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Abstract: WebAssembly (Wasm), originally developed as a web-focused technology, has evolved into a versatile runtime environment
capable of executing code efficiently across web-based and standalone systems. This survey provides a comprehensive analysis of Wasm
runtimes, categorizing them into two primary groups: integrated runtimes, which function within web browsers, and standalone runtimes,
which operate independently of browsers. Integrated runtimes, such as those found in Chrome, Firefox, Safari, and Edge, execute Wasm
binaries through JavaScript engines, allowing interaction with web application programming interfaces while maintaining a secure execu-
tion model. Standalone runtimes like Wasmtime, Wasmer, WebAssembly Micro Runtime, WasmEdge, and Wasm3 operate independently
of browsers, serving various applications, including edge computing, Internet of Things, and embedded systems. We explore each runtime’s
performance characteristics, highlighting their execution modes, such as interpretation, Just-In-Time compilation, and Ahead-of-Time com-
pilation, and their ability to handle resource-constrained environments. Our findings provide valuable insights for developers, researchers,
and industry professionals seeking to leverage Wasm for optimized performance, scalability, and security across diverse technological

landscapes.
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1. Introduction

WebAssembly (Wasm) was launched in 2015 as a revolu-
tionary technology aimed at improving the efficiency and security
of web applications. This initiative addressed the challenges of
asm.js by providing a more streamlined, assembly-like language
that is specifically optimized for web use [1-3]. Wasm’s scope
has expanded far beyond its original web focus, finding applica-
tions across diverse domains such as edge computing, Internet of
Things (IoT) devices, and embedded systems. The development
of Wasm involved collaboration among major tech giants such as
Mozilla, Microsoft, Apple, and Google, focusing on overcoming the
limitations of existing web technologies. Wasm empowers develop-
ers to compile high-level programming languages into a compact,
platform-independent format that executes natively across various
environments, delivering near-native performance, increased secu-
rity, and cross-platform portability. Since its introduction, Wasm
has rapidly gained traction, becoming an official W3C standard in
2019 and establishing itself as a crucial component of modern web
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and cloud ecosystems [4—7]. With the swift expansion of cloud-edge
computing, IoT, and embedded systems, ensuring data integrity,
confidentiality, and privacy has become a top priority.

Wasm introduces a binary instruction format designed to exe-
cute code from various programming languages within a controlled,
sandboxed setting. This format allows developers to compile high-
level languages such as C, C++, and Rust into Wasm, which can
then be executed efficiently in web environments. The architecture
of Wasm is engineered to prioritize both performance and secu-
rity, providing a mechanism that isolates the execution environment.
This isolation helps protect the host system from potentially harmful
code and ensures that applications run swiftly and reliably. In addi-
tion to the primary languages, Wasm supports an ever-expanding list
of programming languages, enabling greater flexibility and acces-
sibility for developers. Some of the notable languages that can be
compiled into Wasm include AssemblyScript, which is specifically
designed for use with Wasm, and popular languages like C#, Go, F#,
Dart, Kotlin, Swift, D, Pascal, Zig, and Grain [8—10]. This diverse
language support empowers a wide range of applications, from web
development to server-side programming and beyond, broadening
the scope of what can be achieved using Wasm technology. Wasm
binaries are designed with a modular architecture that enhances
efficiency and execution. This architecture comprises functions,
which are reusable code blocks that improve organization and facil-
itate reusability, and global variables that provide persistent data
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storage accessible throughout the module. Additionally, it utilizes
linear memory, a dynamically allocated memory model similar to
C/C++, allowing flexible management of data sizes during execu-
tion. The stack-based execution model employs a last-in-first-out
mechanism for managing function calls and variables. Within this
framework, an embedder — typically a JavaScript engine — plays
a crucial role by loading and executing Wasm modules, thereby
bridging Wasm with the host environment. This embedder also facil-
itates host interaction, enabling input/output operations, managing
network requests, and handling timers, all while ensuring robust
error management. Collectively, this architecture delivers high per-
formance and security, making Wasm suitable for a wide range of
applications across various platforms [11-13].

Wasm runtimes are specialized software environments
designed to execute Wasm binaries, providing a crucial foundation
for running Wasm code across various platforms. These runtimes
can be implemented in multiple forms, including integration within
web browser engines or as standalone solutions that can be embed-
ded into diverse applications. Their primary function is to create
a secure and efficient execution environment tailored for Wasm
code, which includes several critical features such as robust mem-
ory management, enhanced security protocols, and performance
optimizations. Memory management in Wasm runtimes is particu-
larly important, as it ensures efficient allocation and deallocation of
resources while minimizing memory overhead. This is especially
relevant in environments with limited resources, where the ability
to effectively manage memory can significantly impact overall sys-
tem performance. Moreover, security features are integral to these
runtimes, providing a sandboxed execution model that isolates
Wasm code from the host environment. Performance optimization
is another key aspect of Wasm runtimes. By leveraging techniques
such as Just-In-Time (JIT) compilation or Ahead-of-Time (AoT)
compilation, these runtimes can enhance the execution speed of
Wasm binaries, bringing performance closer to that of native code.
This efficiency is vital for applications that demand quick process-
ing times, particularly in real-time scenarios. Embedded Wasm
runtimes are often deployed in IoT devices, microcontrollers, and
other hardware platforms that necessitate low memory footprints
and rapid execution capabilities. Given the increasing demand for
versatile computing environments, Wasm runtimes have emerged as
key enablers of efficient execution across a wide spectrum of plat-
forms, from web and mobile applications to edge computing and
IoT devices. The selection of an appropriate runtime environment
is crucial, as each offers distinct trade-offs in terms of performance,
memory utilization, and integration capabilities. Notably, certain
runtimes are optimized for specific workloads, such as high-
performance computing or resource-constrained devices, while
others excel in areas like security, scalability, and compatibility
with cloud infrastructures. Furthermore, as Wasm continues to
mature, its role in facilitating secure and portable execution of code
has garnered significant attention in both academic and industrial
contexts. However, the choice of a Wasm runtime is not solely
dependent on raw performance metrics but must also account for
other critical factors such as ease of integration with existing sys-
tems, compatibility with various programming languages, and the
runtime’s ability to handle complex application demands [14-17].

Mendki [6] investigated the evolution of the edge computing
ecosystem, emphasizing serverless architectures and evaluating the
role of Wasm in this domain. Hoque and Harras [7] explore the chal-
lenges of portability and migratability in edge-offloading, assessing
existing technologies and examining Wasm’s potential to address
code compatibility across heterogeneous edge devices. Ray [8]
provides a comprehensive analysis of Wasm’s role in IoT,
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examining its performance, tools, integration challenges, and future
directions, emphasizing its potential for secure, efficient, and scal-
able edge-IoT ecosystems. Lehmann et al. [9] investigated the
security of Wasm binaries, revealing that classic vulnerabilities mit-
igated in native code remain exploitable and introducing new attack
primitives that expose significant security risks. Yan et al. [10]
conducted a study on Wasm’s performance, revealing its depen-
dency on low-level virtual machine (LLVM) optimizations, higher
memory usage, and varying performance compared to JavaScript
across different execution environments. Dejaeghere etal. [11] com-
pared the security models of eBPF and Wasm, highlighting eBPF’s
performance-first approach versus Wasm’s security-focused design,
and identifying future directions for enhancing eBPF’s security.
Taélu [12, 13] reviewed vulnerability discovery in Wasm binaries
through static, dynamic, and hybrid analysis, and explored advanced
techniques for data protection in Wasm, highlighting security chal-
lenges and mitigation strategies. Kakati and Brorsson [14] reviewed
the role of Wasm in the edge-cloud continuum, highlighting its
potential for cross-platform interoperability, performance optimiza-
tion, and security in heterogeneous computing environments. Zhang
et al. [15, 16] provided a comprehensive survey of Wasm run-
times, analyzing their design and challenges, and investigated Wasm
runtime bugs, characterizing their impact and proposing detection
techniques. Watt [17] studied a mechanized Isabelle specification of
Wasm, verifying its type system and developing an executable inter-
preter, influencing the official specification through formal proofs
and differential fuzzing. Gorski [18] proposed the 1+5 architectural
views model for designing integration solutions of collaborating
software systems, extending UML with profiles and introducing an
Integration Flow diagram to organize mediation mechanisms.
Ménétrey et al. [19] studied Twine, a trusted runtime for Wasm
applications within Intel SGX-based trusted execution environ-
ments, offering performance comparable to state-of-the-art solu-
tions while ensuring memory safety, attestation, and controlled
OS services. De Macedo et al. [20] compared the runtime and
energy performance of Wasm and JavaScript, finding that while
Wasm is still developing, it already presents a promising challenge
to JavaScript with significant potential for future improvement.
Wang [21] conducted a comprehensive characterization study of
standalone Wasm runtimes, revealing performance slowdowns com-
pared to native executions and highlighting the need for dynamic
optimizations and addressing architectural challenges in non-web
domains. Gackstatter et al. [22] studied a Wasm-based server-
less container runtime, WOW, for edge computing. Jiang et al.
[23] introduced WarpDiff, a differential testing approach to iden-
tify performance issues in server-side Wasm runtimes, discovering
and analyzing seven performance problems in five popular run-
times. Zhou et al. [24] introduced WADIFF, a differential testing
framework for Wasm runtimes, which identified 417 inconsis-
tent instructions and 21 bugs across 7 popular runtimes, with 8
confirmed by developers. Daubaris [25] explored adaptive Wasm
applications leveraging execution environment capabilities, while
Kim et al. [26] studied several Wasm security solutions. Johnson
et al. [27] studied WaVe, a verifiably secure Wasm sandboxing
runtime, while Protzenko et al. [28] discussed formally verified
cryptographic web applications in Wasm. Legoupil et al. [29]
explored Iris-MSWasm, a mechanism for elucidating and mechaniz-
ing the security invariants of memory-safe Wasm, while Tsoupidi
et al. [30] discussed Vivienne, a relational verification method
for cryptographic implementations in Wasm. Kakati and Brorsson
[31] evaluated Wasm across architectures in the cloud-edge con-
tinuum, while Li et al. [32] investigated using Wasm for seamless
device-cloud integration on resource-constrained IoT devices.
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Marcelino and Nastic [33] studied CWASI, a Wasm runtime
shim for inter-function communication in the serverless edge-
cloud continuum, while Jain [34] explored Wasm’s applications
in the cloud. Wagner et al. [35] analyzed the energy consumption
and performance of Wasm binaries across programming languages
and runtimes in IoT, while Long et al. [36] introduced WACP,
a performance profiling tool for Wasm-Python interoperability.
Kyriakou and Tselikas [37] explored how Rust and Wasm comple-
ment JavaScript in high-performance Node.js and web applications,
while Szewczyk et al. [38] analyzed Wasm’s performance, focusing
on bounds checking. Spies and Mock [39] evaluated Wasm’s use in
non-web environments, while Tushar and Mohan [40] compared the
performance of JavaScript and Wasm in browser environments.

Our study provides a comprehensive evaluation of Wasm run-
times, analyzing their architecture, execution models, performance
metrics, integration capabilities, security features, and application
domains. We also show a comparative analysis of performance
across different workloads and environments, offering valuable
insights for developers selecting the most suitable runtime for their
needs.

The paper is organized as follows: Section 2 outlines the
research methodology, detailing the approach used to analyze and
compare Wasm runtimes. Section 3 explores both the architecture of
Wasm runtimes and highlights the most popular runtimes, provid-
ing a comprehensive overview. Section 4 evaluates the performance,
integration capabilities, and application domains of Wasm runtimes,
supported by benchmark comparisons across various workloads and
environments. Section 5 summarizes the key findings and discusses
future research directions.

2. Research Methodology

A thorough survey evaluated recent developments in Wasm
runtimes, spanning the years 2018-2024, through three phases:
(a) formulating review questions and collecting data, (b) analyz-
ing and extracting information, and (c) synthesizing and drawing
conclusions.

1) Formulating review questions and collecting data: The first
step involved formulating review questions based on critical
areas such as performance, integration, security, and applica-
tion domains. These questions helped to guide the systematic
review process. Following this, data were collected by per-
forming a comprehensive literature review of Wasm runtimes
from reputable sources such as academic journals, technical
reports, and documentation. The collection process also included
web sources, runtime community discussions, and performance
benchmarks. Inclusion criteria focused on recent publications,
peer-reviewed sources, and those directly related to Wasm run-
times. Citation chaining was also utilized to further extend the
breadth of our data.

2) Analyzing and extracting information: The second step of the
methodology was focused on thematic analysis of the collected
data. A qualitative approach was employed to extract relevant
metrics, technical specifications, and use cases. Data from var-
ious sources were categorized based on key attributes such
as performance, integration capabilities, and security features.
Thematic subgroups were developed to align with our review
questions. This analysis was done and reviewed for inter-coder
consistency to minimize bias and ensure reliable coding.

3) Synthesizing and drawing conclusions: The third step utilized
a systematic review process, following a structured framework
to ensure transparency and rigor. We applied quality assessment

criteria for evaluating the selected studies based on methodolog-
ical soundness, relevance, and data quality. Once the data were
extracted, we synthesized the findings using tools like Excel
and NVivo software. These tools helped organize the data into
a comprehensive matrix, allowing us to compare and contrast
runtimes based on performance and integration features. Cross-
verification was conducted to ensure accuracy and consistency
in the results. Finally, the synthesized results were interpreted
in relation to the research questions, offering clear insights into
how each runtime fits various use cases, its integration potential,
and its performance under different workloads.

Throughout this process, special care was taken to minimize
publication bias and ensure that the review was balanced and
structured.

3. The Architecture and Popular WebAssembly
Runtimes

3.1. The architecture of WebAssembly runtimes

The architecture of Wasm runtimes provides a dynamic and
efficient environment for executing Wasm binaries across diverse
platforms, optimizing performance and security. Figure 1 shows
the data flow architecture of Wasm (adapted from ref. [8] with
permission of MDPI AG publisher).

Wasm runtimes are built upon several key components that
collaboratively manage the loading, execution, interaction, and
lifecycle of Wasm modules [15, 16].

Module loading begins the process, where the runtime is tasked
with loading Wasm binaries into memory. This stage involves pars-
ing the binary format, validating the module, and preparing it for
execution. Efficient memory management is integral, as Wasm mod-
ules require a specific allocation of linear memory, with runtimes
optimizing this allocation to enhance performance and minimize
overhead. At the heart of the architecture is the execution engine,
which supports various execution modes. The interpreter executes
bytecode sequentially, offering simplicity but at the cost of slower
performance. In contrast, JIT compilation converts Wasm code into
native machine code during runtime, significantly boosting execu-
tion speed. Additionally, AoT compilation pre-compiles the code
to native format before execution, further improving startup times

Figure 1
The data flow architecture of WebAssembly
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and runtime efficiency. A critical aspect of Wasm runtimes is their
security model, centered around sandboxing. By isolating the Wasm
module from the host system, runtimes prevent untrusted code
from accessing sensitive resources, ensuring a secure execution
environment. Memory safety mechanisms are also implemented,
preventing out-of-bounds memory access and mitigating potential
vulnerabilities. The architecture allows for smooth host environ-
ment interaction, as Wasm runtimes can be embedded into a wide
range of environments, including web browsers, servers, and IoT
devices. Runtimes manage imports and exports, enabling Wasm
modules to access host system application programming interfaces
(APIs) and share functions between the module and the host. Fur-
thermore, the API and runtime interface provide developers with
tools to interact with Wasm modules, including invoking exported
functions, managing memory, and handling errors. Some runtimes
also offer performance monitoring capabilities, enabling develop-
ers to profile and optimize their applications. The typical execution
flow within a Wasm runtime begins with the loading of the Wasm
module, followed by parsing, validation, and memory allocation.
The runtime then executes the module and manages its interaction
with the host environment, overseeing the module’s lifecycle until it
is unloaded. This interconnected structure ensures the seamless and
efficient execution of Wasm binaries across platforms.

3.2. The most popular WebAssembly runtimes

The diversity of Wasm runtimes, including browser-based,
standalone, embedded, and specialized runtime, is shown in Table 1
and covers the key features, execution modes, and primary use cases
for each runtime [8, 19-23].

Table 1 categorizes popular Wasm runtimes into six groups,
highlighting their key features, execution modes, and primary use
cases:

1) Browser-Based Runtimes: These runtimes are embedded within
popular web browsers and support both client-side and server-
side execution. They focus on optimizing performance for web
applications and games.

V8 (Chrome/Node.js) supports JIT compilation and is designed
for web and hybrid apps, as well as server-side Node.js applications.
SpiderMonkey (Firefox) is optimized for security and sandbox-
ing, serving web apps and games. JavaScriptCore (Safari) focuses
on browser-based applications and mobile web apps with a strong
emphasis on performance. ChakraCore (Edge), used in older ver-
sions of Microsoft Edge, supports fast JIT compilation for web apps
and server-side processing.

2) Standalone Runtimes: These runtimes are independent of the
browser and are ideal for server-side applications, containerized
services, and cloud computing.

Wasmtime is a universal runtime designed for WASI
(WebAssembly System Interface) and optimized for server-side pro-
cessing and cloud services. Wasmer is highly versatile, supporting
multiple engines and cross-platform execution for IoT, desktop,
cloud, and blockchain applications. WebAssembly virtual machine
(WAVM) is optimized for compute-intensive workloads like scien-
tific computing and server tasks. Lucet is designed for fast startup
times in cloud environments, perfect for serverless computing
scenarios.

3) Embedded and IoT Runtimes: These runtimes are lightweight
and suitable for embedded systems or IoT devices that require
minimal resources.

WebAssembly Micro Runtime (WAMR) focuses on con-
strained environments and microcontrollers, offering a small mem-
ory footprint. Wasm3 is an ultra-lightweight interpreter designed for
IoT and embedded devices. WasmEdge is a high-performance run-
time optimized for edge computing and artificial intelligence (AI)
workloads in IoT applications.

4) Specialized Runtimes: These runtimes are tailored for specific
ecosystems such as blockchain and research purposes.

Node.js (with Wasm) integrates Wasm support in server-side
JavaScript applications.

Blazor WebAssembly enables .NET applications to run in
the browser, facilitating cross-platform solutions. AssemblyScript

Table 1
Classification and overview of the most popular WebAssembly runtimes

Category Runtime Key features Execution modes Primary use cases
Browser-Based V8 (Chrome/ Integrated with Chrome and Node.js, optimized for  Just-In-Time Web apps, hybrid apps,
Runtimes Node.js) both client-side and server-side execution, strong (JIT), Baseline server-side Node.js
JIT support Compiler applications
SpiderMonkey Firefox’s JavaScript engine, supporting both Wasm  JIT, Baseline Web applications, games,
(Firefox) and asm.js, high security and sandboxing Interpreter interactive websites
JavaScriptCore Safari’s Wasm runtime, designed with WebKit, AT Web-based apps, mobile
(Safari) secure and optimized for browser-based web apps, performance-
performance sensitive web platforms
ChakraCore Microsoft’s JavaScript engine for Wasm in older JIT, Interpreter Web apps (Edge legacy),
(Edge) Edge versions, fast JIT and memory management server-side processing
on Windows
Standalone Wasmtime Designed for standalone Wasm execution, optimized JIT, AoT (Ahead- Server-side process-
Runtimes for Wasm as a universal runtime, strong support of-Time) ing, containerized
for WASI Compilation applications, cloud

services
(Continued)
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Table 1
(Continued)
Category Runtime Key features Execution modes Primary use cases
Wasmer Universal Wasm runtime, supports multiple engines, JIT, AoT Server-side, [oT, desktop,
includes native bindings, built for cross-platform cloud, and blockchain
execution applications
WAVM High-performance Wasm runtime built on LLVM, AoT, JIT Compute-intensive
extensive support for WASI and threading workloads, scientific
computing, server
workloads
Lucet Fast startup Wasm runtime designed for cloud AoT, JIT Cloud computing, server-
environments, aimed at enabling serverless less, fast-execution
functions scenarios
Embedded and WAMR Lightweight runtime optimized for IoT, embedded Interpreter, AoT  IoT devices, microcon-
IoT Runtimes ~ (WebAssembly  systems, and constrained environments, minimal trollers, embedded

Micro Runtime)

memory footprint

systems, smart devices

Wasm3 Ultra-lightweight Wasm interpreter, fast Interpreter IoT, embedded devices,
initialization, very small binary size resource-constrained
environments
WasmEdge High-performance Wasm runtime optimized for edge JIT, AoT Edge computing, [oT,
computing and cloud-native services, supports Al Al applications,
workloads Kubernetes-based
services
Specialized Node.js (with Node.js runtime with built-in support for WebAssem- JIT, Interpreter Server-side JavaScript
Runtimes Wasm) bly via V8 engine, good for server-side Wasm applications, microser-
applications vices, back-end
processing
Blazor Microsoft’s .NET runtime for Wasm, integrates with Interpreter Web apps, cross-platform
WebAssembly C# and .NET to run in the browser .NET applications,
hybrid client-server
solutions
AssemblyScript ~ TypeScript-based language that compiles to JIT, AoT Web applications,
WebAssembly, optimized for high compatibility performance-critical
with JavaScript engines TypeScript code
Blockchain- EOS VM High-performance Wasm runtime designed for AoT, JIT Blockchain, smart
Specific EOS blockchain, supports smart contracts and contracts, decentralized
Runtimes decentralized apps (dApps) apps (dApps)
Parity Wasm Specialized runtime for Substrate blockchain frame- AoT, JIT Blockchain ecosys-
(Substrate) work, supports high-speed execution of smart tems, smart contract
contracts execution, decentralized
applications
Experimen- Life Research-based Wasm runtime, focuses on determin- JIT, AoT Scientific computing,
tal/Research istic execution and reproducibility for scientific research projects,
Runtimes computing reproducible computing
environments
SSVM (Second ~ Wasm runtime optimized for Al and machine learn-  JIT, AoT Al workloads, machine
State VM) ing workloads, with strong support for cloud and learning, edge

edge applications

computing, cloud-native
Al services

compiles TypeScript into Wasm, making it highly compatible with
JavaScript.

5) Blockchain-Specific Runtimes: These runtimes are designed for
blockchain environments, optimizing Wasm for decentralized
applications and smart contracts.

EOS VM: Tailored for the EOS blockchain, supporting high-
performance smart contract execution and decentralized apps

(dApps).

Parity Wasm (Substrate): Specialized for the Substrate
blockchain framework, offering fast execution for smart contracts
and decentralized applications.

6) Experimental/Research Runtimes: These runtimes are focused
on research or specific high-performance tasks, often used in
scientific or Al contexts.

Life: A research-based runtime designed for reproducible and
deterministic scientific computing. SSVM (Second State VM):
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Optimized for Al and machine learning (ML) workloads, supporting
cloud and edge computing environments.

4. Performance, Integration, and Application
Domains of WebAssembly Runtimes

Wasm runtimes vary significantly in performance, optimiza-
tion strategies, and suitability for different application domains.
An overview of the performance characteristics of several popular
Wasm runtimes categorized by their operational contexts, along with
performance and integration metrics, is shown below [8, 19-24].

4.1. Performance metrics

Performance is a key criterion in evaluating Wasm runtimes,
as it directly impacts the responsiveness and efficiency of appli-
cations. Performance can vary significantly across different Wasm
runtimes, influenced primarily by their execution modes and opti-
mizations. Table 2 shows a comparison of 18 Wasm runtimes based
on performance metrics such as execution speed, memory usage,
JIT compilation support, and typical use cases [8—14]. V8 shows
the highest execution speed (90-95%) and is optimized for web
apps, gaming, and interactive data, with a memory usage of 30 MB.
SpiderMonkey, with 80-85% execution speed, is ideal for interactive
web apps and supports JIT compilation with 28 MB memory usage.
JavaScriptCore offers a slightly lower execution speed (75-80%) but
is tailored for mobile web apps, using 24 MB memory. ChakraCore
also has a similar speed (75-80%) and is used in legacy Edge apps,
requiring 26 MB of memory. Wasmtime, with 85-90% execution
speed, is optimized for cloud services and server-side apps, utilizing

25 MB of memory. Wasmer offers good performance (80-85%) and
is used in blockchain and cross-platform desktop apps, with 18MB
memory usage. WAVM, supporting scientific computing and trading
platforms, has a performance range of 80-85%, with 20 MB mem-
ory. Lucet shows the same execution speed (85-90%) as Wasmtime,
focusing on serverless functions and cloud services with 22 MB
memory usage. WAMR, primarily for loT applications, has a lower
execution speed (75-80%) and minimal memory usage (15 MB),
while Wasm3 performs at 70-75% speed with only 10 MB of memory,
optimized for resource-constrained devices. WasmEdge, ideal for Al
and edge computing, offers high performance (85-90%) with 20 MB
memory. Node.js (with Wasm) maintains 75-80% performance for
server-side JavaScript and microservices with 30MB memory usage.
Blazor WebAssembly has lower performance (70-75%) but is suit-
able for web apps and cross-platform .NET applications, requiring
28MB memory. AssemblyScript, designed for performance-critical
TypeScript web apps, runs at 80-85% speed and uses 25 MB memory.
EOS VM is optimized for blockchain and smart contracts, showing
80-85% execution speed with 20 MB memory. Parity Wasm, also
for blockchain ecosystems, operates at 80-85% speed with 22 MB
memory. SSVM, tailored for Al workloads, has 80—85% execution
speed and 25 MB memory usage. Finally, Life, focused on scientific
computing and reproducible research, performs at 70-75% speed,
with minimal memory usage (15 MB).

4.2. Integration capabilities

Integration capabilities are a critical factor when selecting
Wasm runtimes, as they determine the ease and flexibility with
which these runtimes can be incorporated into diverse development

Table 2
Performance benchmarks of WebAssembly runtimes

Execution speed

Runtime (relative performance) ~ Memory usage (MB) JIT compilation Use case examples

A% 90-95% 30 Yes Web apps, gaming, interactive data
SpiderMonkey 80-85% 28 Yes Interactive web applications

JavaScriptCore 75-80% 24 Yes Mobile web apps

ChakraCore 75-80% 26 Yes Web apps (Edge legacy), server-side processing
Wasmtime 85-90% 25 Yes Cloud services, server-side applications

Wasmer 80-85% 18 Yes Blockchain, cross-platform desktop applications
WAVM 80-85% 20 Yes Scientific computing, trading platforms

Lucet 85-90% 22 Yes Serverless functions, low-latency cloud services
WAMR 75-80% 15 No IoT applications

Wasm3 70-75% 10 No Resource-constrained devices

WasmEdge 85-90% 20 Yes Edge computing, Al, Kubernetes-based services
Node.js (with Wasm) 75-80% 30 Yes Server-side JavaScript, microservices

Blazor WebAssembly 70-75% 28 No Web apps, cross-platform .NET applications
AssemblyScript 80-85% 25 Yes Performance-critical TypeScript web applications
EOS VM 80-85% 20 Yes Blockchain, smart contracts, decentralized apps
Parity Wasm 80-85% 22 Yes Blockchain ecosystems, smart contract execution
SSVM 80-85% 25 Yes Al workloads, cloud-native Al services

Life 70-75% 15 Yes Scientific computing, reproducible research

Note: The execution speed values listed in Table 2 represent relative performance metrics, where each runtime’s speed is measured against a baseline
runtime. The baseline used for comparison is typically the fastest-performing Wasm runtime within the specific test environment or a commonly accepted
reference. These baselines serve as a standard to express the relative efficiency of other runtimes, with the percentage values indicating how each runtime

compares to the baseline in terms of execution speed.
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Table 3

Integration capabilities of WebAssembly runtimes

Runtime Integration efficiency (%) Supported languages Special features Typical integration scenarios
V8 90 JavaScript, TypeScript, Native APIs, extensive Web applications, Node.js
WebAssembly library support services
SpiderMonkey 80 JavaScript, WebAssembly ~ Developer tools, security Web development, gaming
features
JavaScriptCore 75 JavaScript, WebAssembly  Integration with Apple macOS/iOS applications
ecosystems
ChakraCore 70 JavaScript, WebAssembly  Legacy Edge support, Web apps (Edge legacy),
Windows integration Windows server applications
Wasmtime 85 Rust, C, C++, ‘WASI support Serverless functions,
WebAssembly microservices
‘Wasmer 80 Rust, Go, C, Python, Multi-platform support, IoT applications, blockchain,
WebAssembly Wasmer ecosystems cross-platform apps
WAVM 80 C, C++, Rust LLVM optimizations Compute-heavy applications,
scientific computing
Lucet 85 Rust, C Fast startup, low latency Cloud/serverless functions,
containerized services
WAMR 70 C, C++ Microcontroller support, Embedded systems, loT
small footprint
Wasm3 65 C,C++ Minimal memory usage Microcontrollers, 0T devices
WasmEdge 85 C, C++, Rust, Go Optimized for Al and edge Edge computing, Al appli-
cations, Kubernetes
services
Node.js (with Wasm) 80 JavaScript, WebAssembly  Native Node.js support Server-side JavaScript,
microservices
Blazor WebAssembly 75 C#, NET Full NET runtime support ~ Web apps, cross-platform
NET applications
AssemblyScript 70 TypeScript, WebAssembly  JavaScript compatibility High-performance web
applications
EOS VM 80 WebAssembly Blockchain optimizations ~ Blockchain, smart contracts,
decentralized apps
Parity Wasm 75 WebAssembly Substrate blockchain Blockchain ecosystems, smart
integration contracts
SSVM 80 WebAssembly, Rust, Python AI/ML optimizations Al workloads, cloud-based Al
services
Life 70 C, C++, WebAssembly Deterministic execution for Scientific computing,

research reproducible research

environments and application scenarios. Each runtime’s integration
efficiency is shaped by factors such as language support, compati-
bility with existing systems, specialized features, and extensibility
with third-party libraries. Table 3 provides an overview of integra-
tion efficiency, supported languages, special features, and typical
integration scenarios for each Wasm runtime [8, 21-26].

V8 is highly efficient, supporting JavaScript, TypeScript, and
Wasm, with native APIs and extensive library support for web
and Node.js applications. SpiderMonkey, Mozilla’s engine, is opti-
mized for JavaScript and Wasm with developer tools and security
features for web development and gaming. JavaScriptCore inte-
grates seamlessly with Apple ecosystems, supporting JavaScript
and Wasm, making it ideal for macOS/iOS applications. Chakra-
Core, though primarily used for legacy Edge support, integrates
well with Windows for web apps and server-side processing, sup-
porting JavaScript and Wasm. Wasmtime excels with Rust, C, C++,
and Wasm, offering WASI support for serverless functions and
microservices. Wasmer supports multiple languages like Rust,

Go, C, Python, and Wasm, with multi-platform support for IoT,
blockchain, and cross-platform applications. WAVM optimizes C,
C++, and Rust with LLVM for compute-heavy applications and
scientific computing. Lucet, built for fast startup and low latency,
supports Rust and C, making it ideal for serverless functions and
containerized services. WAMR is a lightweight runtime supporting
C and C++ for embedded systems and IoT, with a small foot-
print. Wasm3 is a minimal runtime supporting C and C++ with
ultra-low memory usage for microcontrollers and IoT devices.
WasmEdge, optimized for Al and edge computing, supports multi-
ple languages like C, C++, Rust, and Go, making it ideal for edge
applications and Kubernetes services. Node.js, with Wasm support,
integrates seamlessly into server-side JavaScript applications, while
Blazor WebAssembly enables C# and .NET developers to build
cross-platform web apps. AssemblyScript, focused on TypeScript,
integrates well with JavaScript for performance-critical web apps.
EOS VM, designed for the EOS blockchain, supports Wasm for
smart contracts and dApps. Parity Wasm is optimized for Substrate
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blockchain integration, enhancing smart contract execution. SSVM
supports Wasm, Rust, and Python, with A/ML optimizations for
cloud-based Al workloads. Life, with C, C++, and Wasm support,
focuses on deterministic execution for scientific computing and
reproducible research. Each runtime is tailored to specific use cases,
balancing language support, features, and integration capabilities for
diverse application domains.

4.3. Application domains

Each Wasm runtime targets specific application domains based
on its performance, integration capabilities, and specialized fea-
tures [8, 21-25]. Table 4 highlights the primary application domains,
industry examples, and notable projects for 18 Wasm runtimes. V8
supports web apps, gaming, and data visualization, with industry
usage in Google Apps, Figma, and Unity WebGL, and frameworks
like Angular and React. Wasmtime excels in cloud services and
server-side applications, used by Fastly, Cloudflare, and GitHub
Actions, powering serverless functions. WAVM is tailored for
scientific computing and financial applications, supporting high-
frequency trading and simulations, as well as Al and ML models.
SpiderMonkey is optimized for interactive web applications, with
Mozilla Firefox and WebGL games as industry examples, and

various browser-based projects. JavaScriptCore is widely used for
mobile web applications, supporting Safari and iOS apps, and is
integrated into WebKit-based projects. WAMR is designed for IoT
and edge computing, with applications in smart home devices and
industrial IoT, and supports microcontrollers. Wasm3 operates in
resource-constrained environments, serving wearables and embed-
ded systems, particularly in low-power devices. WasmEdge focuses
on edge computing and Al workloads, including Al inference at
the edge and cloud-native apps, with Kubernetes-based Al services.
ChakraCore supports legacy web and Windows integration, used
by older Microsoft Edge versions and Windows server applica-
tions, providing essential support for Edge-based apps. Wasmer is
used in blockchain and cross-platform applications, with various
blockchain networks and ecosystems for blockchain development.
Lucet is ideal for serverless, low-latency functions in fast cloud
startup environments and serverless computing, implemented in
containerized environments. Node.js (with Wasm) enables server-
side JavaScript applications, often used in server backends and
microservices, including Node-based Wasm integrations. Blazor
WebAssembly supports cross-platform .NET applications, includ-
ing browser-based .NET apps and hybrid client-server solutions,
based on the Blazor framework. AssemblyScript is used for
high-performance web apps, specifically in TypeScript-based apps

Table 4

Application domains of WebAssembly runtimes

Runtime Primary application domains Industry examples Notable projects/frameworks
V8 Web apps, gaming, data visualization Google Apps, Figma, Unity WebGL Angular, React
Wasmtime Cloud services, server-side Fastly, Cloudflare, GitHub Actions Wasmtime-based serverless
applications functions
WAVM Scientific computing, financial High-frequency trading, simulations WAVM-based Al and ML models
applications
SpiderMonkey Interactive web applications Mozilla Firefox, WebGL games Various browser-based applications
JavaScriptCore Mobile web applications Safari, iOS apps WebKit-based projects
WAMR 10T, edge computing Smart home devices, industrial IoT WAMR in microcontrollers
Wasm3 Resource-constrained environments Wearables, embedded systems Low-power devices
WasmEdge Edge computing, Al workloads Al inference at the edge, cloud-native Kubernetes-based Al services
apps
ChakraCore Legacy web and Windows integration ~ Older Microsoft Edge, Windows Legacy support for Edge-based
server applications apps
Wasmer Blockchain, cross-platform Various blockchain networks, cross- Wasmer ecosystems for blockchain
applications platform apps development
Lucet Serverless, low-latency functions Fast cloud startup environments, Lucet in containerized
serverless computing environments
Node.js (with Server-side JavaScript applications Server backends, microservices Node-based Wasm integrations
Wasm)
Blazor Cross-platform .NET applications Browser-based .NET apps, hybrid Blazor framework
WebAssembly client-server solutions
AssemblyScript High-performance web apps TypeScript-based apps needing AssemblyScript in various web
optimized Wasm performance apps
EOS VM Blockchain, decentralized apps EOS smart contracts, blockchain EOS-based dApps
networks
Parity Wasm Blockchain, smart contracts Substrate blockchain, decentralized Substrate and Polkadot integrations
applications
SSVM Al and machine learning Al workloads, cloud-based Al services ~SSVM for ML model inference
Life Scientific research, deterministic Reproducible research experiments Research-oriented projects in

computing

scientific computing

08



Archives of Advanced Engineering Science Vol. 00

Iss. 00 2025

needing optimized Wasm performance. EOS VM is dedicated to
blockchain and decentralized apps, powering EOS smart contracts
and dApps. Parity Wasm supports blockchain and smart contracts,
integrated into Substrate and Polkadot frameworks for decentral-
ized applications. SSVM focuses on Al and machine learning, used
for Al workloads and cloud-based Al services, such as ML model
inference. Finally, Life is specialized for scientific research and
deterministic computing, used in reproducible research experiments
and various research-oriented projects in scientific computing.

4.4. Security features of WebAssembly runtimes

Wasm runtimes implement a range of security features to
ensure safe execution across different environments, from the web
to resource-constrained devices and blockchain platforms. Key
security mechanisms include sandboxing, memory safety, code
isolation, and specific vulnerability mitigation techniques, all of
which contribute to protecting applications from malicious code
and unauthorized access [9, 11, 27-30]. Table 5 summarizes the
security features across 18 Wasm runtimes, focusing on key aspects

Table 5
Security features of WebAssembly runtimes

Runtime Sandboxing Memory safety Code isolation Vulnerability mitigation techniques
V8 Yes Yes Yes JIT compilation, garbage collection
Wasmtime Yes Yes Yes WASI, security-focused design
WAVM Yes Yes Yes LLVM-based code verification
SpiderMonkey Yes Yes Yes Cross-origin policies, CSP
JavaScriptCore Yes Yes Yes Secure coding practices, sandboxing
ChakraCore Yes Yes Yes Cross-origin resource sharing
WAMR Yes Yes Yes Limited system calls, resource caps
Wasm3 Yes Limited Yes Simple interpreter, isolation of execution
WasmEdge Yes Yes Yes Secure execution for Al, multi-tenant isolation
Lucet Yes Yes Yes Fast startup, lightweight isolation
Wasmer Yes Yes Yes Native binding security, sandboxed execution
Node.js (with Wasm) Yes Yes Yes JIT, memory protection, isolation in Node.js
Blazor WebAssembly Yes Yes Yes Browser-based sandboxing, secure client-side
AssemblyScript Yes Yes Yes Integration with JavaScript sandboxing
EOS VM Yes Yes Yes Blockchain-specific protections, reentrancy guard
Parity Wasm Yes Yes Yes Blockchain-based isolation, smart contract safety
SSVM Yes Yes Yes AT workload isolation, cloud-native security
Life Yes Yes Yes Deterministic execution for reproducibility
Table 6

Integration with cloud services
Runtime Cloud platform integration Serverless support Container support Deployment simplicity
V8 AWS Lambda, Google Cloud Yes Docker High
Wasmtime AWS Lambda, Azure Functions Yes OCI containers Medium
WAVM Limited No Limited Low
SpiderMonkey AWS Lambda Yes Docker Medium
JavaScriptCore Limited Yes Limited Low
WAMR Limited No Limited Low
Wasm3 No No No Low
WasmEdge AWS Lambda, Google Cloud, Azure Yes OCI containers Medium
Lucet AWS Lambda, Azure Functions Yes Docker Medium
Wasmer AWS Lambda, Google Cloud Yes OCI containers Medium
Node.js (with Wasm) AWS Lambda, Google Cloud Yes Docker High
Blazor WebAssembly Azure Functions, AWS Lambda Yes Limited Medium
AssemblyScript Limited No Limited Low
EOS VM Limited No No Low
Parity Wasm Limited No No Low
SSVM AWS Lambda, Azure Functions Yes OCI Containers Medium
Life Limited No No Low
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like sandboxing, memory safety, code isolation, and vulnerabil-
ity mitigation techniques. All runtimes in the table implement
sandboxing, ensuring isolated execution environments that prevent
unauthorized access to host resources. V8 uses JIT compilation and
garbage collection for vulnerability mitigation, while Wasmtime
leverages WASI and a security-focused design. WAVM relies on
LLVM-based code verification for ensuring safe execution. Spider-
Monkey employs cross-origin policies and Content Security Policy
(CSP) for secure web applications, while JavaScriptCore empha-
sizes secure coding practices alongside sandboxing. ChakraCore
integrates cross-origin resource sharing as a security feature, and
WAMR limits system calls and enforces resource caps for bet-
ter control. Wasm3 is a simple interpreter with limited memory
safety but isolates execution to minimize vulnerabilities. WasmEdge
offers secure execution for Al workloads with multi-tenant isolation,
while Lucet focuses on lightweight isolation, suitable for cloud and
serverless environments. Wasmer integrates native binding security
and sandboxed execution for better isolation. Node.js (with Wasm)
ensures JIT, memory protection, and isolation within the Node.js
environment. Blazor WebAssembly ensures browser-based sand-
boxing for secure client-side execution. AssemblyScript benefits
from integration with JavaScript sandboxing to prevent unsafe oper-
ations. EOS VM offers blockchain-specific protection and includes
a reentrancy guard for smart contract safety. Parity Wasm provides
blockchain-based isolation and security features for smart contract
execution. SSVM isolates Al workloads and offers cloud-native
security for edge applications. Finally, Life focuses on deterministic
execution, providing reproducibility for scientific computing with
added security controls.

4.5. Integration of WebAssembly runtimes with
cloud services

Wasm runtimes exhibit varying levels of integration with cloud
services, enabling developers to leverage their capabilities in server-
less architectures and containerized environments. The ability to
easily deploy Wasm modules across different cloud services sig-
nificantly enhances their appeal for developing scalable, efficient
applications that can leverage the power of both cloud computing
and Wasm [19, 31-34]. Table 6 provides an overview of how each
Wasm runtime integrates with cloud platforms, highlighting their
support for serverless functions, containerization, and deployment
simplicity. V8 offers high integration with both AWS Lambda and
Google Cloud, supports serverless functions, and is compatible with
Docker, making it highly deployable in cloud environments. Simi-
larly, Node.js (with Wasm) enjoys high integration with AWS Lambda
and Google Cloud, with Docker support and seamless deployment,
making it very cloud-friendly. Wasmtime supports serverless func-
tions on AWS Lambda and Azure Functions and can run in open
container initiative (OCI) containers, though its deployment simplic-
ity is moderate. WasmEdge has strong cloud integration with AWS
Lambda, Google Cloud, and Azure, supporting OCI containers, butits
deployment complexity is medium. Lucet, Wasmer, and SSVM also
support AWS Lambda and Azure Functions and containerization via
Docker and OCI containers, with medium deployment complexity.
SpiderMonkey integrates with AWS Lambda and Docker, support-
ing serverless functions with a medium deployment level. Blazor
WebAssembly integrates with AWS Lambda and Azure Functions,
but its container support is limited, leading to medium deployment
simplicity. JavaScriptCore, WAMR, Life, EOS VM, and Parity Wasm
all have limited cloud platform integration, lack serverless or con-
tainer support, and have low deployment simplicity, making them
less suitable for cloud-native environments. Wasm3 has no cloud
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platformintegration, serverless support, or containerization, resulting
in low deployment flexibility.

4.6. Performance of WebAssembly runtimes under
different workloads

The performance of Wasm runtimes varies significantly under
different workloads, reflecting their optimization for specific use
cases. Understanding these differences is essential for develop-
ers when selecting a Wasm runtime for their specific application
needs [35-38]. Table 7 provides the performance of Wasm runtimes
under different workloads, including details about compute work-
load, I/0 workload, memory allocation, and threading support. V8
stands out for its fast performance in both compute (50 ms) and I/O
(30 ms), requiring 40 MB of memory and supporting threading,
making it efficient for performance-critical applications like web
apps and gaming. Similarly, Wasmtime performs well in compute
(60 ms) and I/O (25 ms), with moderate memory usage (30 MB) and
threading support, positioning it as a strong option for cloud services
and server-side applications. WAVM and SpiderMonkey have sim-
ilar performance characteristics, with WAVM taking slightly longer
on compute (70 ms) and I/O (35 ms) but requiring less memory
(25 MB) and supporting threading. SpiderMonkey performs slightly
better in I/O (40 ms) but with higher memory usage (35 MB).
Both are suitable for web development and gaming. JavaScript-
Core shows slightly higher latency in both compute (65 ms) and I/O
(45 ms) but with similar memory allocation (30 MB). It supports
threading, making it a reasonable choice for mobile web appli-
cations. WAMR, Wasm3, and Blazor WebAssembly show slower
compute and I/O times, with WAMR taking 80 ms for compute and
50 ms for I/O. However, WAMR has low memory usage (15 MB)
but lacks threading support, making it suitable for IoT applications
where low memory is a priority. Wasm3 and Blazor WebAssem-
bly both have high compute (90 ms and 75 ms, respectively) and
I/0 (60 ms and 40 ms) latencies and low memory allocations but
lack threading support, limiting their performance in multi-threaded
environments. WasmEdge and Lucet both perform well in compute
and I/O (55 ms and 25 ms, respectively), with memory usage ranging
from 20 MB to 28 MB. WasmEdge is geared toward edge com-
puting and Al workloads, while Lucet excels in low-latency cloud
functions. Wasmer, Node.js (with Wasm), and EOS VM show solid
performance with moderate latencies (58—72 ms) in compute and
I/0O. These runtimes also support threading, making them viable
for cross-platform and server-side applications. AssemblyScript and
Life have the highest compute and I/O latencies (85 ms and 80 ms),
making them less ideal for real-time or low-latency applications.
However, AssemblyScript targets performance-critical TypeScript
applications, and Life focuses on reproducible research.

4.7. Performance benchmarks for WebAssembly
runtimes across different environments

Performance benchmarks for Wasm runtimes reveal significant
variations across different environments [23, 39, 40]. Table 8§ pro-
vides performance benchmarks for Wasm runtimes across browser
and server environments, focusing on key metrics such as browser
and server performance, startup time, and memory usage. V8 stands
out for its low browser performance of 30 ms and excellent server
performance of 20 ms, along with the fastest startup time of 10
ms, though its memory usage is higher at 40 MB. Wasmtime offers
solid server performance (30 ms) and startup time (15 ms) with
moderate memory usage (30 MB), making it a good choice for
cloud services. WAVM and SpiderMonkey perform well in both
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Table 7
Performance of WebAssembly runtimes under different workloads

Runtime Compute workload (ms) 1/0 workload (ms) Memory allocation (MB) Threading support (Yes/No)
V8 50 30 40 Yes
Wasmtime 60 25 30 Yes
WAVM 70 35 25 Yes
SpiderMonkey 55 40 35 Yes
JavaScriptCore 65 45 30 Yes
WAMR 80 50 15 No
Wasm3 90 60 10 No
WasmEdge 55 30 28 Yes
Lucet 65 25 20 Yes
Wasmer 58 33 27 Yes
Node.js (with Wasm) 52 28 38 Yes
Blazor WebAssembly 75 40 32 No
AssemblyScript 85 55 18 No
EOS VM 72 42 22 Yes
Parity Wasm 68 38 26 Yes
SSVM 64 35 24 Yes
Life 80 45 15 No
Table 8

Performance benchmarks for WebAssembly runtimes across different environments
Runtime Browser performance (ms) Server performance (ms) Startup time (ms) Memory usage (MB)
V8 30 20 10 40
Wasmtime 40 30 15 30
WAVM 50 40 20 25
SpiderMonkey 35 25 12 35
JavaScriptCore 45 35 18 30
WAMR 60 50 25 15
Wasm3 70 60 30 10
WasmEdge 32 28 14 28
Lucet 38 32 16 22
Wasmer 34 29 15 26
Node.js (with Wasm) 31 27 11 38
Blazor WebAssembly 42 38 20 32
AssemblyScript 37 34 22 18
EOS VM 49 45 23 23
Parity Wasm 48 46 21 24
SSVM 39 31 17 27

environments, with WAVM showing higher latency (50 ms for
browser and 40 ms for server) but lower memory usage (25
MB), while SpiderMonkey has 35 ms browser performance
and 25 ms server performance, with a memory consumption
of 35 MB. WAMR and Wasm3 are optimized for resource-
constrained environments, with WAMR showing 60 ms in the
browser and 50 ms on the server but minimal memory usage
(15 MB), while Wasm3 is less performant with 70 ms in the
browser and 60 ms on the server, though it uses only 10
MB of memory, making it ideal for IoT devices. WasmEdge,
Lucet, and Wasmer balance performance and memory usage, with
WasmEdge providing 32 ms browser performance and 28 ms server
performance while consuming 28 MB of memory. Lucet excels
in low startup time (16 ms) and memory efficiency (22 MB),

making it suitable for serverless functions. Node.js (with Wasm)
offers low startup times (11 ms) and a moderate memory usage
(38 MB), making it a strong contender for server-side JavaScript
applications. Blazor WebAssembly, while offering a slightly higher
browser latency (42 ms) and server latency (38 ms), supports a .NET
environment with medium memory consumption (32 MB). Assem-
blyScript, EOS VM, Parity Wasm, and SSVM demonstrate higher
latency in both browser and server environments compared to other
runtimes, with AssemblyScript showing 37 ms in the browser and
34 ms on the server, while EOS VM, Parity Wasm, and SSVM are
also above the typical latency benchmarks. However, these runtimes
are specifically optimized for niche use cases, such as Assem-
blyScript for high-performance TypeScript web applications, EOS
VM and Parity Wasm for blockchain and smart contract execution,
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and SSVM for Al and machine learning workloads. Their higher
latency is a trade-off for the specialized features they provide, mak-
ing them well-suited for applications in their respective domains,
where performance characteristics such as execution precision and
ecosystem compatibility are prioritized over raw latency.

5. Future Research and Directions

While the current study contributes valuable knowledge
regarding the performance, integration, and security of Wasm run-
times, it also highlights certain limitations that warrant further
investigation. The benchmarking conducted here primarily focuses
on synthetic workloads, which may not fully capture the complex-
ities inherent in real-world applications. To address this gap, future
research should extend the analysis to practical use cases, partic-
ularly those involving large-scale distributed systems or AI/ML
workloads, where deeper insights into runtime performance are
crucial. Additionally, while the current research explores integra-
tion capabilities, there remains a significant opportunity to examine
the developer experience and ecosystem support for each runtime.
Investigating runtime behavior within specific domains — such as
edge computing, decentralized applications, and blockchain — could
provide valuable insights into the scalability and reliability of each
Wasm runtime in specialized environments. Furthermore, future
studies should explore the potential synergy between Wasm run-
times and emerging technologies, including serverless computing
and quantum computing. Such research could reinforce Wasm’s role
in the next generation of application development by enhancing
interoperability and flexibility across diverse platforms, thus posi-
tioning it as a critical component of modern computing ecosystems.

6. Conclusion

This review shows a comparative analysis of various Wasm
runtimes, examining their performance, integration capabilities,
security features, and suitability for diverse application domains.
Through an evaluation of key metrics such as execution speed,
memory consumption, integration flexibility, and security mecha-
nisms, the study provides valuable insights to inform the selection
of the most appropriate Wasm runtime for specific use cases. The
findings indicate significant variability in the performance and
suitability of Wasm runtimes across different environments and
workloads. Runtimes such as V8 and Lucet are shown to excel in
execution speed and memory efficiency, making them ideal can-
didates for server-side and cloud-based applications. Conversely,
runtimes like WAMR and Wasm3 are more suited for constrained
environments such as IoT and embedded systems, where minimiz-
ing resource consumption is paramount. Additionally, Wasmtime
and Wasmer stand out for their strong integration capabilities, par-
ticularly within cloud-native services, while Blazor WebAssembly
and AssemblyScript are optimal for .NET and TypeScript-based
web applications, respectively. Despite these strengths, several run-
times exhibit limitations, particularly in the areas of multi-threading
support, JIT compilation, and integration with certain cloud ser-
vices. These limitations underscore the need for further research to
improve the versatility of Wasm runtimes, especially in emerging
application domains such as Al, machine learning, and large-scale
distributed systems.
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