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Abstract: Extensive research indicates a significant association between retinal artery diameter and systemic health issues, such as hyper-
tension, diabetes, and cardiovascular disorders. The age-associated constriction of the retinal arterioles, especially next to the optic disc,
has been recognized as a critical risk factor for arteriosclerosis and diabetes complications. Nevertheless, current techniques for quantify-
ing retinal vascular diameters encounter difficulties, including variable imaging resolutions, computational inefficiency in CPU-dependent
systems, and vulnerability to aberrations such as inadequate contrast or central light reflex. This research introduces an innovative Zynq
System-on-Chip-based acceleration system aimed at processing binary retinal vessel pictures and producing accurate vessel diameter maps.
Utilizing the parallel processing capabilities of Field-Programmable Gate Arrays (FPGAs) and improved job distribution, the proposed
methodology surpasses conventional CPU-based techniques in terms of speed and precision. The system utilizes Hadamard product-based
matrix operations to compute intersection widths between vessel segments and digitally generated lines at various orientations, guaranteeing
sub-pixel accuracy. Simulation outcomes utilizing the DRIVE dataset indicate a processing time decrease of over 80% relative to MAT-
LAB solutions. The suggested architecture attains 97.2% accuracy while effectively utilizing FPGA resources, comprising 63,400 look-up
tables and 36 BRAM units on the Xilinx Artix-7 platform. This study addresses the disparity between clinical needs for real-time analysis
and computing constraints, providing a scalable approach for high-throughput retinal diagnostics.
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1. Introduction

The human retina is a complex structure with a rich blood
supply essential for maintaining good vision and retinal nutrition.
Extensive studies have shown that variations in retinal vessel diam-
eter are associated with various ocular and systemic diseases. For
instance, age-related retinal microvascular changes, such as arte-
riolar narrowing and retinopathy, have been shown to correlate
with systemic arterial hypertension [1]. Li et al. [2] provided evi-
dence that changes in retinal microvascular structure, particularly
venular widening, may be involved in the development of obesity
and that wider retinal venular diameter is associated with a higher
risk of obesity and significant weight gain, independently of fac-
tors such as hypertension, diabetes, lipids, and cigarette smoking.
Füchtbauer et al. [3] report that patients with acromegaly exhibit
a significantly greater number of retinal vascular branching points
compared to healthy controls, indicating a potential angiogenic
effect driven by elevated levels of growth hormone and insulin-like
growth factor 1. The severity of diabetic retinopathy is associated
with cerebral small-vessel disease, particularly cerebral microb-
leeds, which are major contributors to stroke and dementia; in
diabetics, disrupted autoregulatory mechanisms due to a diminished
renin-angiotensin system lead to vascular dilation, increased blood
flow, and progression of diabetic retinopathy [4–6].
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Retinal vein occlusion, a leading cause of blindness after
diabetes, often presents as swollen and twisted retinal venules
and is frequently preceded by Virchow’s triad—blood flow sta-
sis, vessel wall damage, and increased clotting tendency, often
caused by thrombi blocking venous outflow [7, 8]. Hypertension-
associated retinal changes, such as flame-shaped hemorrhages and
optic disc swelling, are hallmarks of hypertensive retinopathy
[9–11]. In premature infants, retinopathy of prematurity arises
from abnormal retinal vessel development and can cause blind-
ness [12, 13]. Age-related macular degeneration (AMD) leads to
central retinal deterioration and severe vision loss in older adults
[14–16]. Lupus retinopathy, a complication of systemic lupus ery-
thematosus, manifests as cotton-wool spots and microaneurysms
[17, 18].

However, despite the progress in imaging technologies such
as fundus photography and optical coherence tomography (OCT),
several challenges persist in measuring retinal vessel diameters.
First, variability in imaging modalities and resolution often leads
to inconsistent measurements, especially in poorly illuminated or
noisy images. Second, manual or semi-automated measurement
techniques remain resource-intensive and prone to inter-observer
variability. Third, clinical implementation faces technological con-
straints, such as the inability to process high volumes of data
efficiently in real time. Finally, existing methods may struggle with
edge detection in complex vessel geometries or when imaging con-
ditions introduce artifacts, such as a central light reflex or poor
contrast between vessels and the surrounding background.
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2. Literature Review

Advancements in imaging technologies like fundus photogra-
phy andOCThave transformed retinal vessel diametermeasurement
by offering high-resolution imaging, enabling precise assessment
and improved disease management. Recently, deep learning meth-
ods, particularly Convolutional Neural Networks (CNNs) and Deep
Neural Networks, have enhanced the accuracy and efficiency of reti-
nal vessel segmentation and diameter estimation. Jiang et al. [19]
used a fully convolutional network for robust vessel segmentation,
while Fu et al. [20] proposed a multi-scale CNN with attention
mechanisms to handle varying vessel widths and complexities.

U-Net architectures have shown significant promise in medical
image segmentation. Li et al. [21] enhanced U-Net with resid-
ual connections to improve the segmentation of small vessels, and
Alom et al. [22] integrated recurrent neural networks with U-
Net for better segmentation performance by incorporating temporal
information. Generative Adversarial Networks (GANs) have also
been employed; Guo et al. [23] used a GAN for high-quality seg-
mentation, and Chen et al. [24] applied cycle-GANs for domain
adaptation, enabling better generalization across datasets. Attention-
based methods, such as Guo et al.’s [25] attention U-Net, have
further improved fine vessel segmentation through spatial and
channel-wise attention modules.

Traditional approaches like brightness profile analysis and
dynamic retinal vessel analysis have been used for diameter mea-
surement. Hanssen et al. [26] employed these methods, while
Ahmad et al. [27] utilized a rider-based Gaussian process for ves-
sel tracking and diameter estimation, demonstrating strong results
on high-resolution datasets, though these CPU-based methods are
time-intensive for large datasets.

While machine learning methods, such as CNNs and GANs,
have significantly contributed to vessel segmentation, traditional
techniques like edge detection and intensity profiling remain cru-
cial, especially for determining vessel diameter. Gao et al. [28]
introduced twin Gaussian functions for intensity profiling, while
polynomial fitting and structured detectors improved centerline
extraction. Applying the Sobel gradient operator to fluorescein
images further aids in vessel boundary detection and diameter cal-
culation but relies on invasive dye injection and struggles with
low vessel-tissue contrast, leading to incomplete detection in some
cases.

Kipli et al. [29] proposed calculating the mean Euclidean dis-
tance (ED) between the pixels on the centerline and the boundary
pixels of the vessel within the ROI, which represents the vessel’s
radius. The diameter is then obtained by multiplying the mean
radius by two [29]. However, centerline determination may pose
challenges, especially when there is background noise or when the
contrast is low.

Fathi and Naghsh-Nilchi [30] proposed applying a circular
structured vessel diameter detector to the center points of vessels.
The vessel centerline is obtained using a skeletonization process,
where a thinning process is iteratively applied to the border pix-
els of the vessels, erasing them if the connectivity of the vessel
does not change and its width is greater than one pixel. How-
ever, this method may struggle to maintain vessel connectivity in
some cases, particularly with vessels that are not well-defined or
have varying widths. This could lead to inaccuracies in center-
line extraction, affecting subsequent diameter calculations. Jamwal
[31] compared three methods for vessel diameter estimation, two of
which demonstrated good accuracy. However, the morphological-
based and centerline-based methods rely on CPU-based algorithms
and are not time-efficient.

In this work, a novel Zynq-based system is proposed to address
the processing speed limitations inherent in CPU-based algorithms.
Unlike previous studies, which largely emphasize vessel segmen-
tation, this study focuses on fast and precise diameter estimation.
The proposed Zynq-based system not only addresses these chal-
lenges but also introduces a novel combination of edge detection
and Hadamard-product-based processing for enhanced precision.
By leveraging the computational efficiency of Field-Programmable
Gate Arrays (FPGAs) and advanced image processing algorithms,
our approach addresses accuracy, consistency, and real-time pro-
cessing challenges. To the best of our knowledge, this is the first
study to implement retinal blood vessel diameter calculation on
a Zynq-based system, offering a significant leap in computational
efficiency and practical applicability.

This paper is organized as follows. The second section illus-
trates the design flow of the proposed methodology. The third
section details the individual key modules in the design. The fourth
section presents the simulation results of the proposed design and
compares the required processing time. The fifth section concludes
this work.

3. Research Methodology

3.1. Research design

The core mechanism for determining the width of the central
vessel pixel involves generating a series of straight lines at varying
orientations. Each line is stored as a matrix, matching the dimen-
sions of the sub-image. The system, designed and simulated with
sample images from the DRIVE dataset (available at https://drive.
grand-challenge.org), utilizes preprocessed binary fundus images
where blood vessels have been extracted and augmented [32]. These
images form the primary input to the system. As Figure 1(a) shows,
a square-shaped sub-image, centered around a target vessel pixel, is
extracted from the original binary fundus image. In this represen-
tation, blood vessels are distinctly marked as white pixels against a
contrasting black background. A representative example, shown in
Figure 1(b), illustrates a straight line generated at a 0° angle. This line
undergoes element-wisemultiplicationwith the sub-image, enabling
calculation of the intersection width with the vessel. The resulting
Hadamard product is presented in Figure 1(c). Figure 1(e) displays
the Hadamard product of the extracted sub-image with a straight
line at a 90° angle, as depicted in Figure 1(d). For the specific pixel
at the center of the sub-image, it is evident that the Hadamard prod-
uct with the straight line at a 90° angle yields the minimum width,
which corresponds to the vessel diameter at that point.

To accurately gauge the diameter of the vessel pixel at the cen-
ter of the sub-image, multiple straight lines, oriented at different
angles, are employed. The line that intersects the vessel at the short-
est length is indicative of the vessel’s true diameter. In a CPU-based
system, the methodology unfolds sequentially. Initially, straight
lines of various angles are generated. Subsequently, sub-images
are methodically extracted from the original image. Each of these
sub-images is then multiplied by the straight lines in an element-
wise fashion. Following this, a comparative analysis is undertaken
to ascertain the shortest intersection length among all the lines,
thereby determining the vessel’s diameter. However, this sequential
execution, particularly the repetitive process of sub-image extrac-
tion and subsequent multiplication, is marked by inefficiency and
substantial time consumption. The procedure, while systematic,
underscores the need for optimization to enhance processing speed
and computational efficacy in vessel diameter assessment.
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Figure 1
Vessel diameter calculation using straight line. (a) Extracted 41× 41 sub-image. (b) Straight line at 0°. (c) Hadamard product.

(d) Straight line at 90°. (e) Hadamard product

(a)

(b) (c)

(d) (e)

In the proposed Zynq-based system architecture, matrix oper-
ations, including the Window Extraction module and element-wise
multiplication, are adeptly executed on the programmable logic (PL)
side. This approach capitalizes on the inherent parallel process-
ing capabilities of FPGA technology, thereby enhancing efficiency
and speed for these specific tasks. Concurrently, more computation-
intensive operations, such as line generation and the calculation
of intersection widths, are strategically allocated to the processing
system (PS) side of the Zynq-based system.

The system architecture exploits the strengths of both the PL
and PS sides. The PL side, optimized for parallel computations,
performs resource-intensive tasks like extracting sub-images and

conducting Hadamard product calculations. In contrast, the PS side,
which excels at sequential and mathematical computations, handles
tasks such as:

1) Generating straight-line matrices at various orientations for
vessel diameter calculations.

2) Determining intersection widths for each pixel and computing
the shortest diameter.

3) Managing data flow by coordinating operations between the PL
and PS sides.

This division ensures optimal performance by leveraging the
PL’s parallelism and the PS’s computational power.

BRAMon the PS side is used to store intermediate data, includ-
ing vessel pixel coordinates and straight-line matrices, and manage
the data flow between the PS and PL. It allows fast, low-latency
access to small data sets, avoiding reliance on slower external
memory. BRAM on the PL side is crucial for parallel computa-
tion. It stores data for tasks like 41 × 41 window extraction and
element-wise multiplication with line masks. This allows high-
speed processing without delays from external memory. The results
are then stored in PL BRAM and sent back to the PS for final
calculations.

The PS and PL work together efficiently: the PL handles par-
allel tasks (e.g., matrix operations), while the PS manages data
flow and complex decision-making. By using BRAM on both
sides, the system reduces data transfer bottlenecks and achieves
high performance in real-time image processing. This architecture
offers a balanced, efficient solution by combining the PL’s paral-
lelism with the PS’s processing power. The strategic use of BRAM
on both sides optimizes performance, minimizing data transfer
delays and ensuring fast, parallel computations for image processing
tasks.

Figure 2 presents the schematic of the proposed Zynq-based
system. Light green blocks represent operations on the PL side,
while light yellow blocks indicate operations on the PS side. The
PS reads binary image data, identifies blood vessel pixels and their
coordinates, and sends them to the PL. The PL then performs win-
dow extraction and element-wise multiplication with 20 straight
lines at various angles. The results are stored in BRAM and sent
back to the PS for determining the exact intersection width in
pixels.

On the PS side, known for its capability in managing data flow,
orchestrating task distribution, and executing mathematical compu-
tations, three principal tasks are performed. The first task entails
generating linear coordinates for each valid pixel corresponding to

Figure 2
Schematic of proposed Zynq SoC system

Pdf_Fol io:3 03



Archives of Advanced Engineering Science Vol. 00 Iss. 00 2025

retinal blood vessels within a given input image. These pixel coor-
dinates, destined for storage in BRAM, must satisfy two essential
criteria. First, they should be sufficiently distant from the image
border to avoid the selection of invalid pixels, especially in sce-
narios where padding is not applied. Second, only pixels deemed
valid—those with a value of 1—are considered for further process-
ing. This meticulous approach ensures the accuracy and relevance of
the data prepared for subsequent computational tasks. This critical
step allows the PL side to utilize the pixel index to accurately extract
matrices from the original image, thereby streamlining the subse-
quent processing phases. Following this, the second task undertaken
by the PS is the creation of 20 uniformly spaced straight lines,
each delineated at a fixed angle. These lines, tailored to match the
dimensions of the sub-images extracted by the PL side and ema-
nating from a shared origin at distinct angles, are efficiently stored
within the BRAMvia a direct memory access (DMA) interface. This
ensures a structured and accessible representation of the geometric
data necessary for further analysis.

The third principal task executed by the PS involves deter-
mining the final vessel diameter for each relevant pixel. After the
PL side performs the Hadamard product between the extracted sub-
image and the 20 line templates in parallel, the resulting intersection
data for each orientation is passed from the PL back to the PS, uti-
lizing BRAM for efficient transfer. On the PS side, this intersection
data is processed to find the diameter. First, the length of the vessel
segment within the intersection is calculated for each of the 20 orien-
tations. Subsequently, within the Min_Cal module, the PS compares
these 20 intersection lengths and identifies the minimum value. This
minimum length represents the vessel diameter corresponding to the
central pixel of the processed sub-image. This diameter measure-
ment is then recorded, contributing to the construction of the final
diameter map stored in BRAM.

3.2. Key modules in the system

3.2.1. Line generation module
In the second section, the necessity of utilizing multiple lines

at various angles was underlined, specifically for the purpose of
conducting element-wise multiplication with a sub-image of iden-
tical dimensions. This process is crucial for accurately determining
the width of intersections. In the field of digital image processing
and computer graphics, there are several established methods for
generating straight lines at different angles, each with its unique
advantages and limitations.

One of the most prominent methods is Bresenham’s line algo-
rithm [33], renowned in computer graphics for its efficiency in
drawing straight lines. This algorithm stands out because it exclu-
sively employs integer arithmetic, eliminating the need for more
complex floating-point calculations or trigonometric functions. It
operates by meticulously identifying the pixel that most closely
approximates the theoretical line at each step. An integral part of
this process is the use of an error term, which is crucial in deter-
mining whether adjustments to the y-coordinate or x-coordinate are
necessary to maintain the line’s fidelity to its theoretical path. While
Bresenham’s algorithm is highly efficient and widely adopted, it is
underpinned by a complex logic. A deep understanding of how the
error term is calculated and adjusted is essential for its effective
implementation.

Conversely, the digital differential analyzer (DDA) algorithm
offers a simpler, more straightforward approach to line drawing
[12]. Its primary advantage lies in its simplicity, utilizing basic
arithmetic operations such as addition and subtraction. The DDA

algorithm functions by incrementally plotting points along the
line’s path at regular intervals, determined by the line’s slope.
However, this method typically involves floating-point operations,
which, while straightforward, can lead to decreased efficiency
and rounding errors, potentially compromising the accuracy of the
line [13].

In specialized applications, such as measuring the diameter of
blood vessels in binary images, the precision and accuracy of these
line-drawing algorithms become even more critical. The lines must
not only be drawn at exact angles but also need to be confined within
a specific region to align accurately with the pixel grid of the binary
image. This alignment is essential for the subsequent application of
matrix operations on the original image. Therefore, the choice of the
line-drawing algorithm must be made with careful consideration of
these requirements. The ideal algorithm should balance simplicity
and ease of implementation with the precision and efficiency nec-
essary for accurate image analysis and processing. In the context
of preprocessing fundus images, it is imperative that the generated
lines are represented using a binary matrix corresponding in size to
the original images. Additionally, the system is designed to offer
flexibility, allowing for the selection of varying numbers of angles.
This feature facilitates a balance between resource utilization and
the need for high-speed processing. Consequently, the line genera-
tion module has been developed with a straightforward approach in
mind.

The configuration of the number of lines is adaptable, enabling
a choice between higher precision, which requires a larger num-
ber of lines, and greater resource efficiency, achievable with fewer
lines. In the simulations, an angular resolution of 9° was selected
for a balanced performance between power efficiency and accuracy,
resulting in the generation of 20 lines spanning the 180° range from
0° to 171°. This approach ensures that the system remains versa-
tile, catering to different requirements for precision and efficiency
as needed.

In traditional Cartesian coordinates, a straight line can be rep-
resented by Equation (1), where M is the slope and C is the intercept
on the Y axis. This equation is modified for a matrix representation
with its origin shifted to the center, and the lines are defined at var-
ious angles. This step essentially allows the lines to intersect at the
grid’s center, providing symmetry and consistent orientation rela-
tive to the grid. The modified Equation (2) is employed by PS to
calculate Dist, which represents the distance between each pixel in
the matrix and the theoretical line. In this equation, i represents the
index of each angular increment used to generate lines at various
orientations. The variable Angle denotes the angular increment for
line generation, while R defines the dimensions of the matrix used
for this purpose. Additionally, X and Y are matrices that represent
the horizontal and vertical coordinates of each point in the matrix,
respectively. Straight lines are represented within a 41 × 41 matrix.
To account for the image coordinate system, where the Y axis points
downward, the angle is converted into a slope using the formula
tan(90-i*Angle), which calculates the perpendicular distance from
each pixel to the line using the slope-intercept form of a line. The
pixels with minimum distances to the theoretical line are considered
part of the line and are assigned the value of 1, forming a digital
matrix representation of a line.

Y = MX + C (1)

Dist = |tan(90 − i × Angle) × (X − (R + 1)) + (R + 1) − Y| (2)
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Figure 3
Applying a circular mask to a generated straight line. (a)

Straight line at 45° before mask is applied. (b) Circular mask
applied to lines

(a)

(b)

Figure 3(a) shows an exemplary straight line generated at 45°.
Immediately after its generation, a circular mask with a diameter of
41 pixels (Figure 3(b)) is meticulously applied to the straight line,
constraining the line to a circular area across all 20 lines. One cir-
cular mask is sufficient to create straight lines at various angles.
This uniformity simplifies the process of accurately identifying
the line’s midpoint, ensuring consistency in subsequent computa-
tions. These uniformly masked lines are then efficiently transmitted
to the on-chip BRAM via the DMA interface, laying the ground-
work for advanced matrix operations. This methodical approach not
only streamlines the process but also enhances the precision and
reliability of the system’s performance.

3.2.2. Conversion to 1D array and non-zero pixel coordinates
generation

In the proposed methodology, the analysis focuses exclusively
on the pixels representing blood vessels within the original fundus
image. To streamline processing and efficiently manage the data,
the 2D fundus image is initially converted into a 1D array. This lin-
earization simplifies data handling, particularly for subsequent steps
where only vessel pixel information is required. This conversion
task is performed on the PS side of the system architecture. The PS is
better suited for this operation because iterating through each pixel
to create the 1D array is an inherently sequential process, aligning
well with the PS’s strengths.

Following the conversion to a 1D array, the system identi-
fies the linear indices (L) of all non-zero pixels, which correspond
to the vessel segments. From these linear indices, the original 2D
coordinates (Row, Col) for each vessel pixel are recalculated using
Equations (3) and (4):

Col = (L/N) (3)

Row = ((L − 1)modN) + 1 (4)

where N represents the total number of rows in the original binary
image.

Generating these coordinates is a crucial step. It provides the
PL side with the precise location of each vessel pixel needed for
the subsequent Window Extraction module. By directly providing
the coordinates of only the relevant (non-zero) pixels, the sys-
tem bypasses processing background pixels. This targeted approach
significantly reduces the computational load and enhances process-
ing speed. Furthermore, this selective processing ensures that the
computationally intensive diameter calculations performed later are
strictly confined to the vessel areas, improving the accuracy and
efficiency of the diameter measurement process. These calculated
vessel pixel coordinates are then passed to the Window Extrac-
tion module on the PL side, ensuring that diameter calculations are
executed exclusively for each relevant vessel pixel.

Therefore, the conversion of the 2D image to a 1D array is
a strategic choice that enhances the focus and precision of our
analysis. This step is instrumental in the proposed methodology,
laying the groundwork for a comprehensive and meticulous exami-
nation of non-zero vessel pixels within the fundus image, ultimately
contributing to a deeper understanding of the underlying vascular
patterns.

3.2.3. Window extraction and Hadamard product calculation
The Window Extraction module mirrors the functionality of

conventional image processing systems, focusing on extracting a
41 × 41 sub-image matrix centered on specific pixels identified
as non-zero vessel points from the PS side. In the diagram of the
Hadamard product calculation module in Figure 4, green blocks
delineate the internal functions of the module, whereas gray blocks
denote the inputs and outputs relevant to this module, providing a
clear visual distinction between the processing tasks and the data
flow within this context.

With the original image housed in DDR memory, the DMA
interface facilitates the transfer of image data to BRAM. Given that
the critical vessel information predominantly resides at the center,
edge pixel padding is omitted. For any non-zero pixel signifying a
valid vessel in the original image, as pinpointed by the preceding 1D
Conversion module, deriving the coordinates for surrounding pixels
follows a predetermined pattern within the design, streamlining the
process.

The Hadamard product, or element-wise multiplication, is
applied to 41 × 41 sub-images extracted from the original image,
interacting with 20 lines of varying orientations generated by the PS
side. These operations, performed on binary images, are executed
in parallel using two-input AND logic gates within the FPGA plat-
form’s look-up tables (LUT) resources. This method fully utilizes
the FPGA’s capabilities for binary image data processing. Subse-
quently, the resultant 41 × 41 matrices are stored back in BRAM,
ready for the next phase, which involves calculating the width of
intersections. This streamlined process not only underscores the
FPGA’s prowess in handling complex image processing tasks but
also enhances the overall efficiency of the system by managing
resource utilization and data flow.

3.2.4. Intersection width calculator
Given the computational intensity of measuring intersection

width on the PL, this task is allocated to the PS, which processes the
intersection matrix derived from the Hadamard product. The pre-
liminary step in this operation involves pinpointing the center of
the intersection. The utilization of a 41 × 41 matrix to represent
each straight line, coupled with the application of a circular mask
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Figure 4
Diagram of Hadamard product calculation module

with a fixed radius of 20, ensures the resulting intersection segments
within the mask have defined endpoints. This meticulous prepara-
tion is crucial for the accurate measurement of intersection width.
The method meticulously selects pixel values from the intersection
matrix that match “1” in the designated line, offering a targeted
assessment of the intersection’s dimensions. This focused strategy
ensures the precision of the evaluation, relying on a straightfor-
ward division technique to ascertain themidpoint of the intersection,
as depicted in Equation (5). This process not only exemplifies the
system’s efficiency in handling complex calculations but also high-
lights the synergy between the PL and PS sides, optimizing resource
utilization for enhanced performance.

Mid_Point = (len(Intersect_width) − 1)/2 (5)

where len(Intersect_width) is the number of pixels in the intersec-
tion segment along the digital line. This equation is applied to all
20 intersects obtained from the Hadamard product to find the mid-
dle point of intersection. Then, the starting point is determined as the
first non-zero element in the intersection stretching from the middle
point, and the ending point is determined as the last non-zero ele-
ment in the intersection stretching from the middle point. The exact
intersection width can then be calculated based on the coordinates
of the two endpoints. The straight-line distance between these two
non-zero values is then calculated using the ED formula between
the start- and end-point coordinates. The 20 calculated intersec-
tion widths are compared, and the smallest one is identified as the
specific pixel’s vessel diameter.

4. Evaluation of the Proposed System

The authors implemented the proposed System-on-Chip (SoC)
system on the Xilinx Artix-7 XC7A100T platform. It features a rich
set of capabilities without a heavy financial burden. It is equipped
with 240 DSP slices, 101,440 logic cells, and offers up to 4,860 Kb
of BRAM, facilitating high performance for data storage. It also has
15,850 FPGA slices, each of which has four LUTs totaling 63,400
LUTs that can be specifically used for the operation of element-wise
multiplication. This platform is celebrated for its balance between
power efficiency, performance, and cost, catering to a wide range of
applications from consumer electronics to industrial systems. In the
proposed work, its comprehensive capabilities are fully harnessed to
optimize the performance of the proposed algorithm, demonstrating
its suitability for complex computational tasks.

The system’s accuracy in measuring vessel diameters was val-
idated against ground truth annotations from the dataset. Using a
mean absolute error analysis, the system achieved an average devi-
ation of ±0.3 pixels. Additionally, the use of Hadamard product
processing ensures that intersections are calculated with sub-pixel
precision, minimizing errors in diameter estimation.

An evaluation of the proposed Zynq-based system and
software-based algorithm was conducted with a focus on two
key aspects: processing time and resource consumption. To gauge
processing time, the researchers quantified the system’s perfor-
mance by processing a specified number of input images. For a
purely software-based method, they carried out the simulation in
MATLAB R2018b, operating on an AMD Ryzen 5 4500U pro-
cessor. In contrast, they determined the processing time for the
FPGA-based approach based on the achieved clock frequency of
125 MHz.

A notable observation from the evaluation is the distribution of
clock cycle consumption between the PS and the PL sides of the pro-
posed system. Approximately, 65% of the clock cycles were utilized
by the PL side of the proposed system, encompassing the majority
of operations. In contrast, the PS side accounted for 35% of the total
clock cycles. This significant difference is attributed to the parallel
execution of window extraction and element-wise multiplication on
the PL side.

Figure 5 provides a compelling visual representation of these
findings, clearly illustrating the superiority of the proposed Zynq-
based system over traditional CPU-based software implementations
in MATLAB. Figure 5 highlights the stark contrast in processing
speed, where the proposed system consumes less than 20% ofMAT-
LAB processing time when the total number of images is 500,
underscoring the advantages of the proposed system’s architecture.
This comparison not only demonstrates the system’s enhanced per-
formance but also emphasizes its potential in applications where
processing speed is a critical factor.

To assess the resource consumption of the proposed system,
the authors conducted a comprehensive synthesis and implemen-
tation process on the Xilinx Artix-7 XC7A100T platform. Table 1
shows the results of this process, detailing the final resource utiliza-
tion. Table 1 not only provides a clear breakdown of the resources
consumed but also demonstrates the feasibility and efficiency of
the optimized design on the specified FPGA platform. The data
suggest that the most utilized resources on the Zynq-based system
are LUTs due to the concurrent operation of 20 Hadamard products
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Figure 5
Processing time comparison of MATLAB and proposed

Zynq-based system

Table 1
Resource utilization of Zynq-based system

DSP 0
BRAM 36
FF 893
LUT 35623
CLK_FREQ 125 MHz

between pairs of binary matrices. The comparison in Figure 5
underscores the effectiveness of the design in terms of its resource
allocation and utilization. It highlights how the system’s architec-
ture makes optimal use of the available resources on the Artix-7
XC7A100T, ensuring that each component is utilized to its fullest
potential.

Table 2 compares the proposed system with previous studies,
including the accuracy ofmeasurements, processing time, and varia-
tions in reported diameters for similar datasets. The proposed system
demonstrates comparable or superior accuracy in vessel diame-
ter estimation, achieving a measurement precision of 97.2%. More
importantly, it offers unparalleled processing speed due to recon-
figurable FPGA Zynq hardware. The system consistently delivers
highly reliable results for vessel analysis.

5. Conclusion

In this paper, the author proposed a Zynq-based system for
automatic retinal blood vessel diameter estimation. The paper
implementing the calculation of vessel diameters in fundus images
onto a Zynq-based FPGA platform represents a significant leap in
computational efficiency and speed. The core of this improvement
lies in the FPGA’s ability to conduct parallel processing, a feature
that is exceptionally well-suited to the task of computing Hadamard
products for 20 different line orientations simultaneously.

The proposed system measured retinal vessel diameters across
40 images from the DRIVE dataset. The vessel diameters ranged
from 1.5 pixels to 12.8 pixels, with an average measurement error of±0.3 pixels compared to ground truth annotations performed man-
ually by experts. This demonstrates the system’s ability to achieve
high accuracy in vessel diameter estimation. The proposed sys-
tem not only excels in processing speed and resource efficiency
but also demonstrates a high accuracy of 97.2% in vessel diameter
measurement.

In the FPGA environment, each line orientation’s Hadamard
product—a critical step for determining the intersection width with
the blood vessel—can be processed in parallel rather than sequen-
tially. This parallelism drastically reduces the time required for
computation, as 20 independent operations are conducted simulta-
neously. Such a capability is particularly advantageous for real-time
image processing applications, where speed is crucial. Moreover,
the FPGA’s architecture allows for a more efficient handling of the
data flow and computational resources. By offloading the intensive
task of multiple Hadamard products to the FPGA, the processing
burden on the system’s CPU is significantly alleviated. This not only
speeds up the computation but also frees up the CPU for other crit-
ical computational tasks, enhancing the overall performance of the
system.

Furthermore, the implementation leverages the processing
power of the PS side to handle the mathematical computations
required for line generation, especially when dealing with a large
number of orientations or complex geometric calculations. More-
over, the PS side is delegated with the task of determining the exact
width of intersection between the generated lines and the vessel
pixels due to its ability to execute complex algorithms. Therefore,
it provides a balanced and powerful solution for image processing
tasks. The ability to leverage this hybrid architecture for image anal-
ysis tasks underscores the FPGA’s potential in advanced medical
imaging applications.

Recommendations

The proposed Zynq SoC-based system offers accelerated reti-
nal blood vessel diameter measurement compared to CPU-based
systems, and improvements are recommended for future research

Table 2
Comparing the diameter sizes measured by the proposed system and other models

Study Dataset used
Diameter range

measured Accuracy (%)
Processing time

(per image) Technology used
Proposed System DRIVE 10–150 µm 97.2 18 ms Zynq-based
Arsalan et al. [10] DRIVE 12–145 µm 95.5 1 min CPU-based
Kipli et al. [29] CLRIS VDIS 15–140 µm 97.7 N/A CPU-based
Fathi and Naghsh-
Nilchi [30]

CLRIS VDIS 15–140 µm 98.1
97.7

N/A CPU-based
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endeavors. Specifically, implementing a systolic array for the
Hadamard product might further improve computational speed
through parallel processing.
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