual
value of the i-th observation.

. Mean Absolute Error

Another statistic often used to assess the effectiveness of forecasting models is the mean absolute error (MAE). Between
the expected and actual values, it calculates the average absolute difference. The performance of the model improves with
decreasing MAE. It can be calculated as follows:

n
1
MAE = — [Xp = Xa 9
1

. Mean Absolute Percentage Error (MAPE)

The mean absolute percentage error (MAPE) is more popular for assessing the effectiveness of forecasting models,
especially when the data contain an enormous range of values. It calculates the typical absolute percentage difference
between the expected and observed values, as follows:

n
100 X, — X
MAPE = - M

. (10)

4., Performance Results

4.1 Estimation

Estimation involves the prediction of wind power generation based on the current wind direction, as well as the current
wind and climatic conditions. To address this task effectively, the LSTM model is utilized, which considers the present
weather state and past weather trends to forecast the power generated by the system. In this study, we employ
multivariate time series forecasting with LSTM using the Keras library. To establish a baseline model and conduct initial
experiments, we investigate the impact of different look-back values on prediction accuracy. In particular, a specific look-
back value is found to yield significant results in power generation prediction. Estimation models prove to be especially
valuable when accurate weather information for the present or future is publicly accessible through machine learning
techniques. Firstly, we divide one year of hourly data into a 70% training set and a 30% test set. The results, presented in
Figure 5, demonstrate favourable performance with the MSE of 27.781, RMSE of 5.271, MAE equal to 3.281, and Variance
of about 0.886 when dividing the data into a 60% training set and a 40% test set. The results, depicted in Figure 6, exhibit
higher precision with MSE of 28.791, RMSE of 5.366, MAE equal to 3.376, and Variance of approximately 0.888.

Figure 5: Prediction of hourly wind power using LSTM model with 30% test set.
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4.2 Prediction

In the prediction phase, the primary focus was on conducting pure time series analysis to forecast the power generated by
the system. The Key distinction was that these predictions were made without incorporating any knowledge of future
weather conditions. This aspect holds significant importance entails a distinct set of challenges within the realm machine
learning. In this context, any information about upcoming wind speeds, air temperatures, or pressures was deliberately
disregarded. Instead, the prediction process relied solely on the analysis of patterns found in historical data, accomplished using
LSTM (Long Short-Term Memory) to effectively forecast power generation. The input data for the LSTM model comprised date-
time records and the corresponding power generated by the system, presented in a supervised form as required by the LSTM
algorithm. Through the analysis of previous data, the LSTM model gained valuable insights into patterns and utilised this
knowledge to make accurate predictions. To assess and predict future values, we employed the walk-forward validation technique,
ensuring robust evaluations. Having established the baseline LSTM model, numerous experiments were conducted to determine
the optimal look-back period and the appropriate number of neurons required for the LSTM. Once these optimal parameters were
identified, further experiments and predictions could be performed with confidence. As depicted in (Figure 7), the model
predicted 24 hours of data using the same model configurations. The LSTM model had the following settings: Input Batch
Size: 1, Epochs: 7, Number of Neurones: 10, Look Backs/Lag: 24. The observed mean percent error was 11.433 The Mean
Absolute Percent Error is about 2.958. The effect of varying the number of neurones in the LSTM model on the prediction
accuracy was examined using the same model configurations, presented in Table 2.: These experiments demonstrate the
impact of changing the number of neurons on the prediction accuracy. As shown in Figure 8, the model predicted a week
of data, and an observed MAPE of 11.15 % and MAE of 2.697 was obtained. This is considered satisfactory for predicting
wind power generation, as it is dependent on highly non-linear parameters such as wind speed. In Figure 9, monthly
data is predicted, and the MAPE was 19.27 %.

Figure 7: Wind power Prediction for 24 hours.
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Figure 8: Wind power Prediction for one week.
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Figure 9: Wind power Prediction for one month.
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Table 2: Prediction of performance wind energy.

24 hours One One
week Month
10 neurons 12 neurons 14 neurons 14 neurons 14 neurons
MAPE 11.433 11.468 11.442 11.158 19.276
RMSE 3.381 3.386 3.382 3.340 4.390
MAE 2.958 2975 2.963 2.677 2.263

4.2 Optimization

In the experiments presented, the line graphs clearly illustrate that the LSTM model learns the underlying patterns in the
data efficiently, producing excellent results even for predictions spanning a moderate period, such as one month. To
further improve the performance of the LSTM model, optimisation techniques were used. The optimization process
involved several adjustments to the LSTM model in order to predict the output of a month. First, the size of the input
batch was increased, which allowed for better control of weight updates in the model. Additionally, additional hidden
layers were incorporated, such as batch normalisation and dense layers. Different activation functions, including relu and
tanh, were used to improve the flexibility and performance of the model, and an auto-encoder were used to optimise the
results. As a result of the optimization, significant improvements were observed in the monthly prediction experiment
(Figure 10). The mean absolute error percentage was reduced to 87.14, a significant decrease from the unoptimised result
of 92.53. This indicates that the optimization techniques applied to the LSTM model have improved its prediction
accuracy.

13
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Figure 10: Optimized Prediction of wind energy for one month.
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In this part, the focus was on expanding wind energy prediction beyond a day to forecast energy generation for multiple
days in advance. The objective was to start from the present day and predict energy generation for X days into the future,
with the aim of evaluating the accuracy of the predictive model. In the context of wind energy generation, LSTM
effectively captures the intricate patterns and fluctuations. The specific implementation involved configuring the LSTM
layer with 50 neurones and incorporating a dropout rate of 0.1 to prevent overfitting. The input shape was determined by
the batch size, the number of time steps, and the features present in the input data (referred to as X). Batch normalisation
techniques were applied to normalise the input data, thereby improving the model's performance. Subsequent to the
LSTM layer, two dense layers were added, each consisting of 50 units, and activated using different activation functions.
The first dense layer utilised rectified linear unit (ReLU) activation, while the second dense layer employed hyperbolic
tangent (tanh) activation. Finally, a single-unit dense layer was added to generate the predicted wind energy output. The
prediction results with one day duration are shown in Figure 11, as well as the performance for different duration are

synthesized in Table 3.

Figure 11: Forward Prediction with one-day duration.
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Table 3: Results of performance for forecasts for wind energy.

Prediction duration MAPE RMSE MAE
24H 70.74 841 18.10
2 days 39.26 6.26 7.645
1 week 51.48 7.17 14.98

To further enhance the forecasting accuracy and gain valuable insights, two different LSTM-based models are
implemented for time series forecasting of wind generation: an Auto encoder LSTM and an FFT-Encoder-Decoder-LSTM.
The primary objective of this effort is to compare and contrast the predictive capabilities of these two models and identify
the most suitable one for the specific wind data set. To ensure a robust evaluation, the data set is meticulously divided
into training and test sets using an 80-20 division. This prudent approach allows the models to learn patterns from the
training data while validating their generalization on unseen data during testing. As a pivotal pre-processing step, the
data is skilfully normalized using MinMaxScaler, which compresses the range of values to a common scale between 0 and
1. This normalization not only facilitates neural network convergence but also mitigates the influence of outliers,
ultimately leading to more stable predictions. Both LSTM models are thoughtfully designed, ensuring their architectures
are well suited for capturing sequential dependencies and temporal patterns in the time series data. The Autoencoder
LSTM, geared towards unsupervised learning, aims to reconstruct its input data while distilling meaningful features. On
the other hand, the FFT-Encoder-Decoder-LSTM aims to forecast future wind generation values by leveraging the power
of the fast Fourier Transform. Figure 12 presents the prediction results of both the Autoencoder LSTM and FFT-LSTM
models on both trained and tested data. The figure showcases the performance of these models in forecasting wind power
generation. On the other hand, Table 4 provides a detailed comparison and validation study of various proposed models.
This table presents an analysis of the effectiveness in predicting wind power generation, allowing for a comprehensive
evaluation of their performance.
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Figure 12: Prediction results of Autoencoder LSTM and FFT-LSTM on both trained and tested data.
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Table 4: comparison and validation study for different proposed models.

Model Curent study (Chen et al,, 2021) (Shu etal., 2023)
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Train Test RMSE RMSE RMSE
RMSE
LSTM 0.8821 0.8643 0.6362 0.891
Auto-encoder LSTM 0.82 0.90 0.5193 -
FFT Encoder 0.37 0.34 0.983

Decoder LSTM

5. Conclusions

In this study, we developed and evaluated a wind speed forecast model based on LSTM deep learning algorithms. By
incorporating an Auto Encoder to enhance generalization capabilities, the proposed model aimed to improve the accuracy
and efficiency of wind energy forecasting. Experimental results demonstrated the effectiveness of the LSTM-based
approach in predicting wind speed, with mean absolute percentage error (MAPE) values ranging from 2.5% to 18%,
surpassing previous methods. The LSTM model's ability to capture non-linear relationships and learn feature
representations from time-series data contributed to its superior performance. These findings highlight the potential of
deep learning techniques in enhancing wind power prediction accuracy and facilitating the integration of renewable
energy sources into the power grid. Further research can focus on optimizing the model architecture, incorporating
additional meteorological features, and exploring ensemble methods to improve wind power forecasting accuracy. In
general, the proposed LSTM-based approaches provide a valuable contribution to the field of wind energy prediction and
offer practical implications for efficient wind power utilisation and grid stability.

Recommendations
Further optimization of the LSTM-based wind speed forecast model should be pursued, exploring variations of LSTM
architectures and employing hyper parameter tuning techniques. Incorporating additional meteorological characteristics,
such as temperature and humidity, can improve the accuracy of the prediction. Ensemble methods can be explored to
combine the strengths of multiple models. Real-time implementation and comparative analysis with existing models are
crucial for practical usability. Generalisation across different regions and the conduct of economic and environmental
impact assessments would provide comprehensive information. Developing a user-friendly interface or software tool is

essential for easy adoption by wind energy operators and grid managers. These recommendations aim to improve the
accuracy, applicability, and efficiency of wind speed forecasting in the renewable energy sector.
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