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Abstract: Skepticism about the security of mobile payment applications has plagued user adoption of such platforms in some countries.
Software developers have generally de-emphasized core principles guiding delivering safe mobile applications since for mobile payment
applications, movement of monetary value is their priority. We find in surveyed literature that this situation is prevalent in low economy/
low financial inclusion countries. Fifty fintech and traditional banks m-payment applications in both high and lower economic and
technological advancement (high E&T apps and lower E&T apps, respectively) were selected in countries in Africa. This work may
have significance in finance or economy, but it is mainly to unravel cybersecurity concerns. The analyses (static and dynamic) of the
applications targeted the top 10 vulnerabilities on the 2023 Common Weakness Enumeration and Open Worldwide Application Security
Project lists. The study employed Mobile Security Framework (MobSF) as the primary tool for both Android and iOS applications,
while the Automated Security Risk Assessment tool was used to validate the vulnerabilities reported by MobSF. Results show that
traditional m-payment apps were generally more secure than fintech m-payment apps. In the latter category, vulnerabilities under the
information leakage and cryptography category were the most prevalent. On average, no marked difference was observed in security
performance between high E&T apps and lower E&T apps. Incorrect default permission, cleartext storage of sensitive information, use
of risky cryptographic algorithm, use of insufficiently random values, and information exposure were the most prevalent vulnerabilities.
Conversely, insecure implementation of Secure Socket Shell (SSL) and trusting all certificates or accepting self-signed certificates had
the fewest occurrences. Poor code quality was the highest source of security vulnerabilities in the study. The declining statistics of SMS
leakage in recent studies were confirmed in this work. The most implemented security measure was certificate pinning for preventing or
detecting man-in-the-middle attacks.
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1. Introduction

In recent years, developed countries have relied heavily on the
near instantaneous movement of vast and small digital money for
payment of goods and services irrespective of physical distance
[1]. When investigated further, the state of the industry report on
mobile money by GSMA [2] shows massive mobile payment
adoption in Africa with 166 live services, 781 million registered
accounts, $42.9 billion transaction volume, and $836.5 billion
transaction value. Mobile payment applications, also written as
mobile payment apps or m-payment apps, have been a significant
way to achieving such level of commerce in underbanked regions
in Africa [3]. Mobile banking applications for a while depended
on physical access to banks which underbanked regions are not
privy to. This has brought on a proliferation of branchless and
financial technology (fintech) banks. Though it has improved
access to banking services, there is still wide skepticism
surrounding them.

Although massive adoption of different forms of mobile
payment apps has been witnessed in both high-income and low/
middle-income countries (LMICs), hundreds of barriers threaten
the use of this payment method, especially in LMICs. These
barriers include but are not limited to security factors, integrity,
and perceived trust [4, 5]. Vulnerabilities in mobile payment
applications are more dominant in third-world regions than in
Europe, for instance [6]. Gao and Waechter [7] established as
adoption determinants perceived trust, benefit, and convenience.
Integrity in mobile banking implies that mobile banking firms
observe specific rules [8], while perceived trust is the user’s
willingness to be vulnerable.

Perceived trust influences customer’s choice to use mobile
payment, but with perceived security or perceived risk as
mediation [9, 10]. Perceived risk can be classified into perceived
information risk and perceived financial risk [11], as well as
perceived performance risk [12]. Perceived financial risk refers to
users’ beliefs, sentiments, and behaviors of the risk made up of an
m-payment app [13, 14]. Perceived performance risk is the extent
to which a user evaluates an m-payment app to have features or
performance alien to what he needs. All these forms of perceived
risk are basically rooted in insecurity in the mobile payment
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applications. The scenario is more concerning for African countries
where some emerging financial policies (or poor implementation of
same) mean that users are compelled to use mobile payment
applications, regardless of the perceived risks. This presents a
rise in the number of users exposed to the vulnerabilities in the
system. Take Nigeria, for instance, where a scattergun approach to
cashless policies saw a meteoric rise in number of mobile
payment app users in 2023. It is such forced exposure to
vulnerabilities that informed the choice of Africa as a case study.

From the background provided so far, the problem x-rayed may
have massive economic significance. But it is in the first instance a
cybersecurity (IT) problem. Lien et al. [15] highlighted security
requirements that would provide safety for people using mobile
banking to include confidentiality, integrity, availability, and
authentication. Security practices ensuring confidentiality are
carried out to enforce that only an authorized person accesses the
right kind of data. The availability of the mobile banking system
is also paramount. Apart from these, putting modalities in place to
authenticate the user and secure financial data from being altered
by unauthorized users is of significant concern. To guide these
modalities, this paper assesses the vulnerabilities in the most used
mobile payment applications in a third-world continent – Africa.
Conventions are often used as guides for the assessment of
vulnerabilities, for example, Common Weakness Evaluation/Open
Worldwide Application Security Project (CWE/OWASP). CWE is
a community-developed list of standard software and hardware
weaknesses dating back to their first release in 2006, while
OWASP is an open-source, nonprofit foundation that works to
improve software security by testing and reporting known
software vulnerabilities. Both CWE and OWASP routinely release
a list of reported vulnerabilities and rank them.

In summary, this study makes the following major
contributions:

a. To enable us to focus on the most prevalent cyber security
vulnerabilities, the work adopts top vulnerabilities ranked by
community-named conventions – CWE and OWASP 2023.

b. To accommodate a bulging number of fintech mobile apps in
Africa, the study sample features a 26:24 mix of fintech and
traditional mobile banking applications in Africa. The study
then compares the performance of the two classes of
m-payment apps.

c.We also present a study sample uniformly covering the five regions
in Africa, taking into cognizance countries’ high economic and
technological advancements (high E&T) and lower in economic
and technological advancements (lower E&T), and a
performance comparison between high E&T and lower E&T.

The remainder of this paper is structured as follows: Section 2
presents the review of related literature, Section 3 provides the
methodology adopted for the vulnerability assessment, and
Section 4 gives the results. The paper does not end without a
conclusion, as found in Section 5.

2. Literature Review

There have been some advancements in the assessment of
vulnerabilities of m-payment apps. Speaking generally, the lack of
security awareness among developers has been a major cause of
vulnerabilities in mobile applications [16]. In terms of attacks,
man-in-the-middle (MITM) attacks were major attacks found in
Abdullah and Zeebaree [16] and Shahriar et al. [17]. The work in
[18] identified as main vulnerabilities non-obfuscation of source

code, external storage access, exportation of activities to other
apps, logs information, use of object de-serialization. In Africa,
the region of interest to us, outstanding statistics were SMS
spoofing, server attacks, MITM attacks, and non-definition of
privacy perceptions by users from external libraries tracking
within a context [19]. In fact, the use of vulnerable third-party
libraries in mobile app development is a major source of
vulnerabilities in mobile applications as a whole [20]. In a later
work by Bassolé et al. [21], most mobile payment applications in
Africa have access to precise location and write information to the
SD card (71.7%), allow contacts to be read (60.38%), and provide
access to the camera (45.28%).

Approaches adopted for vulnerabilities assessment have
predominantly been static and dynamic analyses [17, 22]. Static
analysis (SA) generally encompasses scanning the source code or
object code of an application and examining it without having to
execute the program [23]. Dynamic analysis (DA) is used to
detect vulnerabilities which occur during the run-time of an
application cycle [18]. Unlike SA, DA is more complex and
requires the installation of additional applications simulation of
user input for analysis-based proposes.

Automated Security Risk Assessment (AUSERA), a system of
security risk assessment automated on three levels, was applied in
Chen et al. [6]. Vulnerabilities assessed in [6] include input
harvest, capturing of application can input data that is sensitive
like users’ transaction information, data storage (considering if the
application writes to external storage); data transmission
(transferring data that is sensitive through SMS, data leakage);
and communication structure. In the same work, AUSERA,
although limited to Android, outperformed Qihoo360,
AndroBugs, Mobile Security Framework (MobSF), and Quick
Android Review Kit (QARK) in both precision and time cost [6].

Interestingly, prior works have mostly assessed/analyzed only
Android permissions, with very few considering iOS permissions.
Also, though fintech mobile payment applications have become
nearly mainstream in African countries [22], they have not had
the needed attention in prior vulnerability analyses. Researches
classifying vulnerabilities in mobile payment applications
according to community-named conventions are not prevalent
yet – in the selected literature, such adoption was found only in
Reaves et al. [24]. Adoption of such standards allows the focus of
resources on statistically critical vulnerabilities. We also observed
that top vulnerabilities on CWE and OWASP listings are
usually a superset of top occurring vulnerabilities in existing
literature. For instance, Shahriar et al. [17] found that most
malicious mobile attacks exploit vulnerabilities such as sensitive
data leakage, unsecured sensitive data storage, and transition of
data. These vulnerabilities are part of the CWE and OWASP
top 10 listings.

3. Research Methodology

3.1. System model

The system proposed in the work is shown in Figure 1,
specifically the analyses. As would be discussed in details
subsequently, what is core to the analyses is assessing the
vulnerabilities of select m-payment apps (testing applications).
Scripts were written to query the internet for m-payment apps
meeting the study’s inclusion criteria. This was to automate the
process. The assessment results were retrieved and analyzed to
extract data related to the study objectives. The vulnerabilities
assessment was carried out in a five-step process, as shown in
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Figure 2, from region selection process, application selection
process, static and dynamic analyses to result analysis.

3.2. Study region selection

First, low financial inclusion countries were identified, from
which select mobile payment applications were used for the
vulnerability assessment. The work focused on the five regions in
Africa, namely, North Africa (Egypt and Morocco), Central Africa
(Cameroon and Gabon), Eastern Africa (Rwanda and Kenya),
Western Africa (Nigeria and Mali), and Southern Africa (Angola
and South Africa). In selecting two countries from each region,
different strategies were employed: first, population ratio, a
country with a high population and another with less population
for that region; second, economic and technological strengths,
choosing a country with a good economy and technology, here on
stated as high E&T (e.g., Egypt in the northern region, Cameroon
in the central region, Rwanda in the eastern region, Nigeria in the
western region, and South Africa in the southern region), and
another with lower economic stability or technological
advancement (lower E&T). This will enable the work to establish
whether or not there is a relationship between economic and
technology strengths of the countries considered and the security
ratings of the apps in those countries.

3.3. App selection process

To select an application, considering the humongous number of
applications available for mobile platforms, a sorting algorithm was
employed. As depicted in Figure 3, the process starts by considering
only applications found in the financial category of any of the Google
Play Store and App Store. Next, it screens out applications not used

in the countries of interest. Further, non-popular applications were
screened out (applications below a 3-star rating). This enabled the
selection of best-performing applications by user reviews. App
ratings might not offer much insight to developers for improvements,
but it sure shows how popular an application is with users [25]. To
ensure applications considered for the work captures a fair population
of users, anyone below 1,000 downloads was delisted. Third, a check
for support on mobile operating systems was conducted to eliminate
applications not available for mobile, considering the study is focused
on payment applications that run on mobile devices. Further criteria
considered were a non-duplication of any application (i.e., each
application appears for only one country, with a total of five
applications per country) and a ratio of traditional bank apps to
fintech apps being 26:24.A total of fifty (50) applicationswere assessed.

3.4. Vulnerability analyses

3.4.1. Study taxonomy
The vulnerabilities assessed in the work followed the

confidentiality, integrity, and availability (CIA) classification.
Using the CWE/OWASP naming convention, confidentiality
(certificates), integrity (information storage and cryptography),
and availability (access control) vulnerability types were covered.
We assessed the selected applications for the top ten (10)
vulnerabilities in both CWE and OWASP listings for 2023
[26, 27]. Table 1 describes the study taxonomy listing different
sensitive data that may be exposed to malicious entities,

Figure 1
System model

Figure 2
Research process flow

Figure 3
Application selection process
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particularly CWE and OWASP top ten (10) vulnerabilities. Only
40% of the applications were checked for both iOS and Android
permissions. The remaining 60% were assessed for just Android
permissions.

3.4.2. Experiment setup
The system requirements were two personal computers, one

running Linux Ubuntu 23.04 Lunar Lobster OS and the other an
M1 chip Apple MacBook, and a 32-channel Mi-Fi. The tools
included the Anaconda suite with Python 2.7, 3.6, and 3.8 loaded
with MobSF, QARK, and AUSERA requirements libraries,
Xcode, Fish terminal, Apktool version 2.3, MobSF framework,
and AUSERA. MobSF as the primary tool was used for the
study’s SA, for both Android and iOS applications. AUSERA tool
was used to validate the vulnerabilities reported by MobSF, thus
reducing the false positives reported by each vulnerability analysis
tool. However, due to the limitation of AUSERA, supporting only
Android operating system applications, iOS applications SA was
conducted on MobSF only.

a. Static analysis: To conduct the SA, as depicted in Figure 4, an
application raw file saved to the study database from the
application selection process is extracted. The MobSF
environment is started via a terminal running on the local host
using port 8080 to produce the MobSF graphic user interface
(GUI). The extracted application file is uploaded to MobSF
using the upload a file button. Using different plug-ins coded
into MobSF, such as dex and smali, the uploaded file is
decomposed into various files depending on the application type
uploaded. On successful decomposition of application file to

different file, analysis is automatically executed for each file,
testing for vulnerabilities in application source code, application
manifest/plist, dex class or method, network configuration, and
certificate configuration and signature. This process is repeated
until all applications for the study dataset are exhausted. The
same procedures are employed for SA with AUSERA. However,
AUSERA does not support GUI and iOS applications. Therefore,
all analyses are carried out on a command line interface (CLI)
terminal and for Android applications only.

b. Dynamic Analysis:DAwas implemented using the same tools and
assessment settings as in SA. The process began with extraction of
the application raw file saved to the study database during the
application selection process. Next, an Android Virtual Device
(AVD) emulator was launched, and the extracted raw file was
installed and then launched on the virtual device. MobSF
environment was started via a fish terminal running on the
local host using port 8000 to produce MobSF GUI. MobSF is
connected to the AVD to perform real-time vulnerabilities’
detection on the running application.

4. Results

This section presents performance evaluation results and a
discussion on the vulnerabilities and vulnerability sources
observed in the study.

Table 1
Study taxonomy by CWE/OWASP naming convention

ID CWE/OWASP Top 10

Information/
storage leakage
CWE-200 Exposure of sensitive information to an

unauthorized actor
CWE-276/
OWASP: M2

Incorrect default permission/insecure data
storage

CWE-312/
OWASP: M9

Cleartext storage of sensitive information/
reverse engineering

Access control
CWE-749/
OWASP: M1

Exposed dangerous method or function/
improper platform usage

CWE-919 Weakness in mobile applications (WebView
is enabled)

CWE-89/
OWASP: M7

Improper SQL element use (SQL injection)/
client code quality

Cryptography
CWE-327/
OWASP: M5

Use a broken or unreliable cryptographic
algorithm/insufficient cryptography

CWE-330 Use of insufficiently random values
CWE-649/
OWASP: M5

Dependence on obfuscation or encryption of
security-connected inputs without checking
integrity

Certificate
CWE-295 Improper certificate validation

Figure 4
Static analysis flow process

Archives of Advanced Engineering Science Vol. 00 Iss. 00 2024

04



4.1. Performance evaluation

A security grading system was also used in evaluating
performance of the apps, namely, A=70–100, B=60–69, C=50–
59, D=45–49, E=40–44, and F=0–39. The security scores are
shown at the foot of the heatmaps in Figures 6, 7, 8, 9, and 10.
Scores with asterisks are from high E&T apps (Egypt in the
northern region, Cameroon in the central, Rwanda in the Eastern,
Nigeria in the western, and South Africa in the southern region).
At the header of the heatmaps are the m-payment apps listed in
blue for traditional banks and red for fintech banks. A vast
majority (70%) of the applications performed at grade C level, as
seen in Figure 5. A corroborating result can later be seen in
Figure 10, where Mali in West Africa had the most secure
applications, boasting one A-grade, three B-grade, and a C-grade
payment application. Reaves et al. [24] study of seven mobile
money wallets also achieved similar results for this region,
reporting two A-grade applications in the form of Airtel mobile
money in Western Africa and Zuum in the southern region.
Figures 6, 7, 8, 9, and 10 provide details of the security scores of
apps at the foot of the heatmaps. At the top, m-payment apps
from traditional banks are listed in blue, while fintech ones are
listed in red. Performance evaluation was done to confirm the
impact of adopting the OWASP/CWE convention, compare the
performance of traditional m-payment apps and those of fintech
banks, and investigate if or not the economic and technological
statuses of countries affect the security of m-payment apps in
those countries.

4.1.1. Adoption of OWASP/CWE convention
Figure 11 presents a justification for the use of OWASP/CWE

top vulnerabilities in the analysis. In it, we have that 80% of
vulnerabilities checked for had above 30% occurrences. Only two
vulnerabilities (of the 10 adopted) turned out not to have
significant occurrences. This is an improvement on study results
where conventions like CWE and OWASP were not adopted as
guides for top vulnerabilities. The use of CWE and OWASP
listing helped the work target statistically critical vulnerabilities.

4.1.2. Traditional versus fintech apps
M-payment apps from traditional banks were found to be

generally more secure than their fintech counterpart. Only in the
western region did both classes have the same number of

vulnerabilities. Specifically, as presented in Figures 6, 7, 8, 9, and
10, fintech apps generally failed assessments on information
leakage and cryptography in the northern, central, and eastern
regions.

4.1.3. Impact of economic and technological advantages
We observed a general marginal performance difference

between m-payment apps in high E&T countries and those in
lower E&T. We have 53.76 and 55.32 average security scores in
high E&T apps and lower E&T apps, respectively. Similar
marginality was observed when comparing the lowest security
scores. However, in terms of highest security scores, northern and
western regions had wide but converse margins in performance
between high E&T apps and lower E&T apps. For instance, in the
northern region, CIBW app (the best performing app in Egypt, a
high E&T country) outperformed POKB (the best performing app
in Morocco, a lower E&T country), by 10 points. Conversely, in
the western region, it is the best performing mobile payment app
(ATLQ) in a lower E&T country that outperforms its counterpart
(GTWL) in the a high E&T country.

4.2. Vulnerabilities

4.2.1. CWE-200 (exposure of sensitive information to
unauthorized actor)

We observed this vulnerability to be the fifth most occurring in
the entire study, most dominant in m-payment apps in the northern
and southern regions, and almost nonexistent in apps from the central
region. Instances of disclosure of sensitive information were
observed more in fintech apps than in m-payment apps from
traditional banks. Specifically, violation of the principle of deny
by default was observed.

4.2.2. CWE-276/OWASP: M2 (incorrect default permission/
insecure data storage)

Corroborating the study in Bassolé et al. [21], insecure data
storage (CWE 276) was the highest occurring vulnerability,
affecting 41 applications (82%) or at least seven applications from
each region as seen in Figure 11. True Bill (TRBL) app’s wrong
implementation may store sensitive information in plaintext for
JSON dump files. This vulnerability was also discovered in the
L’BK app, which, on password reset, saved user details in
cleartext. SGC’s wrong implementation for TokenRequest led to
user credentials being saved in cleartext. However, CashPlus
Mobile Wallet (CPMW) stores user information temporarily in
plaintext by permitting contents such as names to be copied to the
clipboard. Like the CPMW app, the GLOP app creates a
temporary file for writing session details such as authentication
tokens. WHFF app exposes the user’s IP address in plaintext
using the verbose logging facility on HTTP error encounters. The
full meaning of all mobile payment applications evaluated in this
work is available in Figures 6, 7, 8, 9, and 10. The acronyms
were used in the body of the work for easier reading.

4.2.3. CWE749/OWASP: M1 (exposed dangerous method or
function/improper platform usage)

The exposure of a dangerous method or function (CWE 749)
impacted 16 applications. This vulnerability implementation is
closely related to CWE 919, in that it in most times involves
JavaScript user code execution. Applications such as OME,
OMPC, and UBAM were heavily affected by this vulnerability.

Figure 5
Chart showing application vulnerability grades
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4.2.4. CWE-919: weakness in mobile applications (WebView
is enabled)

Access control such as WebView database view/debugging
(CWE 919) is a critical security threat and should never be
enabled. Within the study, this vulnerability was indicated as
critical. However, as seen in Figure 11, only three applications
(6%) were found to have implemented such a method. PLPY app
in the western region of Africa, located in Nigeria, is the most
affected. Static code analysis reveals multiple implementations of
the application, giving access to remote WebView being enabled
for in-app activities and HTTP errors (see Figure 8). In Figure 9,
SA on the SPNN app reveals WebView debugging is enabled

with an error message, creating an avenue for its user information
being written in cleartext. BFFA app also implements this
vulnerable method to manage its web activities. The vulnerability
enables a malicious entity to be able to remotely view or change
the internal set of the application, presenting such an entity with
the power to effect memory modification to exploit the application.

4.2.5. CWE 89/OWASP: M7 (improper SQL element use (SQL
injection)/(client code quality))

The majority of the applications when tested for improper SQL
element use/SQL injection were found to utilize user input in back-

Figure 6
Vulnerabilities in NorthernAfricam-payment apps. CIBEgypt (CIBE), CIB SmartWallet (CIBW), L’bankalik (L’BK), Pocket Bank
(POKB), CIHMobile (CIHM), OrangeMoney Egypt(OME), Halan Lending (HLN), True Bill (TRBL),Waffarha (WFFH), CashPlus

Mobile Wallet (CPMW)

Figure 7
Vulnerabilities in Central Africa m-payment apps. NFC Bank (NFCB), AFG Mobile (AFGM), EBank Mobile (EBAM), GO2bank
(GOBA), Mes Comptes-LCL (MESO), Orange Money Pro Cameroon (OMPC), SG Connect (SGC), Gabon Pay (GBPA), GamPay

(GMPA), Glotelho Pay (GLOP)

Figure 8
Vulnerabilities in Eastern Africa m-payment apps. KCB, KCB iBank (KCBB), BK Mobile (BKMB), NCBA Mobile Rwanda
(NMRW), USACCO (USCO), Bayes (BAYS), Leja (LEJA), M-KOPA (MKPA), WorldRemit (WLRM), SPENN (SPNN)
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end queries or commands. However, by injecting meta-characters, a
malicious entity can execute malicious code that inadvertently will
be interpreted as part of the command or query, whereby being
able to retrieve arbitrary database records or manipulate the
content of the back-end database. A total of 18 of the 50
applications tested employed this insecure method, such as
BFAA, USCO, and MKPA apps.

4.2.6. CWE-312/OWASP: M9 (cleartext storage of sensitive
information/reverse engineering)

Several applications analyzed were vulnerable to one or more
wrong implementations of processing/storing user information
with little or no encryption, exposing personal user information
and data critical to transactional integrity through one of these
methods, namely, enabling cleartext in the manifest to all or
specific domains in scope, writing sensitive data to external
storage, or user data logging. SA by MobSF showed 37
applications from the dataset store cleartext of sensitive information.

4.2.7. CWE 327/OWASP: M5 (use of broken or risky
cryptographic algorithm/insufficient cryptography)

The use of a broken or risky cryptographic algorithm or
insufficient cryptography affected 37 of the 50 applications
analyzed, making it the second most prevalent vulnerability found
in the work. It affected on average seven applications from each
region. However, the majority of these implementations were
noncritical to the application functionalities. Nonetheless, the use
of broken or risky cryptographic algorithms exposes users’

sensitive information to malicious entities. The applications
studied mostly used either SHA1 or MD5 to encrypt and decrypt
the application’s public and private key and signature during
communication and data exchange.

4.2.8. CWE 330 (use of insufficient random values)
The use of insufficiently random values was found in 34

applications of the study’s dataset. Due to the deterministic nature
of computers or mobile devices, producing truly random numbers
is fundamentally impossible. Pseudorandom number generators
(RNG) are used to tackle this flaw; however, the quality of numbers
generated varies with the type of RNG algorithm used and greatly
impacts the degree of randomness resilient against prediction attacks.
BKMB app utilizes weak default Java method for random number
generator for generating its biometric data. GTWL app also
implements a vulnerable default Java method for random number
generation for its transaction requests_id. The application fails to
generate a long random key for input; instead, 17 bits of key are
generated randomly, and the remaining bits are padded with mobile
number or date by the mobile operating system. WHFF app in
contrast to the others is affected critically as it implements an
insufficient random number generator paired with a weak hash
algorithm (MD5) for validating communication handshake.

4.2.9. CWE-649/OWASP: M5 (insertion of sensitive info into
log file)

A total of 18 applications (36%) were vulnerable to reliance on
code obfuscation as seen in Figure 11. 100% of these applications

Figure 9
Vulnerabilities in Western Africa m-payment apps. Atlantique Mobile = ATLQ, MyBOA Mali = MBOA, UBA Mobile Banking
(UBAM), First BankMobile (FRBM), GTWorld (GTWL), BIMMobile Banking=BIMB, CorisMoney=CORM,EBNDA=ENDA,

OPAY, PalmPay (PLPY)

Figure 10
Vulnerabilities in Southern Africa m-payment apps. BCINET (BNET), Multicaixa (MLCI), Atlantico (ALTC), African Bank

(AFRB), TymeBank (TYMB), SALAAMAfrica Bank (SALM), UNITELMoney Parceiros (UNIM), BFA App (BFAA), PayJustNow
(PJNW), Spot Money (SPTM)
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failed the obfuscation test to protect its code structure. Using QARK
to attempt reverse engineering in each application’s APK yielded an
80% success rate for creating a malicious APK file using the
vulnerabilities found within each application, given time and
resources. Chen et al. [28] reportedly employed QARK for
vulnerability fixing in their study. Nonetheless, they reported the
tool accuracy inferior to other tools implemented within the study,
suggesting the QARK exploitation function for creating
vulnerable APK as its significant strength, not for performing
analysis. However, QARK only supports Android application
reverse engineering; the results obtained from this study, which
exploited APK creation, remain inconclusive whether the same
results can be obtained for the iOS application.

4.2.10. CWE-295 (improper certificate validation)
Improper validation of certificates remains a critical security

loophole, and as shown by different works, many applications fail
to validate Secure Socket Shell (SSL)/transport layer security (TLS)
certificates properly. Applications that implement improper
certificate validation are caused by poorly designed application
programming interface (API) calls that make it easy to make
validation mistakes. Four (4) applications within the study were
found to have this vulnerability. Due to the severity of security this
poses, it causes a severe threat to these application’s functionality.
The simple explanation for improper certificate validation
implementation may present itself as, during the development
phase, developers often opt in for more straightforward but less
secure solutions such as accepting any certificate or self-signed
certificate to speed up the development phase. However, these less
secure solutions are often deployed to application production code,
exposing the application to MITM attacks. Two key issues that
should be addressed to mitigate this practice include the following:

a. Verifying a certificate comes from a trusted source such as
certificate authority, and determining the endpoint server
presents the proper certificate before authentication. In the case
of the ALTCO app, which fails to conduct valid hostname
verification, this results from failing to follow the
recommended Hostname Verifier method recommended in the
official Android and iOS documentation.

b. When there is a lack of proper certificate management practices
implemented at the application layer (code), the most viable
solutions are to enforce SSL/TLS configuration at the
operating system layer and certificate pinning in both code and
application manifest. This solution has been adopted, as shown
in Figure 12, with 54% of the applications implementing

certificate pinning to detect or prevent MITM attacks. Two
applications implement a certificate that does not expire to
caution certificate date errors. Fahl et al. [29] demonstrated this
method of securing an application in the event of trusted root
certificate compromise, which entails employing DV Cert
pinning to protect against MITM.

As seen in Figure 13, Public Key Cryptography Standard #5/#7
(PKCS5/PKCS7) padding with Cipher-Block-Chaining (CBC)
mode enabled is the most frequent (23%) cryptographic
vulnerability within the study, affecting 11 applications critically.
The difference between the two padding mechanisms lies in block

Figure 11
Percentage of apps per vulnerability

Figure 12
Distribution of vulnerability sources

Figure 13
Chart showing occurrence level of the vulnerabilities
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size; PKCS5 padding is limited to 8-byte block sizes, and PKCS7
padding works for block sizes from 1 to 255 bytes. In the past,
this cryptography algorithm was considered secure. However, the
Microsoft Vulnerabilities Report for 2023 captured that this
method is no longer secure to decrypt data encrypted with the CBC
mode of symmetric encryption [30]. It further shows that the method
is vulnerable to constant timing attacks, which rely on the ability to
change the encrypted data and test the result with the oracle due to
timing differences. To mitigate this vulnerability, all applications
implementing the PKCS5/PKCS7 algorithm, such as the AFRB app,
should enforce an encrypt-then-sign model, that is, should create a
signature for its data and validate the created signature before any
data exchange or other operations are performed. Data integrity
checks such as keyed-hash message authentication code (HMAC),
which validate at constant time comparison before decrypting the
data, should be paired with PKCS5/PKCS7 padding and
implemented in check before the decrypt method.

4.2.11. Other vulnerabilities
The use of four or five-digit personal identification numbers

(PINs) was the default authentication implementation for the
majority of applications in the dynamic analysis section of the
study. PINs are weak against brute force attacks, as Chanda [31]
and Guerar et al. [32] suggested that a solid password provides
better security to applications when compared to PINs. L’BK app
was found to save password reset in plaintext. This does not occur
for the original set password. However, although this is not tested
in a dynamic environment and may be a false positive by MobSF,
the code structure in three different locations suggests differences.

Six applications were found to have wrongly implemented
code, which exposes the application to this vulnerability. Of the
six applications, five were located in the northern region of the
continent, suggesting variation in factors influencing such attributes.

Permission to read and write sensitive and nonsensitive
application data to external storage such as SD disk remained high
among applications within the study regardless of numerous
efforts from Android, iOS, and other study documentation
warning of the critical security implication this practice leads to.
On average, 80% of the study’s dataset applications enabled
permission to read and write data for both operating systems.

Applications such as the UBAM app enable user data backup to
external storage. On further DA, the backup data contains a cleartext
of user-sensitive information. In addition to cleartext being contained
in the backup data, the backup data was recognized by the UBAM
app when uploaded to a different device. However, given that the
UBAM app performs a device connected to an account check, this
weakness may not affect the application critically.

Camera access/screenshot permission was enabled for 70% of
the applications from different regions except for the southern region,
which had all its applications enable permission for camera access/
screenshot. This permission evades the application user privacy as it
can capture activities by taking screenshots of transactions or take
photography using the primary or secondary camera. Similar results
for input harvest were obtained in Chen et al. [28]. Of the 50
applications analyzed, only the GTWL app application was protected
from screenshots of critical screens such as transaction history and
account balance. This vulnerability is primarily caused by developers
failing to implement anti-screenshot harvest code, such as setting the
isScreenCaptureEnabled flag to disable. Only five (10%) of the
applications enabled permission for SMS access, agreeing with
findings in Chen et al. [6], and a significant improvement on what it
was in Castle et al. [19], where SMS spoofing was found to be the
most significant threat.

4.3 Vulnerability sources

4.3.1. Code
Vulnerabilities arising from wrong implementation code

practice and code quality were the highest source of security
vulnerabilities, affecting 27 applications (54%) from the study
dataset (see Figure 13). Wrong implementation of PKCS5/PKCS7
with CBC mode enabled without data integrity check code
affected 11 applications, critically rendering these applications
vulnerable to oracle padding attack; implementing an insecure
random number generator critically affected two applications due
to poor code implementation.

4.3.2. Manifests
Vulnerabilities resulting from the wrong configuration of the

manifest file were the second most notable cause of security
vulnerability, affecting nine applications (18%), as seen in
Figure 13. Of the nine applications affected, seven applications
enabled cleartext traffic, while two applications enabled application
data backup in their manifest. As Chen et al. [33] concluded, such
practice creates room for user information leakage. The insecure
configuration of network protocol critically affected eight
applications; seven had its base configuration insecurely
configured to permit cleartext traffic to all domains defined in its
application scope. Sivakorn et al. [34] showed in their study that
implementing such an insecure domain configuration for cleartext
leads to sensitive user information being exposed to malicious
entities, even with HTTPS protocols are enabled.

4.3.3. Network
Proper network configuration strengthened the security of five

applications. These applications enabled network-based
configuration files to disallow cleartext traffic to all domains,
forcing all communication to be encrypted appropriately and
transmitted using SSL.

4.3.4. Trackers
Accessing coarse location (GPS) and fine location (network

location) was enabled for 60% of the applications. However, this
privacy vulnerability was more significant in the western region,
affecting 90% of applications for fine location and 80% for coarse
location. These applications can track the user’s location. Contrary
to popular belief that iOS manages user tracking permission better
than Android, the study found that 100% of applications that
enabled Android tracking permission did the same for iOS.
Nevertheless, iOS enabled this permission when needed, not at
install time. Moreover, iOS indicated whenever an application
tracking was in use. Therefore, iOS did notify its users when an
application was tracking their location. Kollnig et al. [35] and Yin
[36] in their studies obtained similar results, concluding that
although users’ perceived trust for privacy within the iOS
ecosystem was high, in reality, applications in the Android
ecosystem performed similar location data requests as those for
the iOS.

4.3.5. Certificates
Poor code quality was the leading cause of critical security

concerns, and properly implemented source code was also
determined to be the most significant source of security strength
for most applications. Twenty-seven (27) applications of the study
dataset implemented SSL certificate pinning through proper
coding to detect MITM attacks, while two applications
implemented code to tackle anti-tap jacking attacks.
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5. Conclusion

We have had vulnerabilities in mobile payment applications in
third-world countries pushing people from mobile payment
applications, on one hand. On the other hand, we have had fast-
paced growth of smartphones and the widespread of fintech
organizations attracting users to this payment method for daily
payment of goods and services. The fact that the later factor is
having superior influence means there is a net pull to adoption of
mobile payment applications. Supply meeting demand, banks find
it profitable to roll out these applications. This scenario means the
vulnerabilities affect many users rather than a few. This creates
the need to analyze how secure these mobile payment applications
used daily for different transactions.

Case study applications, countries, and tools were carefully
selected using a sorting algorithm to produce the best possible
representatives for each case respectively. Fifty applications were
selected from five African regions, choosing two countries from
each region and five payment applications from each country.
Furthermore, the study taxonomy was carefully selected to best
present top vulnerabilities specific to mobile payment applications.
These were categorized into information/storage leakage, access
control, cryptography, and certificate vulnerabilities, with a couple of
specific vulnerabilities in each category. Using the top 10
vulnerabilities on CWE and OWASP listing proved significant, as a
vast majority of vulnerabilities checked for were statistically critical.

The study uses a hybrid vulnerability analysismethod, employing
SA for source code, meta-file, and privacy analysis. DA was used for
application behavior, connections, and authentication analysis. Tools
used for SA included MobSF and AUSERA, while MobSF was
used primarily for DA. QARK was used for testing applications that
showed weakness in proper code obfuscation during SA.

A vast majority of mobile payment applications had average
overall performance on the assessments conducted.

Recommendations

Failure to properly analyze the weaknesses and threat channels
to an application will negatively impact the revenue, trust, integrity,
and reliance of any financial payment institute. Therefore,
application packing protection methods for payment applications
are necessary. Financial entities should implement protection file
packages such as APKProtect or Bangcle, as this increases the
exploitation difficulty. Additionally, integration of third-party
libraries remains the easiest way of introducing weaknesses for
one’s application; hence, a careful selection process should be
implemented when choosing third-party libraries to manage risk
effectively.
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