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Abstract: 2D NAND flash cells were unable to continue scaling due to several physical limitations including few electron effects, cell-to-cell
interference, and high E-fields under 20 nm design rule. 3D NAND flash cell was developed to overcome many problems for 2D NAND cell.
Also, it has continued to deliver and even accelerate the NAND scaling trends that the data industry demands. This is in part due to its larger
gate area and improved electrostatics of the Gate All Around architecture using the thin poly-silicon channel. It has not only improved the cell
characteristics such subthreshold swing and current but also reduced cell interference. As a result, the 3D NAND flash with superior
performance has been currently enabled for three and four bit per cell to become main stream. 3D NAND architectures adapted “poly-Si
channels,” “word line replacement for metallization,” and “plug etching process.” In addition, to overcome the issue of peripherals
taking up too large an area and too high a percentage of the total die size, a few different architectures were proposed. The peripheral
circuit (CMOS) can be under array and another alternative is to build the peripheral circuits on a different CMOS wafer and then bond
the memory wafer with the CMOS wafer using wafer-to-wafer microbonding, termed CMOS bonded array. Although the two
architectures have many advantages for NAND cell, they still are suffering the degradation of read performance due increased BL RC
delay. As NAND stack increases, it should be more challenge due to higher stack. In this paper, the new structure was proposed using
NC-vTFT (NAND Cell-vertical TFT) on cell array in vertical NAND flash memory, for the first time. It will be very promising structure

to improve RC delay as NAND cell stack increases.
Keywords: 3D NAND flash, NC-vTFT, COA structure, RC delay

1. Introduction

NAND flash memory is one of the most important nonvolatile
memory devices that can hold programmed data without a
power supply. With the wide spread of the portable equipment
in audio/video fields such as MP3 players, digital cameras, and
still mobile phone, the demand for low-cost and high-density
flash memory has increased dramatically. NAND FLASH
memory has dramatically increased density and reduced cost
per bit which has driven creation of exciting new storage
products over the years. These applications commonly need
solid-state mass storage devices that feature high-density,
low-cost, low power, nonvolatile, and portability. 2D NAND
flash memory can easily satisfy the above needs. However, 2D
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NAND flash cells were unable to continue scaling due to
several physical limitations including few electron effects,
cell-to-cell interference, and high E-fields under 20 nm design
rule. 3D NAND flash cell was developed to overcome many
problems for 2D NAND cell. Recently, various 3D NAND
flash memories such as stacked memory array transistor [1, 2],
P-BiCS [3-5], TCAT [6, 7], V-NAND with Selective Epitaxial
Gate (SEG) [8-11], and vertical gate [12, 13], which consists
of the thin film poly-silicon (poly-Si) channel [14-17], have
been introduced to be the most promising near-term solution to
overcome scaling challenges in conventional planar NAND
flash memories [18-23]. However, the side array and peripheral
circuits in 3D NAND memory are like a ranch house in a
crowded metropolitan downtown, where land is very precious.
As the memory buildings grow taller, the peripheral circuits
take a higher percentage of the total die size. As a result, 3D
NAND scaling cost benefits are reduced accordingly [24, 25].
To find out the solutions for the issue of peripherals taking up
too large an area and too high a percentage of the total die
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Figure 1
(a) Existing CUA structure, (b) proposed COA structure to improve BL RC delay,
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Process flow schematic for proposed COA structure
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size, few different architectures were explored. As shown in
Figure 1(a), the peripheral circuit (CMOS) can be under array
(CUA). Another alternative is to build the peripheral circuits on
a different CMOS wafer and then bond the memory wafer with
the CMOS wafer using wafer-to wafer microbonding, termed
as CMOS bonded array (CBA) [26, 27] to improve the
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performance of CMOS transistors. Although both architectures
have many advantages for NAND flash cell, they still are
suffering from the degradation of read performance by
increased BL RC delay as shown in Figure 1(a). As the height
of 3D NAND flash stack recently increases by 232 layers, it
should be more challenging due to higher stack [28-30]. In this
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paper, we proposed new NAND flash cell structure using the
vertical TFT (NC-vTFT) to improve the read and program
performance through using reduced Bit line RC delay.

2. Process Flow and Simulation

2.1. Process flow for structure

Figure 1(a) shows the CUA structure is suffered by RC delay of
Equation (1) due to increased BL (Bit Line) length as the height of
NAND stack recently increases. Compared to Figure 1(a), the
proposed structure can improve the RC delay as shown in
Figure 1(b) [28, 31, 32].

t= Vg X Capg

1)

I = Rpr X Capgy,
Cell

It is because that BL resistance would be largely decreased by shorter
bit line length of CMOS structure on cell array (COA). It can be
explained by Equation (1) as function of BL voltage (V1) and
BL capacitance (Capgr) and NAND cell current (I..;) as shown
in Figure 1(c). Figure 2 shows the process flow to fabricate the

Figure 3
Simulation structure using the Athena process of Silvaco to
fabricate the proposed structure. It is divided into 3 areas:
@ SOI transistor, @ vTFT, and ® NAND flash cells

@ SOI MOS Transistor

COA structure. Firstly, NAND flash cells are fabricated using
existing 3D NAND flash process flow TCAT [6, 7], V-NAND
with SEG [8-11], and vertical gate [12, 13], and vTFT(vertical
Thin-Film-Transistor) is used for a high-voltage transistor to
control the program and erase operations with vertical channel
on NAND cell structure [33]. The air gap process was applied
for vTFT as shown in Figure 2 [34]. After that CMOS
transistors can be fabricated using SOI or Fin-FET transistor on
vTFT. SOI transistor was introduced in this paper.

2.2. Simulation for structure

Figure 3 shows the simulation structure that fabricated (1)
SOI transistor, (2) vTFT, and (3) flash cell using Athena
Silvaco TCAD Tool based on the process flow proposed in
Figure 2. The detailed device parameters of simulation structure
are listed in Table 1.

3. Results and Discussion

3.1. SOI transistor characteristics

Figure 4(a) and (b) show the secured Ij-V, and I4-Vy
characteristics depending on channel boron doping and gate
voltage for transistor with SOI, respectively. It was confirmed that
they are normally operated. However, as the arsenic (As) implant
energy increases for the drain doping, Iy abruptly decreases as
shown in Figure 5(a). It is because of the higher drain resistance
and less short channel effect in Figure 5(b) by deeper the arsenic
doping profile in Figure 5(c).

Figure 4
(a) I-V, curve depending on boron, (b) doping for CMOS
transistor and /4-Vy curve depending on gate voltage
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Table 1

Detailed Spec. for simulation

Source/Channel/Drain Implant Dose and Energy

Gate or WL Length (um)  SOI /VTFT/Cell Poly Thickness (nm)

SOI Transistor ~ Source: As 1 x 10%/cm?, 10 KeV
Channel: B 1E13, 10 KeV

Drain: As 1.0E15, 10 KeV

vIFT Source: Ph 4 x 10'%/cm?, 1000 KeV
Channel: B 1 x 10'%/cm? 180 KeV
Drain: Ph 1 x 10%%/cm? 60 KeV

NAND Cell Source: Doped Poly Ph 10%!/cm?

Channel: Doped Poly B 4 x 10'7/cm?
Drain: As 1E15, 50KeV

0.4 Thin Body Thickness=20
Gate Oxide=7
1.0 TFT Body Thickness=100
Gate Oxide=20
0.05 Poly Ch. Thickness= 40
(Space=0.05) Oxide/Nitride/Oxide
=10/10/10
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Figure 5
(a) Linear scale and (b) log scale I;-V, curve depending on As
implant energy, (c) doping profile depending on As implant

energy
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Figure 6
(a) Detailed process flow for proposed vTFT structure. (b) L of
vTFT for Ph implant energy depending on Ph implant dose.
(c) Channel length depending on Ph energy
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Figure 7
Vi and I characteristics depending on Ph implant dose between
(a) 800 Kev, (b) 1000 KeV, and (c) 1200 KeV
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3.2. VTFT transistor characteristics

Figure 6(a) describes the detailed process flow to fabricate
vTFT. Figure 6(b) shows the results to optimize condition for
phosphorous (Ph) implant energy and dose to form the source side
of vTFT. As the Ph implant energy decreases, the results show the
short channel effect as shown in Figure 6(c). Figure 7(a), (b), (c)
show the process window of Ph dose for Vy, and . From this
result, 4 X 10%/cm? dose can be candidate as optimal value
because it is located at middle point of window. In addition to
VTFT characteristics depending on Ph implant energy and dose
condition, the NAND flash cell characteristics should be considered
as well because the cell Vy, and Iy variation occurs by Ph
penetrating to cell area as shown in Figure 8(a) and 8(b). It was
explained in detail in chapter 3.3 NAND Flash cell characteristics.
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Figure 8

(a) Cell Vg, at WL2 for 4 x 10" and 1 x 10'* Ph dose depending
on Ph implant energy to fabricate vI'FT and (b) /; depending on
cell Vy, at WL =2 for 4 x 10" and 1 x 10" Ph dose at Ph implant

energy = 1000 KeV to fabricate vIFT
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Figure 9
(a) Ig-V, curve at WL2 depending on Ph implant energy for
800 KeV, 1000 KeV, and 1200 KeV. Channel Length
depending on implant energy: (b) 800 KeV and (c) 1200 KeV
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(a) I4-V curve at WL2 depending on Ph implant energy for 1200
KeV, 1400 KeV, and 1600 KeV. Channel length depending on

implant energy: (b) 1200 KeV and (c) 1600 KeV
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Figure 11
(a) Initial I4-V,; depending on boron implant
dose for cell channel. (b) Change of channel length
depending on channel boron doping and inset shows
the channel length in NAND flash cell
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Figure 12
Program characteristics of cell at V},;p,, = 10V at WL = 2. Inset
shows the WL potential at the program state
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3.3. NAND flash cell characteristics

The high energy condition causes cell Vy, to be larger
variation that can be explained as two area. The high Ph
implant energy between 800 and 1200 KeV makes the channel
length reduced in Figure 9(a) because the main peak is formed
at deeper location as shown in Figure 9(b) and (c). As Ph
implant energy increases between 1200 and 1600 KeV, Vy,
becomes higher by increased channel length as shown in
Figure 10(a). It is because that the main Ph peak deeply
penetrates into inside NAND cell. It means the main Ph peak
has passed the drain area as shown in Figure 10(b) and (c).
Based on the result from Figures 7 and 8, Ph 4 x 10'3/cm? dose
and 1000~1200 KeV energy can be proposed as the optimized
conditions. Figure 11(a) shows the measured /4-V, and change
of channel length depending on channel doping for NAND cell
fabricated with optimized vIFT implant condition (4 x 10'%/cm?
dose and 1000 KeV energy). In Figure 11(b), the short channel
effect is observed as the boron doping is lower in NAND cell
channel. Additionally, it was confirmed that the program of WL02
in NAND cells is operated normally as shown in Figure 12.

4. Conclusion

Recently, a few different architectures have been proposed to
overcome the issue of peripherals taking up too large an area and
too high a portion of the total die size. One of them is the
peripheral circuit (CMOS) can be under array (CUA) and another
is to build the peripheral circuits on a different CMOS wafer and
then bond the memory wafer with the CMOS wafer using wafer-
to wafer micro bonding, termed as CMOS bonded array (CBA).
Although the two architectures have many advantages for NAND
cell, they still are suffering from the degradation of read
performance due increased BL RC delay. As 3D NAND stack
recently increases by 232 layers, it should be more challenging
such as the degradation of RC delay due to higher stack height.
Accordingly, 3D NAND flash is severely suffering from the
degradation of read performance due to RC delay of bit line by
higher stack height. In this paper, the COA structure using NC-
VvTFT was proposed to reduce the length of bit line for the first
time. The COA structure consists of the SOI transistor, vTFT
transistor, and 3D NAND cell with 4 layers. It was successfully
fabricated using proposed process flow and the best Ion
implantation conditions with Athena process simulation of
Silvaco. The best process conditions were found out through the
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various process split conditions because the thickness of each
layer gives the impact on the doping profile to operate the
transistor and NAND flash cells. As a result, the optimized
process condition for Ton implantation (4 x 10'3/cm? dose and
1000 KeV energy) to operate the transistors and 3D NAND
flash cells was secured. Also, it was finally confirmed that
Program and Read for 3D NAND flash cell was normally
operated.
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