
Received: 2 August 2024 | Revised: 15 January 2025 | Accepted: 18 February 2025 | Published online: 11 March 2025

RESEARCH ARTICLE

Access Restricted: A Study of Broken
Access Control Vulnerabilities

Sadeeq Jan1,*, Safi Ullah Khan1, Abdul Wahab1 and Dr. Mohammad2

1Department of Computer System Engineering, University of Engineering and Technology Peshawar, Pakistan
2Department of Computer Science & Information Technology, University of Engineering and Technology Peshawar, Pakistan

Abstract: Broken access control vulnerability is ranked No.1 in OWASP Top 10 list in 2021. This means that it is the most commonly used
exploited weakness in the web applications by attackers today. Because if an attacker can exploit this vulnerability, they can gain control rights
and potentially compromise the entire web application. From that point forward, the attacker can execute various attacks depending on their
objectives. That’s what makes it the most purposeful. In this research, we will reveal the security vulnerability of the access control in a web
applications system. We will explore case studies of real-world attacks that leverage broken access control, providing a contextual
understanding of the impact and implications of these vulnerabilities. Through this research, we aim to contribute to the ongoing efforts
to enhance web application security and mitigate the risks associated with broken access control vulnerabilities. We will examine
vulnerabilities in web applications that attackers can use to compromise access. Finally, we discuss the protection and security measures
that should be taken against attackers who use this vulnerability.

Keywords: broken access control, OWASP Top 10, web application security, vulnerability exploitation, attack vectors, security
vulnerabilities, access control mechanisms

1. Introduction

Due to the rapid evolution ofmodern technology, businesses are
adapting their service delivery methods to meet the increasing
expectations and ever-changing behaviors of consumers.
Businesses in different field now rely on web applications to
improve their activities like managing their logistics, interacting
with customers, and organizing their workforce. By implementing
session management capabilities, web applications can securely
and efficiently respond to diverse service requests from authorized
users. Generally, the application sessions are launched by
authenticating the users with methods like username and password
enabling it to provide a good customer service and a good
environment to the customers, making them feel comfortable and
satisfied while accessing only the permitted resources. Access
control ensures that access to resources like web pages and tables
of the database is limited and securely managed and securely
configured to prevent unauthorized access by those who are
logged in [1]. Using web applications to handle business tasks is
an important milestone in modern business history, and it also
increases the risk of loss if there is no good development in
applications due to continuous design, development, and coding [2].

Evidence from OWASP now shows that (BAC) broken access
control vulnerabilities have been marked as a Category 1
vulnerability [3] due to its presence and negative consequences in a
Web application. Creating Weaknesses in the access control part of

the web application design (such as misunderstandings, leakage of
sensitive information, miscommunication, readable text, etc.,) can
result in higher permissions for general users or logged-in systems.
Exploiting the BAC bug can cause severe issues for the web
application disruptions, such as preventing unauthorized access to
administrative area authorization section, complete disruption of the
website request, etc. An unusual authentication and access control
vulnerability was listed as one of the OWASP 2021 Top Ten
vulnerabilities that accommodates problems which have been
discovered in state-of-the-art apps like IIS and WordPress [4, 5].
Major vulnerabilities are injection (SQL), cross-site scripting (xss),
local file inclusions, and remote file inclusions. These
vulnerabilities often result from the incorrect implementation of user
authentication protocols [6, 7]. According to Ahmed et al. [8],
managing active sessions is one of the two most dangerous problems.

Many studies have investigated the problem of user
authentication and access in the protection system. SQL Injection
(SQLi), Broken Authentication, Control, and Cross-Site Scripting
(XSS) are common web application vulnerabilities. In this, we
discuss the level of analysis of the process and propose guidelines
for developers to secure Web applications [9]. Research is
conducted through root cause analysis to identify governance
interactions and evidence gaps, and solutions are provided to
mitigate re-attacks behind web applications [10]. Vulnerability
recognition, attack techniques, and documented techniques have
been defined to protect the website from intruders [11]. This article
introduces Nemesis technology to prevent access control
vulnerabilities and exploit authentication issues in web applications.
The author used this solution as a tool with which developers can

*Corresponding author: Sadeeq Jan, Department of Computer System
Engineering, University of Engineering and Technology Peshawar, Pakistan.
Email: sadeeqjan@uetpeshawar.edu.pk; safimohmand34@gmail.com

Archives of Advanced Engineering Science
2025, Vol. 00(00) 1–6

DOI: 10.47852/bonviewAAES52024016

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

mailto:sadeeqjan@uetpeshawar.edu.pk
mailto:safimohmand34@gmail.com
https://doi.org/10.47852/bonviewAAES52024016
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

check the presence of security vulnerabilities in a short time [12].
Studies describe authentication issues and attack control such as the
destruction of web applications. At the end of this study, preventive
measures for the problem in question are also mentioned [10, 13].

A detailed comparison of the Attribute-Based Access Control
(ABAC) model with a well-documented version of ABAC model.
This study presents the logical framework of ABAC and security
protocols for operationalizing access control to web services,
which is outlined in Anas et al. [7]. One method introduces
FIX ME UP, a revolutionary tool that finds access control
check errors and generates candidate fixes and has been
evaluated by ten globally surveyed PHP applications [14, 15].
Following the security model to depend on all types of
authentications and access control threats, tests confirmed that
the model can secure applications around the world [3]. Many
studies describe and investigate different types of Web access
control. It introduces control code that focuses on Extensible
Access Control Markup Language rules, which have become
the basis for determining and controlling access to various uses
and available services. Web Standards for management
strategies are based on computational methods. Access security
techniques have been studied [14, 16]. Using data from
Windows 98 and NT 4.0, Alhazmi and colleagues proposed
two models for the process of detecting vulnerabilities. This
study focuses on the speed of software flaws leading to
vulnerabilities, based on data from five different versions of
windows and two versions of red hat linux [17].

When I reviewed the above content, I found that the research
work on BAC is very insufficient. This article examines and
analyzes the weaknesses of the Management Approach, the
reasons for its various categories, and the implementation process.
Risk factors for causes of BAC were also identified. Chapter 4
discusses the analysis results. Finally, the article concludes on the
importance of research and future work.

2. Methodology

2.1. Data collection from different sources

400websites were analyzed to conduct an experimentwhere dork
was used to collect samples from search engines. Dork is a technique
that utilizes advanced search operators to help user to locate exact
information on the Internet [18]. The following queries were used:

1) php inurl:admin/config.php
2) inurl:admin/ControlPanel.php
3) “inurl:admin/login.php”
4) “inurl:site/backup.zip”
5) “inurl:site/db.sql”

The above Google dork syntax will be different depending on
the specific requirements and different search engines (e.g., Yahoo,
DuckDuckGo, Bing). Once the first location is found, it is sent to the
first stage to ensure that a negative BAC is present.

2.2. Preprocessing stage

Data preprocessing is very important to create a real usable
data set. If the data are not analyzed or analyzed properly, the
raw data are incomplete, inconsistent, and altered. After getting
our selected list of websites from the Dork output, we checked
them with the four methods used to detect the presence of BAC
on these applications.

2.3. Adjust access

Separating admin site pages from the user general panel to
prevent unauthorized access is a best practice for web application
designers/developers [19]. However, except for some exceptions
found in this study all users are able to access the admin sections
without any restrictions. The following is an example of a BAC
vulnerability in a web application that accesses a sensitive page
without requiring a session.

The below code is vulnerable because it lacks session validation
and authorization checks, allowing unauthorized users to access and
view sensitive admin details. Implementing proper authentication
and authorization measures is essential to prevent such
unauthorized access.

<?php // No Access Control Check
include “config.php”;
include “db_connection.php”;
// Fetch admin level details
$result1 = mysqli_query($conn, “SELECT*FROM admin”) if

($result1) {
while ($row = mysqli_fetch_assoc($result1)) { echo “Admin ID: ”.

$row[“admin_id”].
echo “Admin Name: ”. $row[“admin_name”]
}}?>}

In the above statement, the SQL query is executed to fetch admin
details.Without proper access control checks, this query allows any user,
including unauthorized ones, to retrieve sensitive admin information
from the database. Figure 1 illustrates a broken access vulnerability
where a user has accessed a restricted folder without any access
controls in place. The absence of proper access restrictions allows
unauthorized users to retrieve the sensitive information.

2.4. Cookie-based access control vulnerability

Permission controls users’ level of access to all applications and
limits their permissions on resources. Unauthorized access to a web
application occurred due to an invalid session in a web application
code. Sample PHP code below:

Figure 2 shows the PHP code vulnerabilities in access control.
The session check for “member” is bypassed after the initial check,
allowing unauthorized access to the users. The use of “mysqlquery”
without proper parameter sanitization exposes the application to SQL
injection attacks. A new session is created in the third line of this
code. Once authenticated, it will allow the user to access the
“login.php” page. Line 8 contains configuration information
without restrictions. In line 11, any user can delete or modify the
information without permission. Attackers often set the
“SuperAdmin” Cookie ID value to the administrator account ID
(e.g., ID= 1) and then alter the admin value in Sections 2, 3, 4,
etc. While browsing the cookie file, the user/attacker can change

Figure 1
User access to restricted folder without restriction

Archives of Advanced Engineering Science Vol. 00 Iss. 00 2025

02

the ID; for example, the valuemight change from ID= 1009 to ID= 1.
If the session is not defined correctly on the admin page, this can lead to
massive changes in accounts, resulting in all permissions being
assigned to ID= 1 (MainAdmin). It was determined that the
number of web applications affected by BAC in the sample was
129, with 4 main risk factors. These risks are classified according to
the importance of some independent variables, which are the main
causes of access control (BAC) vulnerabilities: sensitive data,
exceptional redirection, incorrect session configuration, language
usage, operating system, and server/platform. All information listed
has been verified by the Internet Security Center DIU.

2.5. Quantitative examination of processed data

The main purpose of this study is to determine the relationship
between various factors and BAC severity and to identify important
factors. After preprocessing the collected data, the correlation and p-
value between BAC and various variables were evaluated using the
χ2 test. Binary logistic regression was used for significant features
(p¡0.05), and the odds ratio (OR) was calculated with a 95%
confidence interval. The Pearson χ2 test was then used to
determine correlations between factors. All analyses were
performed using IBM Statistical Package for the Social Sciences.

3. Result

This study used a small sample technique to determine its
sampling method. The given method has been formulated using
the below Equation (1):

S ¼ y2 þMp 1� pð Þ
D2 M � 1ð Þ þ y2p 1� pð Þ (1)

In this equation, “S” denotes the required sample size, “M”

represents the population size, “p” is the population proportion,
“D” stands for the degree of accuracy that is expressed as a
proportion, and “Y

2
” is the table value of chi-square for 1 degree

of freedom at 3.841 (desired confidence level). We used G*Power
statistical software to determine the sample size for our study
using the above equation. A linear multiple regression test was
used with the family of F tests; in our case, the number of
predictors was set to 4 because the primary predictors in the
testing models are the types of exploitations. The α error
probability was set at 0.05, and power (1-β error probability) was
fixed at 0.95 in the tool. According to its results, at least 129 valid
samples should be taken.

Figure 3 represents the percentage of samples between BAC
Bugs free and vulnerable websites. Among the 400 samples,
37.09% of web applications were affected by BAC vulnerability,
while the remaining 63.91% were observed to be free from BAC
Bugs. To achieve this, they used redirection settings, sensitive
data retrieval misconfiguration, and illegal cookie access. This
study employed the manual penetration testing method which
used a double-blinded strategy to gather information. The initial
analysis of this dataset was done with an emphasis on
demographics and sectors. Pearson χ2-value, binary logistic
regression, p-value tests, and OR were also employed to perform
analyses that focus on BAC reasons, exploitation techniques,
platforms as well as applications hosted in operating systems. The
following are the findings from the analysis.

Table 1 was analyzed for frequency in our sample: education,
e-commerce, government, health, and private companies. The study
shows that among these sectors, it is the e-commerce web
applications that are most vulnerable—compromising 27.91.

We have 400 web applications under consideration, among
which the BAC vulnerability affected 37.09.

The details of BAC web application vulnerabilities are
illustrated in Table 2 showing the different levels of risks for

Figure 2
PHP code vulnerability: Broken access control

Figure 3
The figure outlines the sample percentage, distinguishing
between BAC-free and those with BAC vulnerabilities

Archives of Advanced Engineering Science Vol. 00 Iss. 00 2025

03

BAC vulnerabilities. The results indicate that there is a relationship
between “Exploitation Technology,” “Platform”, and “Operating
System” with BAC vulnerabilities at a very high level of
significance (p ¡ 0.0000). Moreover, the analysis also points out
that “Causes of BAC” have some association with BAC
vulnerabilities but not the sectors themselves (p ¡ 0.021). As
depicted in the table, it can be seen that “.NET” and “Java”
platforms have significant links (p ¡ 0.05) with BAC
vulnerabilities in web application model—a distinguishing feature:
an indication to consider during analysis.

Table 3 shows that the main reason for BAC vulnerability is
“Input validation”, “sensitive information leakage”, “session
configuration error”, “redirect access settings”, “sensitive
information configuration error”, and other “BAC vulnerabilities
exploiting technology”; Development platforms “UNIX”,
“Windows”, and “Cent-OS” operating systems such as “Java” and
“.Net” are quite important in terms of BAC vulnerabilities for web
applications with the values of 1.8904, 0.1681, 11.3185, 0.7339.

The risk of those who avoid them is 0.8285, 0.1418,0.1057,
1.2507, 0.9307, 0.8024 times higher, respectively. Similarly,
factors, as well as ease of reading cookies, Through the use of
Unauthorized Cookie Access, or websites built upon PHP, the
risks increase by a factor of 3.6812, 2.6912, and 14.7769
respectively compared to non-associated ones.

4. Discussion

This study was conducted on more than 330 websites, including
129 BAC malicious web applications and 201 non-BAC malicious
web applications, with the participation of web applications such as
education, e-commerce, and government. Development using PHP,
Java, and .NET platforms for business, healthcare, and private
companies. Standard application hosting servers run on UNIX,
Windows, and Cent-OS. This research reveals that “Causes of
BAC”, “BAC Development Technologies”, “Platforms”, and
“Operating Systems” are applications used by BAC
vulnerabilities. From the sample data, it can be seen that
applications created with “.Net” have a bad BAC of 68.22 will
most likely have BAC at a rate of “51.16” Session setting error”,
“login validation” and “sensitive data leak” problems will allow
unauthorized users to gain permission through BAC
vulnerabilities. In contrast, Access Redirect Settings and Sensitive
Data Misconfiguration Retrieval are excellent strategies for
exploiting BAC vulnerabilities. This analysis found that web
applications with session errors were at higher risk of exploiting
BAC vulnerabilities than applications without session errors
(OR= 11.3185). Websites that are misunderstood are at greater
risk than apps that use appropriate strategies (OR= 1.8904). The
above five factors are significant in the chi-square test and binary
logistic regression analysis. In this study, a factor (i.e., the
development of BAC technology) that was significant in binary
logistic regression but not significant in chi-square test (p¡ 0.007)
was investigated. On the other hand, BAC reasons (e.g., “array
readability”) are not what BAC is responsible for. Limitations:

Table 1
BAC vulnerability across five sectors: Frequency analysis

Sector Frequency Percentage

Educations 35 25.58%
E-commerce 35 27.91%
Government Counterpart 30 21.71%
Health 20 7.75%
Private Company 25 17.05%
Total 145 100.00%

Table 2
Frequency distribution and p-value analysis of probability: BAC
causes, exploits, markets, platforms, and operations associated

with BAC vulnerabilities in web applications

Factors Found Not found P-value

Reason of BAC
Improper Input Validation 71 79 0.021*
Sensitive Data Disclosure 10 67
Session Misconfiguration 48 10
Directory Readable 0 45
Exploitation Techniques
Access on Redirection 60 109 0.000*
Misconfig. of Sensitive Data 42 74
Unauthorized Cookie Access 27 18
Sectors
Education 33 97 0.917
E-commerce 36 38
Govt. Counterpart 28 20
Health 10 8
Private Company 22 38
Platform
PHP 113 65 0.000*
Java 4 37
.NET 12 99
OS
UNIX 72 101 0.000*
Windows 23 38
Cent-OS 34 62

Table 3
Confidence interval 95% of predictors and odds ratio

Predictors Category Odd ratio 95% C.I.

Reason of BAC
Improper Input Validation 0.0000 1.8904 1.2081–2.958
Sensitive Data Disclosure 0.0000 0.1681 0.0827–0.341
Session Misconfiguration 0.0000 11.3185 5.4589–23.47
Directory Readable 0.5010 0.0000 n/a
Exploitation
Access on
Redirection

0.0000 0.7339 0.4710–1.1436

Misconfig.
of Sensitive Data

0.0000 0.8285 0.5196–1.3212

Unauthorized
Cookie Access

0.5041 2.6912 1.4138–5.1227

Platform
PHP 0.8262 14.7769 1.8006–26.9577
Java 0.0104 0.1418 0.0493–0.4087
.Net 0.0399 0.1057 0.0549–0.2035
OS
UNIX 0.0000 1.2507 0.8022–1.9505
Windows 0.0000 0.9307 0.5250–1.6502
Cent-OS 0.0000 0.8024 0.4901–1.3156

Archives of Advanced Engineering Science Vol. 00 Iss. 00 2025

04

The analysis in this study was made from only 330 documents from
BAC information and web applications containing BAC
information. If the analysis involves large data, the results of the
analysis will be different. Additionally, while this research provides
insight into BAC vulnerabilities across a wide range of web
applications and platforms, it is also important to be aware of the
changing nature of the website. It is important to continually
monitor and update safety procedures to reduce the risks associated
with BAC and other adverse events. As web technology advances
and new threats emerge, ongoing research and collaboration
between developers, security experts, and researchers is important
to prevent potential vulnerabilities and protect sensitive data in web
applications. Future research may also explore other factors that
influence the negative impact of BAC, such as innovation processes
and the integration of new technologies such as cloud computing
and microservices. Understanding how these factors interact with
BAC vulnerabilities can provide insight into improving security and
developing better web applications. Web applications that connect
datasets to include larger and more diverse samples can provide
insight into improving security and developing better web
applications. This expansion will increase the generalizability of the
findings and provide a better understanding of the vulnerability of
BAC across different professions and regions. Additionally, it is
important to review the specific coding practices and procedures
used in each development environment to identify the issue causing
the BAC to be poor. Collaboration with industry partners can also
facilitate the sharing of best practices and the development of
security systems. Another important area for future research will
involve new technologies such as machine learning and artificial
intelligence in detecting and mitigating BAC impairment.
Additionally, longitudinal studies that monitor changes in BAC
parameters over time may help understand the effectiveness of
safety measures. Given the dynamic nature of web technology,
regularly revalidating the security of your web application is critical
to staying ahead of threats. The use of electronic devices that
provide continuous monitoring and instant alerts for BAC
vulnerabilities can reduce the window of impact and improve
overall security.

5. Conclusion

BAC vulnerabilities in web applications are often caused by
omissions in security design practices such as full input validation,
sensitive robust measures to protect data, secure session
configuration and management, and tight control over directory
readability. These oversights are often unintentional but reflect
designers’ and developers’ lack of awareness of the impact of BAC
vulnerabilities in web applications and reduce risks associated with
BAC impairment. This article identifies factors that contribute to
negative BAC and evaluates their importance. These findings aim
to raise web designers’ and developers’ awareness of important
points to consider and enable them to implement preventive
measures before applying. Other factors affect the foundation.
Additionally, this study laid the foundation for future research to
deepen and understand other factors contributing to negative BAC.
These future studies may contribute to the development of a
stronger and more robust web by expanding the knowledge base in
web security. But awareness and effective precautions can go a
long way in reducing these risks. By integrating security measures
and being aware of emerging threats, web developers can secure
their applications and protect sensitive user data. Additionally, it is
important for non-web developers to continually monitor and
constantly update security procedures to minimize BAC

vulnerabilities and ensure that sensitive user information is
continually protected against changing threats environment. By
creating a culture of security awareness and risk management,
organizations can build resilience to vulnerabilities and protect the
integrity of their web applications [20].

It is important to review the practices and procedures used in
each development environment to identify the issue causing the
BAC to be negative. Partners can also facilitate the sharing of best
practices and the development of security systems. Longitudinal
studies that monitor changes in BAC parameters over time may
help understand the effectiveness of safety measures used. It is
important to stay ahead of threats.

Acknowledgement

I am grateful to all collaborators and National Cyber Security
Centre UET Peshawar for their cooperation and contributions to this
study. My final year advisor Prof. Dr. Sadeeq Jan with his
guidance, wisdom, and unwavering support has greatly enhanced
this study. His guidance and insights were crucial in developing the
findings and conclusions presented in this research paper. I would
also like to thank my colleagues and friends for their valuable
suggestions and support throughout the research. Their constructive
criticism and honest support helped overcome problems
encountered during this study. Finally, I would like to thank the
technical staff of our organization (National Cyber Security Center
UET Peshawar, NCCS) for their assistance in obtaining the
necessary resources and ensuring the success of the project.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to this
work.

Data Availability Statement

Data available on request from the corresponding author upon
reasonable request.

Author Contribution Statement

Sadeeq Jan: Methodology, Formal analysis, Supervision. Safi
Ullah Khan: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Resources, Data curation,
Writing – original draft, Writing – review & editing, Visualization,
Project administration. Abdul Wahab: Conceptualization,
Methodology, Software, Validation, Formal analysis, Investigation,
Resources, Data curation, Writing – original draft, Writing – review
& editing, Visualization, Project administration. Dr. Mohammad:
Investigation, Project administration.

References

[1] Goyal, D., Lavania, G., & Sharma, G. (2023). Review of
modern web application cybersecurity risks and counter
measures. In AIP Conference Proceedings, 2782(1).

[2] Krishnaraj, N., Madaan, C., Awasthi, S., Subramani, R.,
Avinash, H., & Mukim, S. (2023). Common vulnerabilities
in real world web applications. In T. A. Vakaliuk & S. O.

Archives of Advanced Engineering Science Vol. 00 Iss. 00 2025

05

Semerikov (Eds.), Doors (pp. 9–22). Edge Computing
Workshop (doors).

[3] Alahmad,M., Alkandari, A., & Alawadhi, N. (2022). Survey of
broken authentication and session management of web
application vulnerability attack. Journal of Engineering
Science and Technology, 17(2), 0874–0882.

[4] Hassan, M. M., Ali, M., Bhuiyan, T., Sharif, M., & Biswas, S.
(2018). Quantitative assessment on broken access control
vulnerability in web applications. In International
Conference on Cyber Security and Computer Science 2018.

[5] Zhong, L. (2023). A survey of prevent and detect access control
vulnerabilities. arXiv Preprint:2304.10600.

[6] Almushiti, E., Zaki, R., Thamer, N., & Alshaya, R. (2023). An
investigation of broken access control types, vulnerabilities,
protection, and security. In International Conference on Innovation
ofEmerging InformationandCommunicationTechnology, 253–269.

[7] Anas, A., Elgamal, S., & Youssef, B. (2024). Survey on
detecting and preventing web application broken access
control attacks. International Journal of Electrical and
Computer Engineering, 14(1), 772–781.

[8] Ahmed, M. I., Hassan, M. M., & Bhuyian, T. (2017). Local file
disclosure vulnerability: A case study on the web applications
of public sector. In 10th International Conference on Computer
and Electrical Engineering, 11–13.

[9] Hossain, M. M., Hasan, M., Mahajabin, M., Rahman, A.,
Maisha, N., & Nayan, P. N. (2023). Broken authentication
and its significance in protecting online applications: An
overview paper. In International Conference on Cyber
Intelligence and Information Retrieval, 57–65.

[10] Helmiawan, M. A., Firmansyah, E., Fadil, I., Sofivan, Y.,
Mahardika, F., & Guntara, A. (2020). Analysis of web
security using open web application security project 10. In
2020 8th International Conference on Cyber and IT Service
Management, 1–5.

[11] Čović, Z. (2022). Threats and vulnerabilities in web
applications and how to avoid them. In IFIP International
Conference on Human Choice and Computers, 93–103.

[12] Aljabri, M., Aldossary, M., Al-Homeed, N., Alhetelah, B.,
Althubiany, M., Alotaibi, O., & Alsaqer, S. (2022).
Testing and exploiting tools to improve OWASP top
ten security vulnerabilities detection. In 2022 14th

International Conference on Computational Intelligence
and Communication Networks, 797–803.

[13] Flores Jr, C. P., & Richard, N. (2024). Evaluation of common
security vulnerabilities of state universities and colleges
websites based on OWASP. Journal of Electrical Systems,
20(5s), 1396–1404.

[14] Nedeljković, N., Vugdelija, N., & Kojić, N. (2020). Use of
“OWASP Top 10” in web application security. In Fourth
International Scientific Conference on Recent Advances in
Information Technology, Tourism, Economics, Management
and Agriculture, 25.

[15] Choiriyah, A., & Qomariasih, N. (2023). Security analysis on
websites belonging to the health service districts in Indonesia
based on the open web application security project
(OWASP) top 10 2021. In 2023 International Conference on
Information Technology and Computing, 267–272.

[16] Zhang, Z., Zou, F., Hong, J., Chen, L., &Yi, P. (2024). Detection
and analysis of broken access control vulnerabilities in app-cloud
interaction in IoT. IEEE Internet of Things Journal. 1–6.

[17] Khanum, A., Qadir, S., & Jehan, S. (2023). OWASP-based
assessment of web application security. In 2023 18th
International Conference on Emerging Technologies,
240–245.

[18] Ilca, L. F., & Balan, T. (2021). Windows communication
foundation penetration testing methodology. In 2021 16th
International Conference on Engineering of Modern Electric
Systems, 1–4.

[19] Votipka, D., Fulton, K. R., Parker, J., Hou,M.,Mazurek, M. L.,
& Hicks, M. (2020). Understanding security mistakes
developers make: Qualitative analysis from build it, break it,
fix it. In 29th USENIX Security Symposium, 109–126.

[20] Huang, H., Shen, B., Zhong, L., & Zhou, Y. (2023). Protecting
data integrity of web applications with database constraints
inferred from application code. In Proceedings of the 28th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
Volume 2, 632–645.

How to Cite: Jan, S., Khan, S. U., Wahab, A., & Dr. Mohammad. (2025). Access
Restricted: A Study of BrokenAccess Control Vulnerabilities.Archives of Advanced
Engineering Science. https://doi.org/10.47852/bonviewAAES52024016

Archives of Advanced Engineering Science Vol. 00 Iss. 00 2025

06

https://doi.org/10.47852/bonviewAAES52024016

	Access Restricted: A Study of Broken Access Control Vulnerabilities
	1. Introduction
	2. Methodology
	2.1. Data collection from different sources
	2.2. Preprocessing stage
	2.3. Adjust access
	2.4. Cookie-based access control vulnerability
	2.5. Quantitative examination of processed data

	3. Result
	4. Discussion
	5. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

