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Abstract: This study demonstrates the feasibility and potential clinical value of a rule-based expert system for optimizing blood collec-
tion in pediatric patients, a population uniquely susceptible to iatrogenic anemia due to limited circulating blood volume and frequent
laboratory testing. By systematically mapping ordered laboratory tests to tube-specific analytical and dead-volume requirements and
applying patient-specific safety constraints based on weight and hematocrit, the system provides quantitative decision support at the
time of test ordering. Evaluation using a simulated pediatric cohort (n = 20) representative of endocrine testing workflows showed that
blood draw volumes were maintained within established safety thresholds in 16 of 20 cases (80%). Across the cohort, the optimized
strategy achieved a mean reduction of 9.36 mL in total blood volume compared with standard collection practices. In the remaining
cases, where optimization was not feasible due to extensive test panels or severely limited allowable blood volume, the system appro-
priately identified threshold violations and generated warning outputs rather than unsafe recommendations. These results highlight
the system’s ability to both reduce unnecessary phlebotomy and reliably flag high-risk scenarios. Overall, this work establishes a trans-
parent and reproducible technical framework for expert system–based optimization of pediatric blood draws and supports its future
integration into clinical laboratory workflows to enhance patient safety and reduce avoidable blood loss.
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1. Introduction

Blood sampling remains a cornerstone of modern clinical
care, providing essential information for diagnosis, monitor-
ing, and therapy adjustment. However, repeated phlebotomy,
particularly in vulnerable populations, can remove substantial
blood volumes and contribute to iatrogenic anemia. This issue is
especially prominent in intensive care settings, where multiple con-
sulting teams may order extensive laboratory panels. Although
transfusion can correct anemia, it introduces additional risks,
including infection, immune complications, and increased health-
care costs. High transfusion exposure in premature infants has
been associated with adverse outcomes such as retinopathy of pre-
maturity, necrotizing enterocolitis, bronchopulmonary dysplasia,
and increased mortality [1–3].

Adults may lose between 20 and 377 mL of blood per
day from diagnostic testing alone [4–6], while extremely preterm
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infants may lose up to a 3rd of their circulating blood volume in
the first week of life due to frequent sampling [7–9]. Many insti-
tutions limit blood draws in a 2.3 kg neonate to approximately 4.8
mL per 24 h, often insufficient to support all tests ordered by clini-
cians [10]. Similar risks arise in elderly patients, long-stay Intensive
Care Unit (ICU) patients, and immunocompromised individuals,
although pediatric patients are disproportionately affected because
their total circulating volume is small and their physiological
reserve is limited [11, 12]. Consequently, judicious management
of sample volume is essential, and optimizing the utilization of
every collected milliliter is critical [9, 13].

This work focuses on developing an expert system–based
framework to optimize laboratory testing strategies for pedi-
atric patients. Expert systems—an early branch of artificial
intelligence—apply rule-based reasoning to emulate aspects of
human decision-making. Their development traces back to mid-
20th-century research on symbolic reasoning and problem-solving
[14, 15], with early exemplars such as ELIZA, which demonstrated
language-based interaction [16]. These systems generally com-
prise a knowledge base, an inference engine, and a user interface.
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The knowledge base contains structured rules and domain-specific
relationships; the inference engine interprets those rules using meth-
ods such as forward or backward chaining; and the user interface
enables interaction between human users and the underlying logic
[17–19]. Notable demonstrations of rule-based system capabili-
ties include IBM’s Deep Blue, which used specialized heuristics to
outperform the world chess champion in 1997 [14, 20].

Within medicine, expert systems have supported tasks rang-
ing from diagnostic classification to clinical decision support,
including applications in ophthalmology and cardiovascular dis-
ease screening [21–24]. Their deployment, however, demands
rigorous validation: inaccurate recommendations can propagate
clinical errors, delay treatment, and, in extreme cases, cause
harm. Although rule-based systems provide transparency, they
may struggle with uncertainty or incomplete information. Alter-
native probabilistic frameworks such as Bayesian networks have
been proposed to overcome these limitations by modeling vari-
able dependencies and quantifying uncertainty [25, 26]. Validation
typically requires extensive expert oversight, although this may
introduce bias because experts tend to test systems with familiar
cases rather than rare or atypical scenarios.

Advances in biomedical engineering have increasingly
focused on the reduction of diagnostic sample volume through
innovations in materials science, microfabrication, and microflu-
idic system design. Developments in nano-textured substrates,
micro-sample containment, and low-volume assay platforms have
demonstrated that reliable biochemical analysis can be achieved
using substantially smaller specimen volumes, particularly in pedi-
atric and neonatal populations [27–29]. Despite these advances at
the analytical level, the preanalytical phase of laboratory testing
remains a dominant source of inefficiency and unnecessary blood
loss. Dead volume associated with collection tubes, redundant
specimen containers, and suboptimal grouping of tests fre-
quently negate the benefits of microscale analytical technologies.
Decision-support systems offer a mechanism to translate material-
level and assay-level constraints into actionable clinical workflows
by formalizing laboratory knowledge into explicit rules governing
tube selection, volume allocation, and test prioritization.

The expert system developed in this study was constructed in
close collaboration with laboratory specialists. Its objective is to
optimize the set of tests ordered for pediatric patients by selecting
the most efficient configuration of blood collection tubes based on
test-specific requirements including tube type, preferred and mini-
mum sample volume, and tube dead volume. The system employs
forward chaining to infer tube combinations that minimize total
blood draw while satisfying analytical constraints. A Raspberry
Pi 3 B+ with a 7-inch touch interface serves as the user plat-
form. System outputs are compared with current clinical practice
to evaluate performance.

1.1. Problem framework

Pediatric patients possess a restricted quantity of blood that
they are able to provide for clinical testing (see Figure 1). Chal-
lenges in blood collection include insufficient sample volume
for requested tests (leading to cancellations), iatrogenic ane-
mia (potentially necessitating transfusions), increased healthcare
costs, and medical errors such as mislabeled specimens, incor-
rect tube selection, or hemolyzed samples, which contribute to
diagnostic inaccuracies and delayed treatment [30, 31]. Medi-
cal errors are rising due to a combination of factors, including
increased healthcare complexity, caregiver fatigue from long work
hours, poor communication between care teams, and systemic

Figure 1
The problem outline depicting how prioritization of tests with
patient blood draw constraints can be effectively optimized in a

knowledge-based system to acquire the amount of blood to retrieve

issues such as understaffing and inadequate safety protocols [32].
Physicians order clinical tests to obtain a comprehensive under-
standing of the patient’s condition. Running all tests, while ideal,
is risky. Physicians typically order diagnostic tests, while phle-
botomists determine the appropriate tube types based on the
tests’ tube requirements provided by charts and/or software tools.
When ordering, physicians are concerned about the blood vol-
ume required for requested tests, but the necessary information is
often not readily available to optimize test selection. When physi-
cians normally request tests, they use a combination of preset
lists and individually picked tests. A predefined test panel con-
sists of a list of tests used to identify a specific condition in the
patient. An example of a predefined panel is the oral glucose tol-
erance test (OGTT), commonly used in the diagnosis of diabetes.
In pediatric endocrine settings, modified OGTT protocols may
include multiple time-point measurements for glucose, insulin,
and other markers, which can cumulatively require over 30–40 mL
of blood depending on the number of time points and additional
tests ordered. This highlights the challenge of balancing diag-
nostic needs with volume constraints in pediatric patients under
5 years of age [33, 34]. Guidelines suggest that pediatric blood
draws should not exceed 1–5% of total blood volume within a
24-h period or up to 10% over an 8-week period to prevent adverse
effects such as anemia or hypovolemia [35, 36]. For children under
5 years of age, weighing between 5 and 40 lbs. (2.3–18.1 kg), this
translates to maximum allowable draws of 4.8–36.4 mL within
24 h [3, 37]. Managing blood draw volumes effectively is essential,
as physicians often order multiple predefined test panels or add
individual tests, necessitating precise planning to avoid exceeding
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these limits while ensuring accurate diagnostic outcomes. As an
outcome, each drop of blood matters.

Maximizing the number of diagnostic tests that can be com-
pleted requires the efficient use of patient blood. Current practices
often involve drawing predefined volumes and distributing sam-
ples across multiple tubes, which can lead to unnecessary blood
loss. This inefficiency reduces the number of tests that can be
obtained from a single blood draw and increases patient fatigue.
Incomplete or insufficient results from initial test panels may
necessitate additional sampling later, further exacerbating blood
loss. Excessive phlebotomy increases the risk of iatrogenic anemia
and infection, both of which can negatively impact patient out-
comes. Even when laboratories can perform all requested tests,
minimizing the total volume of blood drawn remains a critical
objective to protect patient health and ensure diagnostic efficiency.

This study addresses these challenges by developing an
intelligent clinical decision-support system designed to optimize
pediatric blood draws across the entire testing workflow. The sys-
tem provides physicians with real-time guidance to adapt test
orders to each patient’s maximum safe blood volume based on
weight and hematocrit parameters, assists phlebotomists in select-
ing the most efficient tube combinations for multi-test blood
collections, and enables laboratory technologists to maximize test
utilization from limited sample volumes. While the analytical
volume required for tests remains generally constant, oppor-
tunities exist to minimize dead volume through micro-sample
cups and reduce overall tubes by intelligently combining tests
across acceptable collection tubes. By bridging these critical func-
tions through an integrated algorithmic platform, our solution
fulfills the urgent need for a centralized approach to optimize
blood use and reduce medical errors. Figure 2 depicts this pro-
posed expert system solution to revolutionize the pediatric blood
draw process from order entry through laboratory analysis. To
address these challenges, this study presents a clinical decision-
support tool designed to optimize pediatric blood collection across
the full testing workflow.

Figure 2
Proposed expert system framework for optimizing pediatric

blood collection

2. Materials and Methods

2.1. Hardware

The device integrates a Raspberry Pi 3 Model B+, a 7-inch
capacitive touchscreen, and a protective plastic enclosure. The
Raspberry Pi is powered by a 64-bit Cortex-A53 processor with
1 GB of LPDDR2 RAM, and the software is stored on a 32 GB
SD card. It supports multiple wireless communication standards,

including 2.4 GHz and 5 GHz Wi-Fi (IEEE 802.11 b/g/n/ac), Blue-
tooth 4.2, and BLE, enabling seamless connectivity with other
devices. The 40-pin GPIO header interfaces the Raspberry Pi with
the touchscreen, which offers an 800 × 480-pixel resolution and
10-point multi-touch input. The complete assembly is shown in
Figure 3, with wiring details illustrated in Figure 4.

The selected hardware platform prioritizes cost efficiency,
portability, and ease of deployment rather than computational
intensity. The Raspberry Pi 3 Model B+ provides sufficient pro-
cessing capability for rule-based inference while maintaining low
power consumption and a small physical footprint suitable for
clinical environments. The total hardware cost of the prototype
system was approximately $110, including the processing unit,
touchscreen interface, enclosure, and peripherals. This low-cost
architecture enables scalable deployment without requiring spe-
cialized infrastructure. Cybersecurity considerations are critical
for clinical decision-support systems. The current prototype oper-
ates in an offline configuration by default, eliminating exposure
to network-based attacks during standalone use. No patient-
identifiable data are transmitted wirelessly, and data access is

Figure 3
The physical hardware components of the expert system prototype

Raspberry Pi 

3 B+ 

7-inch Touch 

Screen 

Case 

Figure 4
The wiring of the hardware of the expert system
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restricted to local interfaces. Future clinical implementations will
incorporate encrypted communication protocols (e.g., Transport
Layer Security(TLS)), role-based authentication, audit logging,
and compliance with healthcare cybersecurity frameworks such
as HIPAA and ISO/IEC 27001. These measures are essential to
protect against unauthorized access, data tampering, and denial-
of-service attacks as the system evolves toward integration with
hospital networks and electronic health records (EHRs) [38].

2.2. Software

The system is built on Raspbian, a Linux-based operat-
ing system optimized for the Raspberry Pi platform. Software
development is performed using Python 3.7, leveraging the xlrd
library for the extraction and processing of Excel data, and Tkin-
ter to implement the graphical user interface on the touchscreen.
Microsoft Excel serves as the repository for storing data corre-
sponding to individual predefined test panels. Standard guidelines
in pediatric care generally recommend limiting blood draws to
a certain percentage of the child’s total blood volume, with
adjustments made based on clinical factors such as weight and
respiratory condition [37–39]. For patients without respiratory
compromise, a hemoglobin level of above 7 g/dL is typically
required to safely draw blood. For patients with respiratory
compromise, a higher hematocrit of 10 g/dL is often set to min-
imize the risk of complications such as anemia or hemodynamic
instability [40–43]. Standard clinical guidelines are used to mathe-
matically derive the maximum allowable blood draw for neonates,
children, and adults. To calculate the maximum allowable blood
draw volume (MBV), each patient’s total blood volume (TBV)
is estimated using weight-based guidelines. For adults and chil-
dren older than 1 year, TBV (in mL) is computed in Equation 1,
reflecting safe limits [44].

TBV =Weight ∗ [75 − 80] mL
kg

(1)

Infants less than 1 year of age require age-adjusted coefficients
due to their higher blood volume per kilogram, as shown in
Equation 2, with preterm neonates assigned 100 mL/kg [35].

TBV =Weight ∗ [85 − 100] mL
kg

(2)

The MBV is then derived as a percentage of TBV, accounting for
clinical context, where 3% (0.03) represents a conservative thresh-
old for repeated sampling and 5% (0.05) the upper limit for single
draws in stable patients [37].

MBV = TBV ∗ (0.03 − 0.05) (3)

Every count of blood matters; therefore, the lower bound of values
is used in the expert system to optimize and limit blood draw use.

2.3. Expert system

The expert system optimizes blood utilization by selecting
appropriate tube types and volumes based on guidance from labo-
ratory specialists. Using a forward-chaining inference engine, the
system generates optimized test lists for each tube by sequentially
applying rules to patient-specific input until a target outcome is
achieved. Relevant test data are maintained in Excel files on the
Raspberry Pi. Physicians initiate the process by selecting their spe-
cialty, which directs the inference engine to the corresponding
dataset. The Python script then employs the xlrd library to extract
and process the information from these files.

The knowledge base rules are:

1) If the time variable is = X, then place in list.
2) If patient’s anticoagulant status is true, then do not use serum.
3) If tube uses whole blood, then separate the tube from list.
4) If tube equals the tube mode, then place in list.
5) If total required blood volume exceeds clinical safety thresholds,

then adjust and reduce sample volumes where possible.

Key volume considerations:

1) Analytical volumes remain unchanged per test requirements.
2) Dead volume may be reduced via micro-sample cup

substitution.
3) Tube minimization occurs by matching tests to shared accept-

able containers beyond the primary tubes listed in laboratory
information systems (LIS).

The inference engine uses these rules to generate a list of the
best tube combinations to perform tests. The first step is separat-
ing the tubes by the time variable. The expert system organizes
blood tests according to the scheduled collection times, which
may occur at 0, 15, 20, 30, 40, 60, 120, 150, 180 min, and 24 h.
For each time point, a separate list of required tubes is gener-
ated. Tests requiring whole blood are identified and allocated to
a distinct list, as they follow specialized handling procedures. The
system then evaluates the patient’s anticoagulant status; if antico-
agulants are present, serum and red-top tubes are excluded from
selection to prevent inappropriate tube usage. Next, the software
determines the mode of tube types within the list, enabling itera-
tive selection of the most frequently required tube. Once all tubes
of the current mode are assigned, the mode is recalculated, and
the process continues until all tests are verified. Finally, the system
cross-examines the total blood volume against the patient-specific
maximum allowable draw. If the calculated volume exceeds safe
limits, the algorithm sequentially reduces dead volume and analyt-
ical volume and ultimately applies minimum volume constraints
to reach a safe combination. If no acceptable configuration exists,
the system issues a warning and provides the minimum volume
combination that exceeds the allowable threshold. Through this
process, the expert system produces an optimized schedule of tube
and test combinations that accounts for collection time, antico-
agulant status, whole-blood requirements, tube frequency, and
blood volume constraints. If necessary, the system will prioritize
tests with lower analytical volume requirements. However, physi-
cian input will be considered to ensure that clinically essential
tests are not deprioritized solely based on sample volume. By this
point, either a combination of test tubes below the threshold will
be reached, or there will be a warning notifying the user of the
minimum volume combination and that the total blood volume
exceeds the maximum drawable limit.

Steps of Expert System:

1) Physician Input: The physician selects their specialty, which
guides the inference engine on which files to choose.

2) Data Extraction: The Python script employs the xlrd library
to extract and read information from Excel files stored on the
Raspberry Pi.

3) Time Variable Separation: The tubes are categorized based on
their time variables, with each time category having its own
list of tubes.

4) Whole-Blood Separation: Tests requiring whole blood are
removed and compiled into a separate list.

5) Anticoagulant Check: If the patient is on anticoagulant
therapy, serum tubes are avoided when selecting tube types.
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6) Mode Determination: The mode of the test tubes in the list is
identified. The software iteratively selects the most common
test tube until all tests are included.

7) Blood Volume Check: The total blood volume is compared
to the maximum allowed by the Blood V function. If the
requested volume surpasses this limit, the system automati-
cally reassigns tests to use their minimum acceptable sample
volumes, following laboratory guidelines.

8) Final List: The expert system generates a list of tube and test
combinations that consider time, anticoagulant status, whole
blood, and the most common tube types.

9) Volume Optimization: If the total blood volume exceeds
the maximum drawable limit, the system begins iteratively
adjusting tests with the absolute minimum required volumes.

10) Minimum Values: If the total blood volume still exceeds the
limit, a warning is issued to the user.

The expert system interface is implemented using Python’s
open-source Tkinter library, providing a graphical user inter-
face that allows clinicians to request tests or review the status of
previous orders (Figure 5). Users begin by selecting their med-
ical specialty, which directs the inference engine to the relevant
dataset. Subsequently, the clinician inputs patient-specific param-
eters, including weight, hemoglobin concentration, hematocrit
level, respiratory status, and anticoagulant use, and may select
up to four predefined test panels. Once all inputs are entered,
the interface displays the compiled list of tests and corresponding
tubes for review before submission to the laboratory. To main-
tain patient confidentiality, the current device operates offline
and does not connect to Wi-Fi or hospital cloud networks; data
transfer occurs manually or via a secure wired interface. The sys-
tem can communicate with nearby devices through Bluetooth 4.2
or BLE, ensuring controlled connectivity. Future iterations are
planned to integrate with hospital information systems, such as
Epic, and cloud platforms using encrypted protocols and secure
authentication for compliant data exchange. This interface design
prioritizes both usability and data security while facilitating effi-
cient blood draw planning in pediatric patients. The Pediatric
Blood Calculator is designed to determine the maximum amount
of blood the patient can give in a 24-h period and determine the
ideal test tube combination for the predefined test panels selected.

Figure 5
The expert system graphical user interface

We use these endocrine predefined test panels to illustrate the
impact of this system by comparing the expert system output
volume with the output volume of the current practice.

The expert system knowledge base is implemented using
structured spreadsheet files, each corresponding to a specific clin-
ical specialty. Each file contained standardized fields including
test identifier, acceptable tube types, preferred analytical vol-
ume, minimum acceptable analytical volume, tube dead volume,
whole-blood requirement flag, anticoagulant compatibility, and
collection time-point designation. These files served as a static and
auditable representation of laboratory knowledge, enabling trans-
parent rule execution and facilitation validation by laboratory
personnel. During runtime, the expert system parsed these data
programmatically to construct candidate tube combinations and
evaluate volume constraints. In situations where multiple rules
yield conflicting tube assignments, conflict resolution followed
a hierarchical precedence strategy. Patient safety constraints,
including maximum allowable blood volume and anticoagulant
compatibility, were enforced as hard constraints and could not
be violated. Whole-blood requirements were evaluated next, fol-
lowed by time-point compatibility. Among the remaining feasible
options, the system selected tube combinations that minimized
total draw volume. If no configuration satisfied all constraints,
the system generated the minimum volume feasible solution and
issued an explicit warning indicating threshold violation.

System performance was evaluated using descriptive
statistical measures, including absolute and percentage differences
between standard practice blood volume, expert system–optimized
volume, and maximum allowable blood draw volume. Key out-
come metrics included mean volume savings, proportion of cases
within safety thresholds, and identification of optimization fail-
ures. Given the proof-of-concept nature and reliance on simulated
data, inferential statistical testing was not performed.

2.4 Simulated patient cohort generation

The simulated pediatric dataset was developed in close col-
laboration with clinical laboratory specialists to ensure that
the generated scenarios accurately reflected real-world ordering
practices, specimen handling constraints, and preanalytical lim-
itations encountered in pediatric care. Rather than using purely
random or synthetic values, the simulation framework was con-
structed by first defining clinically plausible parameter bounds
based on institutional laboratory guidelines and expert consensus.
These parameters included patient age, body weight, hematocrit
range, test panel composition, acceptable tube types, analyti-
cal volume requirements, and tube dead volumes. Laboratory
specialists provided guidance on realistic combinations of prede-
fined test panels, age-dependent testing intensity, and minimum
sample volumes required to ensure analytical validity across com-
monly used assays. This expert input ensured that the simulated
cases represented realistic clinical workflows rather than abstract
optimization scenarios.

Patient-specific variables were generated within these clin-
ically validated bounds to create a diverse cohort capable of
stress-testing the expert system. Ages ranged from 1 to 10 years,
with corresponding body weights selected to reflect pediatric
growth curves encountered in endocrine practice. Hematocrit
values were sampled across a wide physiological spectrum
(0.20–0.90), capturing both typical and edge-case conditions
known to affect serum and plasma yield. Test panel assign-
ment was structured rather than purely stochastic: patients aged
6 years and older were assigned three predefined endocrine
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panels, while younger patients were assigned up to three panels to
reflect conservative ordering behavior in smaller children. These
design choices were informed by laboratory specialists’ experience
with age-dependent testing patterns and ensured that cumulative
blood volume demands scaled realistically with patient size and
clinical context.

The resulting simulated dataset was intentionally constructed
to include both feasible and infeasible optimization scenarios.
Cases involving low total blood volume, high hematocrit, or
extensive test panel combinations were preserved to evaluate the
expert system’s ability to correctly identify threshold violations
and issue appropriate warnings. By grounding the simulation in
expert-defined constraints and preserving clinically meaningful
edge cases, the dataset provides a reproducible yet realistic test
environment for evaluating rule-based blood draw optimization
in pediatric laboratory workflows.

3. Results

Twenty patients were simulated to test the device code output.
The patients aged between 1 and 10 years, with weights ranging
from 6.80 kg to 31.75 kg, and an average weight of 19.25 kg.
Hematocrit levels for the children varied from 0.2 to 0.9, averaging
at 0.52. Children over age 6 were each assigned three randomly
selected endocrine predefined test panels, while patients under six
received three or fewer panels at random. The expert system’s

output was compared with the blood volume derived from current
practice and the maximum blood volume calculated by the Blood
V to illustrate potential blood savings and whether the blood
draw complies with the maximum blood draw guidelines (refer to
Table 1 and Figure 6).

Using standard formulas based on weight, age, and hema-
tocrit, each patient’s total blood volume was estimated, and a
maximum allowable blood draw volume was calculated as 3%
of that total. The optimized approach successfully stayed within
the safe maximum limits for 16 out of 20 patients (80%), indi-
cating high compatibility with clinical safety thresholds. These
patients showed an average savings of approximately 9.36 mL
of blood compared to standard practice. For example, Patient 5
had a standard draw of 39 mL, which was reduced to 19.37 mL
under the optimized protocol well below the maximum allow-
able volume of 66.68 mL, resulting in a savings of 19.63 mL.
Conversely, four patients (20%) had optimized draw volumes
that exceeded their individual maximum thresholds, highlighting
edge cases where either the small patient size or complex lab
panel requirements limited further reduction. Notably, Patient 19
had a total blood volume of only 539.77 mL, yielding a max-
imum allowable draw of 16.19 mL, yet their optimized draw
volume was 32.96 mL, leading to a negative savings of −17.96
mL and not optimizing blood quantity. Patients 3, 18, 19, and 20
had negative savings, demonstrating that optimization may be
limited in cases involving multiple high-volume panels or patients

Table 1
Comparison of standard practice blood draw volumes, expert system–optimized volumes, and maximum allowable blood draw limits for

simulated pediatric patients (n = 20)

Patient
Weight

(kg) Hematocrit Age

Total body
blood

volume
(mL)

Maximum
blood
draw
(mL)

Optimized
blood
draw
(mL)

Standard
blood
draw
(mL)

Quantity
of blood

saved
(mL)

Blood
quantity

opti-
mized

1 31.75 0.50 10.00 2222.60 66.68 40.16 57 16.84 Yes
2 27.22 0.70 10.00 1905.09 57.15 31.20 42 10.80 Yes
3 40.82 0.90 10.00 2857.63 85.73 88.82 87 –1.82 No
4 22.68 0.30 8.00 1587.57 47.63 31.20 43 11.80 Yes
5 31.75 0.20 8.00 2222.60 66.68 19.37 39 19.63 Yes
6 27.22 0.50 8.00 1905.09 57.15 45.55 52 6.45 Yes
7 18.14 0.40 6.00 1270.06 38.10 27.43 32 4.57 Yes
8 27.22 0.70 6.00 1905.09 57.15 22.49 35 12.51 Yes
9 22.68 0.60 6.00 1587.57 47.63 26.61 36 9.39 Yes

10 13.61 0.30 4.00 952.54 28.58 28.81 25 -3.81 No
11 18.14 0.40 4.00 1270.06 38.10 16.00 30 14.00 Yes
12 13.61 0.50 4.00 952.54 28.58 23.81 25 1.19 Yes
13 15.88 0.20 3.00 1111.30 33.34 28.35 31 2.65 Yes
14 13.61 0.80 3.00 952.54 28.58 17.77 22 4.23 Yes
15 12.25 0.40 3.00 857.29 25.72 21.21 24 2.79 Yes
16 11.34 0.70 2.00 793.79 23.81 14.64 15 0.36 Yes
17 13.61 0.60 2.00 952.54 28.58 20.00 25 5.00 Yes
18 9.07 0.50 1.00 635.03 19.05 28.96 15 –13.95 No
19 7.71 0.90 1.00 539.77 16.19 32.96 15 –17.96 No
20 6.80 0.30 1.00 476.27 14.29 14.45 10 –4.45 No
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Figure 6
Comparison of standard practice, expert system–optimized, and

maximum allowable blood draw volumes across simulated
pediatric patients (n = 20)

Figure 7
Outlining the advantages of using an expert system for

optimizing the process of blood draw in pediatric patients

with small total blood volume. Additionally, high hematocrit
levels in some of these patients may have contributed to insuf-
ficient serum or plasma yield despite sufficient whole blood
volume, a limitation in standard practice that the expert sys-
tem is well-positioned to address. While the current version
prioritizes minimizing total blood draw volume, future iterations
could incorporate logic to compare different tube combinations
and select the configuration that provides the most efficient use
of blood while ensuring adequate sample yield for all assays.
Despite these outliers, the results underscore the utility of the
expert system in safely reducing blood draw volumes for most
patients, potentially minimizing the risk of anemia in this pediatric
population.

As illustrated in Figure 7, the implementation of an expert
system for test selection in scenarios with limited available blood
offers several significant clinical and operational advantages. By
leveraging software and hardware for process optimization, it
minimizes the total amount of blood required, which is espe-
cially critical for vulnerable populations such as neonates or

patients with anemia. Additionally, this approach streamlines
clinical workflows, reducing decision-making time for healthcare
providers and accelerating the diagnostic process.

4. Discussion

4.1. Algorithmic performance and refinement

Among 20 pediatric endocrine patients analyzed, the expert
system achieved successful blood draw optimization in 16 cases
(80%), with optimized volumes remaining below the patient-
specific maximum allowable limits. In these successful cases, the
average volume saved compared to the standard blood draw was
9.36 mL, with individual savings ranging from 0.36 mL to as high
as 19.63 mL. Conversely, four patients (20%) had optimized val-
ues that exceeded their maximum allowable blood draw volumes,
with excesses ranging from 0.16 mL to 17.96 mL compared to
standard practice. These outliers highlight the need for refinement
in the optimization process, particularly in scenarios involving low
total blood volume or extensive lab requirements. In this study,
extensive lab requirements refer to clinical scenarios where mul-
tiple predefined panels or numerous individual tests are ordered
simultaneously, resulting in a high cumulative demand for blood.
These requirements often exceed what can safely be drawn from
pediatric patients, especially neonates and infants with limited
total blood volumes. For example, a combination of endocrine,
metabolic, and hematology panels may involve dozens of indi-
vidual assays, each requiring specific tubes and minimum sample
volumes. This diagnostic comprehensiveness, while clinically valu-
able, creates a challenge even for optimized systems like ours,
as seen in the four patients for whom the expert system could
not reduce blood volume below the maximum allowable thresh-
old. These edge cases emphasize the need for future integration
of test prioritization or dynamic test selection features, enabling
clinicians to make informed decisions when faced with trade-offs
between diagnostic coverage and patient safety.

The discrepancies observed in the four failed cases reveal crit-
ical limitations in applying generalized thresholds for pediatric
blood draw optimization. Specifically, overestimations were seen
in patients with either small total blood volumes due to low body
weight or disproportionately high hematocrit levels. In low body
weight pediatric patients, total circulating blood volume is so lim-
ited (typically 80–90 mL/kg) that even guideline-compliant draws
(≤ 1–5% per 24 h) may be insufficient for all required assays
when accounting for hematocrit-related plasma yield loss, leading
to underestimation by fixed-threshold systems [45–47]. In stan-
dard practice, high hematocrit may result in an adequate amount
of whole blood being drawn but an insufficient yield of serum
or plasma for certain assays, potentially causing test cancellation.
This highlights an important advantage of the expert system—
its ability to anticipate such volume-to-yield discrepancies and
guide tube selection or volume adjustment, accordingly, helping
ensure adequate sample processing despite physiological variabil-
ity. These edge cases highlight the need for a more refined system
that can dynamically account for variations in patient physiol-
ogy. Variations in hematocrit and red blood cell properties are
known to influence effective plasma yield and analytical reliabil-
ity, reinforcing the need for conservative volume constraints in
pediatric sampling [48]. One potential solution is the integration
of machine learning models trained on a broader dataset of pedi-
atric profiles, allowing the system to predict safe draw volumes
based not only on fixed equations but also on learned patterns
across multiple parameters. Alternatively, the development of
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adaptive equations—responsive to nonlinear interactions between
weight, age, hematocrit, and clinical context—could improve
safety margins while preserving draw efficiency. By embedding
these mechanisms into the optimization algorithm, the system
could better identify at-risk cases and suggest safer, patient-
specific lab workflows. This would not only enhance clinical safety
but also extend the applicability of blood-saving protocols to even
the most vulnerable pediatric populations.

4.2. Data infrastructure and validation needs

The transition from a proof-of-concept simulation to clinical
implementation necessitates comprehensive upgrades in both data
infrastructure and validation methodology. While the current
Excel-based system enabled rapid prototyping, it lacks key func-
tionalities required for clinical-grade deployment, such as version
control, concurrent access, and secure audit trails. Transition-
ing to a relational database (e.g., SQL) with user-specific access
rights would support real-time updates by laboratory personnel,
maintain robust change logs, and enable integration with LIS
like Epic Beaker or Cerner Millennium. Incorporating an appli-
cation programming interface layer would further allow seamless
bidirectional communication with EHRs, automating both data
ingestion and the test order process.

To rigorously validate the tool, a phased evaluation strategy
is proposed. An initial retrospective analysis of 500 cases—drawn
from diverse pediatric subspecialties such as the Neonatal Inten-
sive Care Unit (NICU), Pediatric Intensive Care Unit (PICU),
general inpatient units, and outpatient clinics—will provide the
statistical power necessary to capture variability in ordering
behavior and patient physiology. The choice of 500 cases ensures
adequate sampling of rare but clinically important edge cases,
such as very low birth weight neonates (< 1.5 kg) or patients
with hematocrit extremes (< 0.25 or > 0.65), which are critical
for stress-testing the algorithm. Subsequent prospective valida-
tion across multiple healthcare systems will assess the expert
system’s generalizability and performance across different insti-
tutional workflows, LIS environments, and patient populations.
This multi-site validation will not only benchmark technical met-
rics like algorithm accuracy and processing time but also track
real-world clinical outcomes including reductions in iatrogenic
anemia and transfusion rates—to iteratively refine and validate
the tool’s effectiveness in improving pediatric care.

4.3. Clinical implementation strategy

Successful integration into clinical workflows requires careful
consideration of both technical and human factors. The algo-
rithm should be embedded as a decision-support module within
existing EHR systems, positioned at the point of test ordering
to provide real-time feedback to clinicians. This implementation
would enable several critical safety features: immediate flagging of
potentially unsafe draw volumes and support for test prioritiza-
tion by the ordering physician, informed by clinical urgency and
individual patient constraints. The interface design must balance
comprehensive information display with clinical usability, pre-
senting key data (e.g., cumulative draw volumes in 24 h without
overwhelming the user.)

To streamline phlebotomy workflows, the system could gen-
erate prepackaged tube sets labeled with patient-specific barcodes
and optimized draw sequences, reducing procedural delays and
potential errors, while still supporting bedside labeling verifica-
tion to align with current best practices. 24-h cumulative blood

draw tracking with automated alerts when approaching safety
thresholds could be beneficial but must be carefully balanced
against the practicality of implementation. The implementa-
tion plan should include a comprehensive training program
addressing both technical operation and clinical interpretation of
system outputs, with particular emphasis on edge cases where
human judgment must supersede algorithmic recommendations.
A phased rollout strategy is recommended, starting with a pilot
program in a controlled environment (e.g., pediatric endocrinol-
ogy clinic) before expanding to critical care areas where patient
acuity and test complexity are highest.

4.4. Future directions and research opportunities

The future of this pediatric blood draw optimization
system lies in several key areas of development that could
enhance its utility and clinical impact. A primary focus should
be the incorporation of predictive modeling capabilities. Shifting
the system from a reactive to a proactive risk prevention model
could significantly improve its accuracy. By analyzing historical
data such as draw frequency, volume, and hematocrit changes,
the system could predict anemia risk and recommend personal-
ized testing intervals for each patient. This data-driven approach
would allow the system to minimize unnecessary blood draws,
reduce the occurrence of iatrogenic anemia, and optimize clin-
ical workflows. Research into developing predictive algorithms
that integrate patient data from medical histories and real-time
results, especially for high-risk populations, is essential. Machine
learning techniques could further refine these models, improving
decision-making as more patient data becomes available.

To support safe and effective clinical decision-making, the
system’s architecture must be designed with adaptability to incor-
porate established clinical guidelines and local standards of care.
By aligning the expert system with evidence-based protocols
and institutional best practices, it can guide ordering physi-
cians toward selecting the most clinically relevant and essential
tests, particularly when blood volume is limited. Integration with
national and local pediatric care guidelines will ensure consis-
tency across providers while still allowing for flexibility based on
individual patient needs. Collaboration with clinical laboratory
organizations, institutional care-path committees, and standards
bodies will be key in embedding these care pathways into the sys-
tem. Rather than replacing physician judgment, the system will
serve as a decision-support tool, highlighting which tests align
with care standards and optimizing blood draw strategies accord-
ingly. This approach not only enhances clinical appropriateness
but also reduces unnecessary testing or under-testing, ultimately
improving patient safety and resource utilization.

5. Conclusions

This study demonstrates the potential of an expert system
to optimize blood draw volumes in pediatric patients. Key areas
for development include predictive analytics to further tailor
blood draw recommendations and ongoing enhancements such
as dynamic hematocrit correction and machine learning-assisted
classification. Long-term studies and multicenter validation will
be crucial to refining the system and establishing its impact on
iatrogenic anemia, transfusion needs, and other clinical outcomes.
This technology represents a step toward personalized, evidence-
based pediatric phlebotomy, optimizing care and safety for
vulnerable populations while adhering to clinical and regulatory
standards.
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