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Abstract: This study comparatively applied four distinct time series and artificial intelligence-based forecasting models to predict the
short-term number of licensed athletes in Tiirkiye: Autoregressive Integrated Moving Average (ARIMA), Convolutional Neural Network
with Long Short-Term Memory (CNN-LSTM), Extremely Boosted Gradient Decision Trees with Long Short-Term Memory (XGBoost-
LSTM), and gated recurrent unit with random forest (RF-GRU). Models were trained using data from 2005 to 2019; forecasts for the years
2020-2024 were subsequently compared with actual values. The ARIMA model demonstrated the highest predictive efficacy, achieving
a coefficient of determination of 0.9633, a mean square error of 0.1056, and a mean absolute error of 0.1990. The CNN-LSTM model
exhibited a coefficient of determination of 0.9771 and a mean absolute percentage error of 5.68%. The remaining two hybrid models
(XGBoost-LSTM and RF-GRU) exhibited inferior accuracy, accompanied by comparatively elevated error levels. The results underscore

the significance of data-driven decision-making in sports policy and provide scholarly contributions to strategic planning.
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1. Introduction

The sports sector is one of the fastest-growing industries world-
wide and is progressively influencing the global economy [1].
Engagement in sports activities not only offers individuals pleasure
and respite but also enhances social bonds with family and neigh-
bors [2]. Recent years have seen a shift in the emphasis on medal
rankings and international achievement, long viewed as markers
of elite performance, toward strategic approaches that prioritize
community-based advantages. When strategically and efficiently
organized, sports become a potent instrument that can facilitate not
only competitive success but also the attainment of various social
and societal [3]. This shift in methodology reinterprets the soci-
etal roles of sports, placing athletes as exemplars who operate not
solely for personal achievement but also with a commitment to
social duty [4]. Numerous studies have identified sport as a tool
for social cohesion, cultural integration, and public policy develop-
ment, particularly in areas such as community engagement, youth
empowerment, and public health promotion [3, 5, 6].

Currently, scholarly discourse increasingly highlights the sub-
stantial influence of the sports business on economic development,
with a corresponding rise in the volume of research produced in
this domain. Recognition of the strategic significance of sports as
both a cultural and social domain, as well as an economic sector,
is increasing [7]. Consequently, it is imperative for nations with
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youthful demographics, such as Tiirkiye, to use this potential and
promote youth engagement in sports through robust sports pro-
grams. Nonetheless, the sustainable formulation of such policies
necessitates data-driven strategic planning underpinned by predic-
tive projections. In this respect, artificial intelligence (AI)-driven
forecasting techniques (e.g., time series) and statistical modeling
instruments can be effectively employed in both the feasibil-
ity assessment of sports investments and the long-term strategic
planning of decision-makers [8]. Such foresight provides sensi-
ble foundations for infrastructure expenditures as well as essential
matters such as athlete training, facility development, and regional
distribution [4].

Time series analysis comprises statistical techniques used to
forecast future trends and potential variations based on histori-
cal data [9]. In time series analysis, the Autoregressive Integrated
Moving Average (ARIMA) model [10], Extreme Gradient Boost-
ing algorithm (XGBoost) [11], Long Short-Term Memory (LSTM)
network [12], gated recurrent unit (GRU) [13], random forest (RF)
algorithm (10.1016/j.as0c.2025.113274), and Convolutional Neu-
ral Network (CNN) [14] are utilized. Traditional statistical models,
as well as contemporary machine learning (ML) and deep learning
methodologies, are extensively employed.

There has been a substantial growth in studies utilizing ML for
sports prediction in recent years. Artificial Neural Networks (ANN),
classification algorithms, k-fold cross-validation, and feature selec-
tion are often employed techniques for forecasting sports outcomes
[15]. Hybrid models utilizing RF, Gradient Boosting, Support
Vector Machine, Logistic Regression, and CNN in football and
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basketball betting have produced economically substantial returns
[16, 17]. Research employing ANN in several sports has attained
accuracy over 67% [18], while at the individual level, the error mar-
gin for elite swimming performance has been determined to be about
0.05 seconds [19]. Hybrid models incorporating Recurrent Neu-
ral Network (RNN), LSTM, and Residual Neural Networks have
shown superior accuracy relative to traditional Logistic, Weibull,
and Hyperbolic models in forecasting the dimensions of the sports
business [20]. In the prediction of sports injury risk, image-based
coding methodologies integrated with Deep Neural Network archi-
tectures attained an accuracy enhancement of over 20% [21]. Knee
joint forces were modeled using wearable sensor data, demonstrat-
ing a strong correlation (R? = 0.94) [22], while fuzzy rules attained
a training modeling accuracy of 68.7% [23].

Hybrid models also excel in performance forecasting. An ANN
optimized using chaos theory and particle swarm optimization
(PSO) attained over 90% accuracy in predicting sports performance
[24]. Support Vector Machine surpassed ANN and Genetic Algo-
rithm (GA) in forecasting material performance in sports equipment
[25]. Classical ML approaches were evaluated in tennis and cricket
matches; accuracy in tennis forecasts did not surpass 70% [26],
whereas tree-based models showed greater efficacy in cricket. RF
attained an accuracy of up to 95% in squad selection [27], whereas
AdaBoost excelled in the Internet of Things-based warning sys-
tem for football [28]. support vector classifier achieved the highest
success rate, with an F1 score of 97.6% in the categorization of
sports news [29], although Support Vector Machine and RF pro-
duced robust results in analyses including heart rate variability data
[30]. Gradient boosting decision trees exhibited superior efficacy
in post-concussion recovery among athletes [31], whereas the inte-
gration of CatBoost and UMAP attained 75% accuracy in athlete
profiling based on coach assessments [32].

Projecting the quantity of licensed athletes is not solely a
descriptive task but a strategic necessity for evidence-based sports
administration. Precise forecasts underpin various policy areas:

» Funding allocation: Ministries and federations strategize staff,
event subsidies, and athlete development spending accord-
ing to anticipated participation levels. Infrastructure develop-
ment: Long-term facility planning, encompassing sports halls,
youth centers, and grassroots initiatives, necessitates dependable
demand forecasts rather than historical data.

* Human resource planning: Coaching, referee training, and edu-
cator allocation are contingent upon anticipated athlete demo-
graphics across various locations and age categories. Health and
social policies: Enhancing sports participation is a fundamental
approach to addressing physical inactivity, obesity, and chronic
diseases in Tirkiye. Consequently, forecasting future involve-
ment facilitates the alignment of sports planning with public
health policy.

Talent identification and Olympic planning: National federations

require dependable projections to identify possible elite talent

pools and develop long-term performance trajectories.

Thus far, hardly any research has established a quantitative frame-
work to correlate athlete participation trends with prospective policy
scenarios, especially through the utilization of Al-enhanced model-
ing. This study addresses a significant gap by providing forecasting
methods relevant to strategic planning, resource optimization, and
national sports policy.

This study employed ML modeling for the period 2005-2019,
utilizing athlete data from 2005-2024, and projected the values for
2020-2024, which were subsequently compared with actual data.
Consequently, the models’ predictive power and accuracy were
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evaluated. The primary premise of the study posits that ML models
utilizing historical data can yield significant and statistically valid
predictions for the future. Research on predicting athlete numbers is
scarce in the literature [4, 33], and no unique prediction model for
Tiirkiye has been identified. This work provides a novel contribution
to the domain of sports sciences.

2. Theoretical Method

2.1. Dataset

The research, performed on Tiirkiye’s athletic population from
2005 to 2024, utilized data from the Ministry of Youth and Sports
of the Republic of Tiirkiye [34] and the DrDataStats [35] data
platform (Table 1). Despite the availability of annual data, the struc-
ture’s inclusion of only the total annual athlete population constrains
detailed analysis by discipline, age group, region, or gender; con-
sequently, the modeling effort was executed at a general level. All
raw values used in this study are publicly accessible via the Min-
istry of Youth and Sports and DrDataStats platforms and are fully
reproducible using the values presented in Table 1.

A key limitation of the dataset is its aggregate structure, which
reports only annual national totals without breakdowns by gen-
der, sport, or region. This restricts the modeling to a univariate
framework and limits the interpretability of sport-specific trends.

Table 1
Annual number of licensed athletes in Tiirkiye
(2005-2024)

Years Number of athletes (million)
2005 0.9178
2006 1.1230
2007 1.2629
2008 1.4694
2009 1.6213
2010 1.7648
2011 1.9512
2012 2.3312
2013 2.8178
2014 3.2193
2015 3.5343
2016 3.8416
2017 4.4288
2018 4.9080
2019 6.4726
2020 8.4541
2021 10.9139
2022 12.4500
2023 16.6783
2024 16.9277

Values are reported in millions and based on official records
from the Ministry of Youth and Sports of the Republic of Tiirkiye
[34] and DrDataStats [35] platform.

2.2. Long short-term memory

LSTM is a variant of RNN that demonstrates exceptional effi-
cacy in learning patterns within sequential data. Due to its cell
state architecture, it can encapsulate long-term dependencies [36].
The forget gate determines the deletion of previous information,
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Figure 1
Long Short-Term Memory network architecture
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the input gate governs the addition of fresh information, and the
output gate selects which information from the cell to utilize [37].
These mechanisms govern the information flow, allowing LSTM
to proficiently represent long-term dependencies in sequential data
(Figure 1) [38].

The fundamental equations of LSTM are presented in
Equations (1)—(5) [39].

Input gate: i, = o(W;.[h;_1,x,] + b;) 0]
Candidate cell state: C = tanh(W,.[h,_;,x,] + b,) ©))
Updated cell state: C, = f,.C,_; +i,.C, (3)
Output gate: o, = a(W,.[h;—1,x:] + b,) “)
Output calculation: %, = o,.tanh(C,) 5)

The fundamental architecture of LSTM facilitates the modeling
of time-dependent interactions by regulating information flow via
various gates and states. This structure comprises two sigmoid acti-
vation functions and one hyperbolic tangent (tanh) function, which
are essential for governing intracellular transitions and information
updates. The tanh function regulates internal memory values by
constraining the cell state within the range of -1 to 1, whereas the
sigmoid function generates outputs between 0 and 1, influencing the
degree of information retention or obsolescence. The weight matri-
ces (W;, Wy, W, ve W) utilized for the input, forget, output, and cell
state gates are trainable parameters in this process, each serving a
pivotal function in temporal information transfer.

2.3. Extreme gradient boosting

XGBoost is an ensemble learning technique utilizing gradi-
ent boosting, which is predicated on the sequential construction
of decision trees [40]. At each iteration, the model produces new
trees by allocating greater weight to instances where the pre-
ceding learner erred, hence dynamically enhancing the learning
process [41]. XGBoost fundamentally integrates the predictions
of numerous weak learners to formulate a robust classifier with
elevated accuracy. In this procedure, each tree is trained to min-
imize a regularized objective (loss) function by gradient-based
optimization. This mitigates the model’s learning inaccuracies and
enhances overall efficacy by regulating the danger of overfitting
(Figure 2) [42].

Figure 2
Extreme Gradient Boosting network architecture
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The general equation of the XGBoost approach is shown in
Equation (6) [43].

N
L) = Y i — fG))* + Q(f) (6)
i=1

L(9): This function enhances both the predictive accuracy and
generalization capacity of the model.

Q(f): This function enhances the predictive accuracy and
generalization capacity of the model.

N
Z(yi — f(x))?*: It is the aggregate of the squared discrep-
i=1

ancies between the values forecasted by the model and the actual
values, where y; denotes the actual value, f(x;) signifies the model’s
prediction, and N indicates the number of samples.

2.4. Gated recurrent unit

GRU is a deep learning architecture that maintains long-term
information via its gating mechanism. Throughout the training
phase, extraneous information is systematically discarded, thereby
diminishing model complexity [44]. GRU networks, due to their
streamlined architecture, serve as an alternative to LSTM and are
especially appropriate for resource-limited settings. They regulate
information flow utilizing solely update and reset gates, rather than
the intricate gate mechanism of LSTM. This architecture necessi-
tates fewer processing resources and can surpass LSTM in certain
contexts when modeling long-term interdependence [45]. The GRU
design comprises two principal gates: the reset gate and the update
gate. The reset gate regulates the degree of information retention
from previous time steps and governs the integration of incoming
information. The update gate integrates the roles of the distinct for-
get and input gates in the LSTM, ascertaining the extent to which
prior memory is retained and how it is modified with contem-
porary information. This configuration enables the GRU to regu-
late the information flow more effectively and straightforwardly
(Figure 3) [46].

The general equations for the GRU approach are presented in
Equations (7)—(9) [47].

z; = o(wx, + uhy_y) @)
re=o(wex, +uhy_q) (3)
he=(1—2) @ hy_ +Zr®i’t ©)
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Figure 3
Gated recurrent unit network architecture
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The variables W,, U, W,, and U, in Equations (7)—(9) denote
the trainable weight vectors of the model. The symbol denotes
the element-wise (Hadamard) multiplication operation between two
vectors; the phrase %, signifies the unit value of memory, and rt
indicates the sigmoid activation function.

2.5. Random forest

RF is an ensemble learning system designed to enhance the
restricted generalization ability of an individual decision tree uti-
lizing the bagging method. The model’s accuracy and stability are
markedly enhanced by training several decision trees using random
sampling and feature subsets [48]. During this procedure, numerous
subsets of data are derived from the main dataset through ran-
dom and iterative sampling, with each subset employed to train
a distinct decision tree. During the construction of each decision
tree, a randomly chosen subset of features is utilized rather than
all available features in the node splitting procedure [49]. This
randomization enhances model variety and mitigates the danger
of overfitting. During the final prediction phase, the outputs of
all decision trees are aggregated; majority voting is employed for
classification tasks, whereas predictions are averaged for regres-
sion tasks. Consequently, the model’s generalization capability
is enhanced, yielding more balanced and stable outcomes [50]

(Figure 4).

Figure 4
Random forest network architecture
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Equation (10) contains the general equation for the RF
method [51].

J&x) = (10)

D (Tue)
n
T,(v): 1t signifies the forecast of the nth decision tree for the
input x.
Z(T (x)): It constitutes the aggregate of the forecasts from all
trees.
n: The aggregate quantity of decision trees.

2.6. Convolutional neural networks

A CNN is a neural network distinguished by convolutional
operations and a profound architecture. It is typically employed to
derive more abstract and complex features from raw data [52]. CNN
comprises a convolution layer, an activation function, a pooling
layer, a dropout layer, a fully connected layer, and an output layer
(Figure 5) [53]. The convolution layer, a fundamental component
of a CNN, produces feature maps by applying convolution kernels
to the input data with designated stride lengths; initial layers typi-
cally extract superficial features, whereas final layers extract deep
structural features. Activation functions (including ReL.U, sigmoid,
and tanh) provide nonlinearity to the model, facilitating the learning
of more intricate correlations. A random dropout layer intermit-
tently deactivates certain neurons or connections during training
to mitigate overfitting. Consequently, the model’s generalization
capability enhances [54].

Equation (11) presents the universal formula for CNN [52].

M N
k k
Zf,j) = Z Z xi+m—1,j+n—1 X WEn,)n + b(k)

m=1n=1

(1)

In this equation;

sz): The output value at the (i, j) th point in the feature map
generated by the kth convolution filter.

Xitm—1,j+n—1: The pixel value at the (i+m-1, j+n-1) location of
the input picture.

w,(,f)n The weight of the kth filter at the (m, n) th location.

»®: is the bias term for the kth idea.

2.7. Autoregressive integrated moving average

ARIMA is one of the most widely used models in time series
analysis [9]. Developed by George Box and Gwilym Jenkins in
the 1970s, this approach provided a comprehensive framework
for examining stochastic time series [55]. ARIMA provides high
success in short- and medium-term forecasts for series contain-
ing statistically significant patterns such as trends or seasonality,

Figure 5
Convolutional Neural Network architecture
Convolutional Pooling
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Figure 6
ACF and PACF graphs used in the refinement model
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independent of exogenous factors [56]. By utilizing past values
and error terms, the model produces effective forecasts, particu-
larly in systems unaffected by exogenous shocks. ARIMA is based
on three basic components: Autoregressive (AR) represents past
observations, Moving Average (MA) represents past errors, and
Differentiation (I) represents the series’ stationarity [57]. The com-
bination of these components forms ARMA, and when combined
with differencing, forms ARIMA [58]. The ADF test is used to
test stationarity in model selection, while autocorrelation func-
tion (ACF), partial autocorrelation function (PACF) (Figure 6), and
Akaike information criterion (AIC) criteria are used to determine
the parameters [59].
Equation (12) presents the generic formula for ARIMA [60].

Y, =u+ ¢1Y,_1 + ¢2Yt—2 + ...+ ¢1€,_1 + ¢2€,_2 +.+¢ (12)

In time series analysis, # denotes the mean level of the series. The
¢, coefficient in the AR model represents the autocorrelation coef-
ficient, signifying the influence of historical values on the present
forecast. 8; in the MA model represents the moving average coef-
ficient, which dictates the influence of historical error terms on the
prediction. The present value is predominantly contingent upon the
preceding value Y, ;. The ¢, error term denotes random variations
from a distribution with a zero mean and constant variance, whereas
the ¢ term signifies the stationary component of the model.

2.8. Error performance metrics

In the modeling of the number of licensed athletes in Tiirkiye
for the years 2005-2019, root mean square error (MSE), mean
square error (RMSE), sum of squared errors (SSE), mean abso-
lute percentage error (MAPE), R%, and mean absolute error (MAE)
metrics were used (Equations 13-18) [61].

n Y 2
MSE = Gi =3 (13)
= "
RMSE = (14)
SSE =3 (¥, = )’ (15)
=1

sap = 10,y bz i (16)
n Yi
n
Z(Yi _.)A}i)z
R=1-"0 (17)
Z(yi _)A/,')z
i=1
Z(yi _j},')z
MAE = = (18)

In this context, i denotes the estimated or model-predicted value of
an observation, while yi signifies the real or expected value of that
observation, and n denotes the aggregate number of observations
within the analyzed data collection [61].

The model selection in this study was based on theoret-
ical diversity, interpretability, and suitability for small-sample
univariate time series data. ARIMA was included as the classi-
cal benchmark for linear-trend modeling, while CNN-LSTM and
XGBoost-LSTM were selected to represent deep learning and
hybrid gradient boosting approaches capable of capturing nonlinear
temporal dependencies. RF-GRU was employed as an alternative
architecture that integrates ensemble learning with gated recurrent
memory. Transformer-based models and tree-based variants such
as LightGBM were excluded due to the extremely limited dataset
size (15 observations) and the absence of multivariate features,
which substantially increases the risk of overfitting and unstable
convergence in such architectures. Future studies using larger and
higher-frequency datasets may appropriately test these models.

2.9. Data preprocessing and model pipeline

Since the dataset consists of a single annual variable (total num-
ber of licensed athletes), no feature selection was required. The raw
values were normalized using MinMaxScaler in the range of 0-1
prior to training and inverse transformed after prediction. For deep
learning-based models, the data were converted into a supervised
learning format using sliding windows. Depending on the model, the
input sequence length (look-back) was set to 1 (XGBoost—-LSTM), 3
(CNN-LSTM and RF-GRU), or 0 (GRU-only input from RF stage).

For ARIMA, stationarity was evaluated through differencing
based on ADF test results and implemented using a (1,3,1) order.

All models used the same training/testing structure: 2005-2019
for training (70%) and 2020-2024 for testing (30%), preserving
chronological order to avoid data leakage. Models were trained sep-
arately, and no cross-validation was applied due to the extremely
limited dataset size (n = 15) [62, 63].

The complete modeling pipeline is shown below:

+ Data extraction.

¢ Scaling via MinMaxScaler.

» Temporal reshaping into a supervised format.

* Model-specific training.

* Testing against 2020-2024 observations.

* Inverse transformation and evaluation using R2, MSE,
RMSE, SSE, MAE, and MAPE.

These steps ensure that the entire process can be replicated using the

reported parameters and dataset. Hyperparameters for RF, XGBoost,
and neural architectures were tuned using constrained grid search
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to reduce overfitting risk given the small sample size. The search
space and selected ranges are now explicitly included to improve
reproducibility.

While all model-specific hyperparameters and architecture
settings are documented in Sections 3.2-3.5, this consolidated
pipeline summary is intended to support transparency and repro-
ducibility by presenting the end-to-end workflow in a single
location.

The look-back windows used in this study (1-3 time steps
depending on architecture) were selected based on the input dimen-
sionality constraints of annual univariate series. Given that the
dataset contains only 15 values, longer window sizes would have
resulted in excessive input dimensionality relative to the available
training samples, increasing the risk of overfitting. The chosen
window lengths therefore represent the maximum sequence depth
that can be applied without reducing the effective sample size or
destabilizing model convergence.

As the dataset consists of only 15 observations, alterna-
tive baseline models such as simple exponential smoothing or
Holt-Winters were considered but excluded due to insufficient
data points; however, these models are recommended for future
comparison when additional historical data become available.
Hyperparameter tuning was conducted using a constrained man-
ual grid search. Initially, the RF model was designed to fore-
cast the subsequent value using the previous three observations
(look back = 3). Input vectors were generated using a three-step
sliding window. Grid search optimization resulted in the best perfor-
mance with n_estimators = 100 and max_depth = 4. The RF model
effectively captured short-term trends in the dataset while limiting
sensitivity to nonlinear fluctuations and reducing overfitting risk.

3. Results and Discussion

3.1. Overview of the number of licensed athletes in
Tiirkiye

The graph in Figure 7 indicates that the number of licensed
athletes in Tiirkiye was 1.4694 million in 2008, rose by 161.5% to
3.8416 million in 2016, and escalated to 16.9277 million in 2024,
reflecting a rise of 340.7%. The total increase between 2008 and
2024 is 1052.1%. This expansion is linked to the proliferation of
grassroots sports, the advancement of school athletics, the enhance-
ment of sports infrastructure, the improvement of facilities, and
heightened individual awareness [4, 33]. Long-term planning, the
promotion of sports culture, and ongoing infrastructure investments
are essential for sustainability.

3.2. Estimating the number of athletes in Tiirkiye
using the XGBoost-LSTM hybrid model

This work established a hybrid methodology integrating
XGBoost and LSTM models for forecasting time series data. The
model was constructed using a univariate dataset including 15
time steps spanning the years 2005 to 2019. Short-term depen-
dencies were modeled using XGBoost, and the results were input
into LSTM. The dataset was partitioned into 70% for training and
30% for testing, maintaining the sequential integrity of the time
series. The XGBoost model was fine-tuned with hyperparameters
n_estimators=200, max_depth=5, and learning_rate=0.05, and gen-
erated predictions utilizing a historical time step (look-back=1). The
LSTM architecture has 50 neurons within a solitary hidden layer
and was trained for 300 epochs via a tanh activation function and an
Adam optimization technique. This hybrid methodology integrates
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Figure 7
Change in the number of athletes in Tiirkiye over the years
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Forecasted number of licensed athletes in Tiirkiye using the
Extreme Gradient Boosting—Long Short-Term Memory
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XGBoost’s capacity to identify nonlinear interactions with LSTM’s
proficiency in learning temporal patterns, facilitating the concurrent
acquisition of short- and long-term dependencies. Model estimations
indicate that the quantity of licensed athletes in Tiirkiye is:

* 2008: 1.61 million
* 2016: 3.65 million (126.71% increase)
* 2024: 8.09 million (121.64% increase)

An anticipated increase of 6.48 million is expected from 2008 to
2024, with a growth rate of 402.48% (Figure 8). The forecasts indi-
cate a consistent and swift rise in the quantity of licensed athletes in
Tiirkiye, with notably robust expansion persisting post-2016.

3.3. Estimating the number of athletes in Tiirkiye
using the RF-GRU hybrid model

This study employed a hybrid methodology integrating RF
and GRU models to address a time series forecasting challenge
with constrained data availability (merely 15 numerical data points).
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Owing to the limited dataset, the training and test data were assessed
concurrently.

RF Initially, the RF model was designed to forecast the subse-
quent value utilizing three preceding values (look back = 3). Input
vectors were generated with a three-step sliding window technique.
The optimal performance from grid search optimization was attained
with hyperparametersn_estimators=100and max_depth=4.The RF
model effectively identified the short-term trend of the time series,
minimizing sensitivity to nonlinear correlations and overfitting.

GRU step: The predictive outcomes of the RF model were
inputted into the GRU during the subsequent step. The GRU model
was set with a look back of 0, indicating that only immediate RF
forecasts were utilized rather than time-lagged series. The model
design comprises a GRU layer featuring 64 hidden units and uti-
lizes a “tanh” activation function. The training procedure spanned
300 epochs, with mean squared error as the loss function.

The RF-GRU hybrid model integrates the short-term forecast-
ing abilities of RF with the nonlinear learning capabilities of GRU
to generate more accurate predictions. The exclusive use of RF out-
puts, without the transfer of prior knowledge in the GRU layer,
streamlined the model’s learning architecture.

Data Preparation and Scaling: Inputs for the GRU model were
normalized using MinMaxScaler and subsequently inverse trans-
formed to the original scale post-estimation. This supplied the
neural network with a suitable range of values during training and
guaranteed that the outputs were translated into real-world values.
According to the graph in Figure 9:

* 2008: 1.75 million licensed athletes

* 2016: 4.52 million licensed athletes (2008-2016 increase:
158.29%)

* 2024: 7.35 million licensed athletes (2016-2024 increase:
62.61%)

The cumulative gain from 2008 to 2024 surpasses 320%. The model
indicates a consistent increasing trend in the number of licensed ath-
letes in Tirkiye; Nevertheless, the rate of increase from 2008 to
2016 surpasses that from 2016 to 2024.

3.4. Estimating the number of athletes in Tiirkiye
using the CNN-LSTM hybrid model

This work built a hybrid deep learning model that inte-
grates CNN and LSTM architectures to enhance the accuracy of
predictions on time series data.

Model Structure:

* Input Layout: Future values were predicted using the past three
time steps (look back = 3).

* Data Preparation: Data were divided into three-step moving
windows and normalized to 0—1 with MinMaxScaler.

Architecture:

* ConvlD layer (64 filters, 2-unit kernel) to learn short-term
patterns.

* LSTM layer (50 neurons) to model long-term dependencies.

* Dense layer to generate single-valued predictions.

Training Details:

* Optimization: Adam algorithm
* Loss function: MSE
* Training: 300 epochs

Figure 9
Forecasted number of licensed athletes in Tiirkiye using the
random forest—gated recurrent unit (RF-GRU) model
(2005-2024)
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Data Split: Chronologically 70% training, 30% testing

Number of Licensed Athletes Predictions

* 2008: 1.55 million

* 2016: 4.11 million (2008-2016 increase: 165.16%)

¢ 2024:9.71 million (136.27% increase from 2016 to 2024)
* Total increase (2008 to 2024): 526.45%

The model forecasts a persistent and significant upward trajectory in
the quantity of licensed athletes in Tiirkiye, with a more pronounced
absolute increase particularly following 2016 (Figure 10).

3.5. Estimating the number of athletes in Tiirkiye
using ARIMA

The ARIMA model utilized first-order autoregressive and
moving average elements, in conjunction with third-order differenc-
ing. ACF and PACF assessments of the model residuals indicated
that the residuals were contained within +95% confidence intervals
and had characteristics of white noise. The AIC value was deter-
mined to be 4.80, signifying that the model demonstrated adequate
accuracy and possessed an ideal parameter count. The ARIMA
model forecasts indicate that the number of licensed athletes rose
from 1.38 million in 2008 to 3.89 million in 2016 (an increase of
181.88%) and thereafter to 22.09 million in 2024 (a total increase
of 1500%) (Figure 11).

3.6. Actual and forecast of Tiirkiye’s athlete
numbers between 2020 and 2024

This study evaluates the efficacy of the XGBoost+LSTM,
RF+GRU, CNN+LSTM, and ARIMA models in forecasting the
quantity of licensed athletes in Tiirkiye for the 2020-2024 time-
frame (Figure 12). The ARIMA model generated forecasts that
were most accurate for the years 2020 and 2021; nevertheless, it
considerably overestimated the period of 2023-2024, demonstrat-
ing a notable limitation in its capacity to accommodate nonlin-
ear patterns. Among deep learning methodologies, CNN+LSTM
consistently yielded superior outcomes throughout all years;
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Figure 10
Forecasted number of licensed athletes in Tiirkiye using the
Convolutional Neural Network—Long Short-Term Memory
(CNN-LSTM) model (2005-2024)
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Figure 11
Estimating the number of athletes in Tiirkiye by year using via
Autoregressive Integrated Moving Average (ARIMA) model
(2005-2024).
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nevertheless, it proved inadequate in detecting abrupt surges. The
RF+GRU and XGBoost+LSTM models repeatedly undervalued the
actual figures and did not accurately depict swift escalations. In
the overall comparison, ARIMA showed robustness in the first
phase, although CNN+LSTM yielded more consistent predictions
over the long run, while the other two models displayed inferior
performance.

As shown in Figure 12, ARIMA closely estimated the 2020—
2021 values but substantially overpredicted the post-2022 surge,
reflecting its limitations in capturing nonlinear structural breaks.
This behavior is theoretically consistent with ARIMA’s known
tendency to extrapolate linear trends when encountering abrupt
structural changes outside the learned pattern. While ARIMA
provides high accuracy for stationary or near-linear series, its fore-
casting mechanism can intensify deterministic trend projections
beyond the training interval, resulting in overestimation in rapidly
increasing participation phases. Therefore, the model’s strong per-
formance metrics and its later-stage divergence are not contradictory
but rather illustrate the boundary conditions under which classical
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Figure 12
Comparative graph of actual and forecast methods for the
number of licensed athletes in Tiirkiye for the years 2020-2024
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models outperform deep learning in small-sample settings while still
remaining vulnerable to structural regime shifts.

In contrast, CNN-LSTM maintained consistently lower error
levels across all years, whereas RF-GRU and XGBoost-LSTM
repeatedly underestimated the rapid growth phase, likely due to
insufficient temporal depth and small-sample over-regularization.
These findings highlight the importance of matching model com-
plexity with trend behavior in rapidly expanding participation
datasets.

Dalkilig et al. [64] calculated the number of licensed wrestlers
as 121,498 in 2017 and 129,890 in 2018, utilizing ANN. This study
indicated that the XGBoost-LSTM model forecasted the total num-
ber of athletes to be 3.98 million and 4.30 million for the respective
years.

Atasoy et al. [65] approximated the proportion of athletes in
wrestling to be 3.05% of the overall athlete population in 2017
and 3.02% in 2018. Utilizing ANN, they approximated the count
of licensed athletes in combat sports to be 1,157,504 in 2017 and
1,269,848 in 2018. This study indicates that the RF-GRU model
forecasted a total of 5.07 million athletes in 2017 and 5.90 million in
2018, with combat athletes representing 22.83% of the total in 2017
and 25% in 2018.

Dalkilig et al. [66] projected that 190,049 athletes engaged
in underwater sports, water polo, and swimming in 2017 and
210,384 in 2018, utilizing ANN. During the same years, the ARIMA
model estimated the overall number of athletes at 4.17 million and
5.11 million, respectively; these categories represented nearly 5%
of the total athlete population in 2017 and 4.12% in 2018.

In the ANN study by Colak and Senol [33] employing the
Bayesian regularization algorithm, the total number of licensed ath-
letes in Tiirkiye was projected to reach 6.35 million by 2024 and
was forecasted until 2030. This study observed that the XGBoost-
LSTM model yielded an estimate of 1.3 times greater for the same
year.

In a study using ANN, Senol et al. [4] predicted that the total
number of athletes in Tiirkiye would reach a maximum of 10.15
million in 2040. In this study, the lowest estimate for 2024 was found
to be 7.35 million (RF-GRU), and it was determined that there would
be an approximately 1.38-fold increase in the number of athletes
between 2024 and 2040.
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3.7. Analysis results of error performance metrics
of prediction models

The ARIMA, CNN+LSTM, XGBoost+tLSTM, and RF+GRU
models were evaluated for their efficacy in forecasting the num-
ber of licensed athletes in Tiirkiye, utilizing metrics such as R?,
MSE, RMSE, SSE, MAE, MAPE, and a normalized total score
(Table 2). The ARIMA model exhibited the maximum efficacy,
achieving a total score of 0.9930, an R? of 0.9633, and minimal
error values, hence demonstrating robust performance in time series
fitting. The CNN+LSTM model achieved a second-place ranking
(total score = 0.7870). Although proficient at identifying short-term
trends, its error rates were inferior to those of ARIMA. Notwith-
standing a commendable R? value (0.9493), the XGBoost+LSTM
model exhibited subpar performance with elevated error metrics,
whereas RF+GRU produced the most inferior outcomes (Total
Score = 0.1488). It has been established that the standard ARIMA
model yields more dependable forecasts for short-term and linear
trends, but deep learning-based hybrid models offer benefits for
long-term and intricate patterns.

Although Al-based hybrid models are generally expected to
outperform classical approaches in nonlinear forecasting tasks, the
ARIMA model yielded the highest accuracy in this study. This
outcome is compatible with prior findings suggesting that deep
learning architectures such as LSTM, GRU, and Transformer vari-
ants require large, high-frequency, and multivariate datasets to
consistently surpass statistical models [12, 15]. In the present study,
the dataset consists of only 15 annual observations and a single
variable, which increases the risk of overfitting for complex mod-
els while favoring ARIMA’s strengths in short-term, linear-trend
prediction.

More importantly, the results contribute to an important con-
ceptual clarification in the forecasting literature: the superiority of
Al-based models is not universal but conditional on data volume,
temporal granularity, and feature diversity. Recent studies have
similarly shown that classical models can outperform neural archi-
tectures when sample sizes are small and exogenous predictors are
absent [30]. Under such conditions, the representational capacity
of hybrid models may exceed the information content of the data,
leading to unstable or inferior performance. Therefore, our find-
ings do not contradict existing theory but refine it by identifying
the boundary conditions under which traditional approaches remain
preferable. This highlights the importance of aligning model com-
plexity with dataset characteristics rather than assuming algorithmic
advancement guarantees improved performance.

Although formal statistical tests for forecast accuracy (e.g.,
Diebold—Mariano) are recommended in the literature, they could
not be meaningfully applied due to the extremely small num-
ber of independent forecast-origin periods (n = 5). Future stud-
ies using higher-frequency or expanded datasets will incorporate
such tests.

3.8. Future studies and recommendations

This research evaluated the efficacy of ARIMA, CNN+LSTM,
XGBoost+LSTM, and RF+GRU models in forecasting the quan-
tity of licensed athletes in Tiirkiye. The results indicated that
ARIMA produced reliable outcomes with minimal error metrics,
while CNN+LSTM exhibited exceptional performance with a high
R? value. Nevertheless, the analysis’s reliance on a singular annual
series, while omitting exogenous variables, constrains its predictive
efficacy. Further research, using economic indicators, demographic
projections, and sports policy variables, may enhance the precision
and applicability of the predictions. Moreover, the implementation
of optimization-driven hybrid models (e.g., GA-ANN, PSO-LSTM)
and interpretable Al tools (SHapley Additive exPlanations (SHAP),
local interpretable model-agnostic explanations (LIME), partial
dependence plots (PDP) would aid in minimizing forecast inaccura-
cies and empowering decision-makers to efficiently leverage model
results. Evaluating these methodologies across many countries and
locations illustrates the models’ global applicability, while enhanc-
ing them with user-friendly interfaces in practice would bolster
data-driven decision-making in sports strategies.

Beyond methodological extensions, the forecasts generated in
this study offer direct practical value for policymakers. For exam-
ple, the projected increase in athlete numbers can guide federations
and the Ministry of Youth and Sports in planning annual budget
allocations, coaching certification capacity, and regional facility
development. A federation expecting a 40-60% increase in licensed
participants within a given discipline may strategically invest in
talent identification pathways, competition structures, and grass-
roots programs. Local governments and municipalities can also use
these forecasts to prioritize infrastructure expansion in high-growth
regions. Since sports participation is also linked to public health
objectives, these projections provide a quantitative basis for inte-
grating sport-based interventions into national physical activity and
disease-prevention strategies. Thus, the forecasting framework pre-
sented here not only contributes methodologically but also supports
multilevel evidence-based governance.

Since the dataset consists of a single univariate variable, inter-
pretability techniques such as SHAP, LIME, or PDP would simply
assign full importance to the same feature and therefore would
not provide meaningful model explanations. For this reason, they
were not applied in the current study. However, once multivari-
ate datasets including policy, demographic, or economic variables
become available, incorporating interpretable Al techniques will
be highly valuable for improving transparency and supporting
real-world adoption by nontechnical stakeholders.

Future work should expand the dataset through administrative
sources that offer higher temporal resolution and disaggregated par-
ticipation records, enabling multivariate modeling and explainable
Al techniques. Future datasets with higher temporal resolution or
multi-country structure will enable additional robustness checks,

Table 2
Analysis results of error performances of prediction methods

Methods-Metrics R? MSE RMSE SSE MAE MAPE (%) Total Score
ARIMA 0.9633 0.1056 0.3250 1.1619 0.1990 5.72 0.9930
CNN+LSTM 0.9771 4.8918 22117 58.7013 1.8479 5.68 0.7870
XGBoost-LSTM 0.9493 11.3652 3.3712 147.7471 2.3265 9.67 0.5332
RF+GRU 0.8929 22.9169 4.7872 275.0024 4.198 13.56 0.1488
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including learning curve-based overfitting diagnostics, look-back
sensitivity analyses, and transfer learning approaches. In addition
to these extensions, future studies should also consider small-
sample-oriented forecasting techniques such as Bayesian time series
models, synthetic data augmentation, and advanced cross-validation
or rolling-origin evaluation strategies. These methods were not fea-
sible in the present work due to the limited size and structure of the
dataset, but they represent promising directions for improving pre-
dictive reliability and model generalization once richer datasets are
available.

Traditional overfitting diagnostics such as learning curves,
rolling windows, or train—validation error monitoring were not
applied because the annual univariate dataset (» = 15) is too
small to produce statistically meaningful validation curves. In
such conditions, well-established guidelines recommend prioritiz-
ing chronological train—test separation rather than additional splits
that would further reduce the already minimal training samples [67].
However, once higher-frequency or multivariate datasets become
available, such diagnostics should be incorporated.

Additionally, exponential smoothing and Holt—Winters models
will be formally included as benchmark baselines in future studies
once longer historical series become available.

4. Conclusion

This study examined ARIMA, CNN+LSTM, XGBoost+
LSTM, and RF+GRU models for short-term forecasting of the
number of licensed athletes in Tiirkiye. The investigation utiliz-
ing real data revealed that the ARIMA model exhibited minimal
error rates (MSE = 0.1056, MAE = 0.1990) and exceptional accu-
racy (R*> = 0.9633). This illustrates that classical methods remain a
robust choice for predicting with stationary data. The CNN+LSTM
model effectively identified patterns in the time series, achieving
a high R? value of 0.9771 and a low MAPE of 5.68%. Con-
versely, the XGBoost+LSTM and particularly the RF+GRU models
demonstrated subpar performance, evidenced by elevated error rates
(RF+GRU MAPE = 13.56%).

Model comparisons indicated that accuracy, data structure
compatibility, computational expense, and explainability are all
significant factors. The ARIMA model serves as a pragmatic
instrument for public institutions and policymakers, whereas deep
learning and hybrid frameworks offer benefits for larger and more
intricate datasets. The obtained findings offer strategic guidance
for promoting grassroots sports in Tiirkiye and enhancing youth
engagement in athletics. In this setting, data-driven sports policies
are essential for infrastructure expenditures, educator recruitment,
and strategic long-term planning. The research intends to furnish a
definitive and empirical framework for policymakers.
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