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Abstract: The grid-tied photovoltaic (PV) power system has remained the most practical and sustainable configuration among renewable
energy generation systems. Although uncertainties persist in solar irradiance and temperature, the grid-tied system faces transient instability
issues during maximum power point tracking, adversely affecting power quality and resulting in substantial costs. To overcome this issue, we
proposed analyzing the grid-tied system under uncertain atmospheric conditions based on an adaptive neuro-fuzzy control system (ANCS).
This control scheme incorporates a hybrid learning algorithm and undergoes evaluation across various operating conditions. The obtained
results demonstrate the effectiveness of the learning algorithm in maintaining a fast convergence speed. Consequently, this capability ensures
the consistent preservation of sufficient power quality in the power system without any discernible transient impact. Furthermore, the
investigation reveals the significant impact of solar radiation and temperature on the performance of the solar grid-tied PV system.
Specifically, temperature alone contributes to over 15% power reduction when reaching 45 °C. As the temperature decreases to 5 °C at
1000 W/m2 irradiance, the ANCS influences an increase in the system’s power generation from 100.72 kW at 25 °C to 103.01 kW.
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1. Introduction

There is a growing use of solar photovoltaic (PV) as a renewable
energy source because of the number of advantages it provides. These
include simplicity, ease of installation, negligible maintenance,
noiseless operation, and above all, zero carbon emission. The
progress recorded in solar PV technology has driven the installation
cost of the solar power system [1–7]. These increased the number of
solar PV integration in the power network and eventually introduced
new challenges. The challenge includes poor power quality, like
harmonic distortion, unstable voltage supply, and frequency
variation. Several efforts from the research community have yielded
significant results in terms of the solar PV system connection to a
grid. Yet more is required to tackle emerging challenges like
persistent failure, associated operational challenges, and increased
demand for reactive power [8–14]. Grid-tied PV systems emerged
from a long-time research effort to replace PV stand-alone systems.
The grid-connected PV system has turn to a popular design of
consistent electric source. The connected PV system is designed and
operates a grid-interactive pulse width modulation, utilizing voltage

source inverter (VSI) to achieve high efficiency [15, 16]. VSI
connection requires optimal power extraction, independent control of
active/reactive power supplied to the electrical grid, excellent
transient response and grid synchronization, etc. However, in the
case of a low-power PV array, a boost converter is employed to
perform maximum power point tracking (MPPT) and raise the
voltage of the PV source to align with the voltage of the DC link
[17]. These techniques are usually employed to maintain a stable
power supply from the PV system to the distributed generation network.

The current work contribution includes the adaptive control
MPPT based on the neuro-fuzzy system application on a three-
phase grid-tied PV system coupled with a feeder network. In
addition, the study contributes by conducting a stability analysis of
the integrated PV system in the presence of various atmospheric
disturbances. However, the motivation behind the proposed
adaptive neuro-fuzzy control system (ANCS) for grid-tied PV
power systems lies in addressing the challenges posed by
uncertainties in solar irradiance and temperature.

1.1. Problem

The distributed energy resources integration into the power
network has raised the vulnerability of the power supply quality to
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poor power quality in the power system network. Therefore,
fluctuating supply from one PV system can be costly not only to
the network of electrical power systems but also to the power end-
user [18]. This challenge required a robust control strategy capable
of adequately tuning the state parameters to achieve a sustainable
seamless power supply. In recent years, more research has
concentrated on MPPT technology while considering atmospheric
conditions’ influence [19]. To effectively investigate the impact of
the MPPT techniques, PV generation under uncertain atmospheric
conditions needed to be studied.

1.2. Related work

Several reportedMPPT techniques have a promising performance,
including the perturb and observe (P&O)method alongside incremental
conductance [20–22]. These techniques have a complex
implementation procedure and are a bit weak in handling solar
irradiation uncertainty, and achieving a global maximum power point
became difficult [23, 24]. Also, these tactics are identified with slow
response time to a maximum power point due to their high
oscillatory sensitivity and poor convergence rate. However, several
efforts from different research groups have contributed to the
ameliorating deficiency of the techniques. These efforts are in the
design process and operation strategy, which includes algorithm
modification, variable step size, and new framework development
[24–31]. The achieved progress includes enhanced convergence rate
and tracking of the PV scheme during varying weather conditions
compared with the traditional techniques.

Despite the effortmade by improving the conventional techniques,
moreMPPT-enhanced strategies are needed to balance the PV system’s
performance and its global capability in maximizing power output.
However, some methods proposed based on the soft computing
paradigm to address a complex system’s dynamic behavior and PV
power flows. A technique based on the grey wolf algorithm,
artificial intelligence, and evolutionary algorithm approach deployed
was to tackle the nonlinear features of the PV system [32–38].
Although soft computing-based techniques have a complex
computational process, they have better performance. Adequate
tracking and convergence speed obtained on a grid linked PV
framework with an extremum seeking algorithm [39–42]. This
control strategy employed algorithms to estimate the gradient of the
generated power iteratively. However, system operation stability
with global MPPT while maintaining a fast convergence rate can be
difficult. Hybrid techniques for power point tracking were also
employed using differential evolution and particle swarm
optimization algorithm to improve MPPT. These methods exhibit a
promising performance while dealing with irradiance uncertainty
during PV energy generation [43]. Despite the performance of the
classical tracking method for peak power such as incremental
conductance, P&O with an enhanced algorithm, soft computing
techniques remain robust. Although the method was associated with
a computational burden, it deals with rapid atmospheric variation
and partial shading.

1.3. Our approach

The current study focuses on applying adaptive control in MPPT
based on a neuro-fuzzy control system to maintain grid-tied PV system
stability under the uncertain disturbance of atmospheric conditions. Fast
variation of atmospheric conditions is an important issue in the PV
generation framework, as the occurrence produces harmonic
distortion in the inverter output connected to the power network. The
projected control scheme will keep track of the global maximum

power point to generate an appropriate control signal for the
optimum operation of the inverter through the converter. This
control strategy can guarantee grid power quality with zero transient
current and voltage during atmospheric uncertainty in the PV
system. These are achievable by the control system because of the
soft switching and seamless operations capability.

1.4. Novelty

Our work is novel because while some previous work has used
type 1 or type 2 fuzzy logic on a single-phase grid-tied network, they
did not explore adaptive hybrid neuro-fuzzy logic on three phases
grid-tied PV system to control its stability under the uncertain
disturbance of atmospheric conditions. In summary, the current work
has contributed the following to the investigation of the impact of the
MPPT approaches and PV generation under uncertain atmospheric
conditions: (1) the adaptation of the adaptive control MPPT built on
the neuro-fuzzy scheme for three phases grid-tied PV system coupled
with a feeder network, (2) implementation of a stability analysis of
the integrated PV system under the influence of different
atmospheric disturbances, (3) hypothesize that hybrid learning
algorithm consolidation within the control architecture enables zero
transients in the size of the current power infrastructure network, and
(4) that the status of transient and stable states in the power network
established the effectiveness of the learning algorithm in maintaining
a fast convergence speed.

2. System Description

The grid-tied PV system comprises a PV array, control unit,
VSI, load and transformer, and grid system. The PV system
contains a model of solar SunPower SPR305E-WHT-D modules,
which are connected in series and parallel to make the PV array.
The PV array generation is linked to the VSI through the
regulatory unit. The VSI equivalent model is available in Ammeh
et al. [44]; Deffaf et al. [45]; and Debdouche et al. [46].
A triple-phase coupling transformer (T1) is employed to interface
the grid and inverter sides, as shown in Figure 1. The system’s
operating variables are given in Table 1. The three phases grid
system comprises a feeder network, step-down transformer (T2),
synchronous generator, and resistive and inductive load. The
system operates at a 60 Hz frequency, and a phase-to-ground
measurement for the voltage and current is registered.

2.1. PV array

Solar cells have a nonlinear current–voltage characteristics
expressed in Equation (1):

I ¼ Iph � I0 e
q VþIRsð Þ

nkT � 1
� �

� V þ IRs

Rsh
(1)

where Iph is the photocurrent, the diode saturation current is Io, Rs

denotes series resistance, Rsh represent shunt resistance, n represents
the factor of diode ideality, k is the Boltzmann’s constant
(1:4 � 10�23), q is the electron charge (1:6� 10�19), and T repre-
sents the temperature measured in kelvin.

The nonlinear relationship between current and voltage is
influenced by the solar radiation and temperature. At 25 °C, the
characteristics of voltage and current, as well as voltage and power
plot for the solar array in the current study is shown in Figure 2.
The maximum power point for the module is given in Table 2.
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3. Control System Design

The conventional control system design based on a
mathematical model continues to provide different ways of using
information from this model. This design approach sometimes
neglects to account for vital information. In contrast, a data-driven
control design takes cognizance of all essential information at the
initial design stage. The control design of the ANCS in the current
work is driven by data. However, the function of the control
system is determined by the modeled neuro-fuzzy inference

system, which relies on a collection of fuzzy if-then laws and a
neural network machine learning model. The fuzzy identification
modeling has rendered a reasonable control solution for varieties

Figure 1
Representation of grid-tied photovoltaic system

Table 1
Operating condition

Parameters Values

Solar module power (W) 305.2
T1 power (kVA) 100
Series modules number 5
T1 primary voltage (V) 260
Parallel modules number 66
T1 secondary voltage (kV) 25
Module open-circuit voltage (V) 64.2
Module short-circuit current (A) 5.96
Capacitive load power (kVAR) 10
T2 power (MVA) 47
Resistive load power (W) 100
T2 primary voltage (kV) 120
Grid feeder length (km) 29
T2 secondary voltage (kV) 25
Syn. generator voltage (kV) 120
Feeder RL power (MW) 32
Feeder IL power (MVAR) 2
Syn. generator power (MVA) 2500

Figure 2
Current–voltage and power–voltage characteristics under

irradiance variation

(a)

(b)

(c)

(d)

Table 2
PV array maximum power point

PV
Irradiance
(kW/m2) Voltage (V) Current (A)

Power
(kW)

0.25 53.02 1.39 0.07409
Module 0.5 54.17 2.78 0.15112

1 54.70 5.58 0.30523
0.25 265.10 92.23 24.45

Array 0.5 270.84 184.13 49.87
1 273.50 368.28 100.72
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of applications since first suggested by Takagi and Sugeno [47]. In
recent years, the fuzzy design approach has gained more attention in
control, modeling, prediction, system identification, and monitoring
applications [48–52].

The model consists of two inputs, nine rules based on Takagi
and Sugeno’s fuzzy if-then rules [47], and one output. Each of the
inputs is associated with three membership functions which enable
the partition of the input space into nine neuro-fuzzy subspaces.
The if-then fuzzy-based rule regulates each subspace. The premise
parameter within the rule rules defines the fuzzy subspace, while
the consequence parameter determines the output portion of the
fuzzy subspace. The ANCS model structure is given in Figure 3.

3.1. Sugeno–Takagi model

Sugeno fuzzy model is built within the neuro-fuzzy scheme to
establish a formal framework that generated fuzzy principle from an
input to output data collection. A standard fuzzy rule within a format
of the Sugeno fuzzy model is as follows:

If x isA and y isBTHEN z ¼ f x; yð Þ (2)

where A and B denote set of fuzzy in the antecedent; z is a crisp func-
tion in consequent. f x; yð Þ is any functions suitable to characterize
the target of the output of the scheme in the fuzzy zone as indicated
by the antecedent of the laws. It is a first-order Sugeno fuzzy model
when f x; yð Þ is a first-order polynomial, and a zero order Sugeno
fuzzy model when f is a constant. A Sugeno fuzzy model of zero
order becomes functionally identical to a radial basis function net-
work when specific minor limitations are applied.

As in Figure 3, the initial pair of the fuzzy inference operation is
responsible for fuzzifying the inputs and applying the fuzzy operator. A
normal rule in Sugeno fuzzy framework has the form: IF Input 1 ¼ x

AND Input 2 ¼ y, THEN Output is z ¼ ax þ by þ c. For a
zero� order Sugeno model, the output level z is constant
(a ¼ b ¼ 0). For each rule, its output level zi is influenced by the rule’s
firing strength, denoted as wi of the rule. For instance, in the case of an
AND rule where Input 1 is x and Input 2 is y, the firing strength deter-
mines the weight as:

wi ¼ AndMethod F1 xð Þ; F2 yð Þð Þ (3)

where F1 :ð Þ; F2 :ð Þ are functions that determine the degree of mem-
bership. Thus, the system’s ultimate result is calculated by taking
the weighted average of all the outputs from the rules, as presented
in Equation (4). Figure 4 illustrates the example of Sugeno rule.

Final Output ¼
P

N
i¼1 wiziP
N
i¼1 wi

(4)

3.2. ANCS model

The adaptation process of the ANCS built on the learning
framework of a multilayer feedforward (or backpropagation)
network. The network operates in such a way that allows every
individual node to execute a unique function on each node
parameter and a signal entering the node. These processes grant
each node to accept discrete relations in the agreement of the node
parameters. The decision for the kind of node function relies on
the general data exchange functions, which the adaptive system
can determine. Round the adaptation process, node parameters are
updated based on a specific learning procedure and assigned
training data. These allow a realization of a desired input–output
mapping. Consider the given adaptive network model structure in
Figure 3, and assume O finite node output exists on L-layers with

Figure 3
Architecture of the model structure
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the jth layer corresponding to a ith node on that layer. If the node
position on each layer makes up of ith then, the node output can
be expressed as a function as follows:

Oj
i ¼ Oj

i Oj�1
1 ; . . .Oj�1

q ; a; b; c; . . .
� �

for i ¼ 1; . . . q (5)

where a, b, c, and so on denote the node’s parameters.
For the assigned training data, let d be the dataset instances such

that the training error can be described using square errors as given
below:

Ed ¼
XR
q¼1

ðOL
q;d � Tq;dÞ2 (6)

where R denotes the number of layers, Tq;d represent the qth element
of the d desire outcomes vector, and OL

q;d denotes the qth element of

the main outcomes vector generated by the d input vector.
However, the entire measured error can be evaluated as:

E ¼
X

D
d¼1

Ed (7)

To evaluate node output across the network, consider the expression
of the node role for the input of the fuzzy network as follows:

Oj
i ¼ µAi xð Þ (8)

where μ quantifies the degree of truth that error at a given time
assumes linguistic value, A denotes a linguistic label associated
with a node role, and x feed into the node i.
From Equation (8) with regard to layer 1:

µAi xð Þ ¼ 1

1þ x�Ci
ai

� �
2

h i
bi

(9)

The values of the node parameters ai, bi, and ci determine the
configuration of the membership functions regarding linguistic
label Ai.

Different types of membership functions exist, which are either
piecewise differentiable or continuous functions. However, the
current study adopted the Gaussian membership function. This
function helps in capturing gradual transitions and gradual
changes in membership degrees. The function is employed to
define the shape of the adaptive neuro-fuzzy inference system’s
initial membership function, as shown in Figure 5. The first and
second input belonging to inference system entails in Figure 5(a)
and (b), respectively. The inference system output concerning the
two input variables is shown in Figure 6(a).

However, the contribution of the neuro-fuzzy membership is
computed from Equation (10):

fi x; a; cð Þ ¼ exp � x � Cið Þ2
2ai

� �
(10)

The parameters a and c represent the standard deviation and mean.
To ensure the appropriate value of the quantified function is

determined, a combination of two Gaussian membership functions
is employed to compute the adaptive neuro-fuzzy membership
value. Figure 5 is determined based on the combinatory function.
Figure labeled 5a and 5b represents the membership function of
inputs 1 and 2, respectively, based on distinct Gaussian member
functions. These functions determined the shapes of the figures.

Suppose the last number of the layer in the network shown in
Figure 3 is N. The outgoing signals in the second and (N − 2) layers
are expressed as ε and ε̄ for each node:

εi ¼ µAi xð Þ � µBi yð Þ for i ¼ 1; 2; 3 (11)

ε̄ ¼ εi

ε1 þ ε2 þ ε3
for i ¼ 1; 2; 3 (12)

From Equation (12), each node output associated with the layer deter-
mines the control strength of a rule. This strength is normalized as
expressed in Equation (13) before it reaches the output layer. In the case
of the node in (N − 1) and N-layers, the output function is given as:

ON�1
i ¼ ε̄ifi (13)

ON
i ¼

P
i εifiP
i εi

(14)

All the membership functions for the output have a linear characteristic
throughout the training process. A hybrid optimizationmethod is adopted
in identifying state parameters within the adaptive neuro-fuzzy network.
The technique employed a backpropagation algorithm to tune parameters
related to the input membership function within the hidden level. How-
ever, least-square estimation is adopted to identify the parameter linked to
the output membership function. Figure 6(b) shows the adaptive neuro-
fuzzy reasoning system, quadratic mean value error for the training and
validation.

Figure 4
Illustration of Sugeno rule

Input 1

Output 

Level

Input 2

Input MF

Input MF

Output MF

AND
Rule weight 

(Firing strength)
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4. Simulation Results and Discussion

The examined controller operates based on diverse combinations
of input–output data sources from the PV system’s variables. These
variables encompass solar irradiance (W/m2), temperature (°C), PV
voltage (V), current (A), and power (W). These variables are taken
into account because they capture the pertinent characteristics of
PVs. Moreover, they can accurately depict the real performance of
PV power generation. By simulation of the PV system, a wide

range of values for these variables are explored, facilitating the
creation of an input–output dataset. This dataset is partitioned into
training and testing subsets, distributed in a ratio of 70% for
training and 30% for testing. The controller’s input comprises solar
irradiance, temperature, voltage, and current, whereas power serves
the designated output.

The current study looks at two key operating conditions that
influence greatly on the PV system generation optimality.
Irradiance represents the solar energy incident on the PV module.

Figure 5
ANCS initial membership function

(a)

(b)

Figure 6
Adaptive neuro-fuzzy reasoning system error

(a)

(b)
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Figure 7
Current–voltage and power–voltage characteristics under temperature variation

(a)

(b)

Figure 8
Off-grid power output based on MPPT controller. (a) Solar irradiance profile. (b) P&O-EADRC. (c) ANCS

(a)

(b)

(c)
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Higher irradiance levels result in increased energy absorption by the
solar cells, directly influencing power output. Temperature affects
the efficiency of solar cells. As temperature rises, the efficiency of
PV panels tends to decrease. This decrease is a critical factor in
determining the actual performance of the system under real-
world conditions. These are irradiance and temperature which are
capable of affecting the PV generation performance. As observed
in Figure 2, the PV generation performance varies with variations
in solar irradiance. The recorded single PV module power under
250 and 500 W/m2 solar irradiance at standard test condition
(STC) is 74.09 and 151.12W, respectively, as illustrated in
Figure 2(b). Similarly, power generation through the PV array is
24, 450 and 49, 870W under 250 and 500 W/m2 at STC, as shown
in Figure 2(d). The effects of temperature on the PV system have
remained one of the major drawbacks that challenge the PV
generation performance [18, 22, 53]. Rising environmental
temperature and direct sunlight striking the area surface of
installed PV modules can easily trigger operating point variation
in PV system energy generation. This variation is observable in
Figure 7 as the PV module is subjected to temperature variation
from 0 to 50 °C. At 0 °C, the outputted PV power is 331.25 W
and decreased to 303.16 W at 25 °C temperature. Similarly, the
observed power at 50 °C is 274.22 W while the output voltage is
33.85 V.

To carry out an assessment of the ANCS, the above two testing
conditions are considered. The control system is compared with the
P&O coupled with error-based active disturbance rejection control
(P&O-EADRC) [54]. In the first instance, a 300 W off-grid PV
system with a power generation reference of 250 W is studied and
subsequently scaled up to a 100 kW grid-tied PV system. In the
first case, the solar irradiance alternates from 600 W/m2 to 800 W/
m2. The irradiance reached 1000 W/m2 at 0.3 sec, then back to
800 W/m2 at 0.4 sec of the runtime. Similarly, the irradiance
varies from 800 to 600 W/m2 for the remaining runtime, as shown
in Figure 8(a).

The impact of the solar irradiance variation is observable in the
generated power, as depicted in Figure 8(b) and (c). Both controllers
exhibit effective tracking and optimizing the maximum power point.
At the first half cycle of 0.2 sec, the P&O-EADRC outputs 168.36W,
and the ANCS outputs 196.59 W while there is 600 W/m2 solar
irradiance. When the irradiance increased to 1000 W/m2,
the generated power increased to 253.88 W and 254.14 W for the
P&O-EADRC and ANCS, respectively. The stability of
the controllers in tracking the generated power remains consistent
throughout the period. However, a dither is observable while the
solar irradiance is at 600 W/m2 and 1000 W/m2 during the P&O-
EADRC operation. These suggest that the P&O-EADRC
controller perturbation direction may not lead to the global MPPT.

Figure 9
Grid-tied power output based on the MPPT controller. (a) Solar irradiance profile. (b) P&O-EADRC. (c) ANCS

(a)

(b)

(c)
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The dither then helps keep the control system from becoming stuck.
The situation can lead to unwanted interaction between the dither
signal and power system components.

The study’s second case involves examining the controller’s
performance while the PV system is scaled up and connected to
the grid. At the initial state, the solar irradiance is 1000 W/m2,
sharply decrease to 250 W/m2 for 0.5 sec, and returned to its
initial value during the first 3 sec. The solar irradiance suddenly
reduced to 500 W/m2 at the beginning of the remaining 3 sec and
finally returned to 1000 W/m2 after 1.5 sec, as shown in
Figure 9(a). This second case considered a constant atmospheric
temperature of 25 °C throughout.

The peak power point tracking occurs when the solar irradiance
is at peak values, as shown in Figure 9. Also, the minimum generated
power takes place while the irradiance goes to its lowest point. In the
first 0.5 sec, 100.49 kW and 100.72 kW are power generated through
the P&O-EADRC and ANCS, respectively. However, both MPPT-
based controllers exhibit aggressive undershooting output power
during the suddenly decreased solar irradiance at 3 sec. The
generated power under the ANCS is free from ripples, while the
generated power under the P&O-EADRC controls displayed
ripple during the lowest irradiance value. These suggest the
striving action of the P&O-EARDC to track the peak power
output. This event validates the unwanted interaction between the
controller’s dither signal and sensitive power system components.

The MPPT controllers’ response to the solar irradiation
variation is observable in the grid-tied system current profile and
voltage, displayed in Figure 10. The observed ripple in the peak
generated power under the P&O-EADRC has manifested in the
grid voltage and currents profile as shown in Figure 10(b) and (c).
The effects of the ripples have caused an overshoot and
undershoot in both grid voltage and current profile. This accounts
for more than 11 A increment in the grid current under the P&O-
EADRC compared with the ANCS. The observed transient
response can undermine the quality of distributed power and, by
extension, impact power system equipment negatively. The
absence of transient voltage and current under the ANCS results
from the robustness of the ANCS amid tracking the optimal
power. These demonstrate the effectiveness of the soft switching
capability of the control scheme adopted in the ANCS. The
combined impact of both solar radiant flux and thermal state
variations is observable in Figure 11. The PV system voltage
demonstrates the impact of solar irradiance and thermal state. The
sharp decrease in the generated power at 3 sec validates
the implication of sudden solar radiance change. In contrast, the
impact of sudden decrease change is severe compared to that of
sudden increase change, as depicted in Figure 11(c) and (d).

A decline in power generation is observable between 2 and 3 sec
while the temperature gradually increases from 25 °C to 45 °C, as
shown in Figure 11(b), (c), and (d). Similarly, there is an inclined
power generation while the temperature declines from 45 °C to
15 °C. The decrease in generated power in response to the
increased solar temperature demonstrates the impact of
temperature above the given solar PV module temperature in
STCs. However, a 2.29 kW power increase is observable while the
solar temperature decreased by 20 °C below the initial
temperature. These phenomena validate the solar PV power
conversion behavior concerning solar temperature [53, 55–57].
The implication in the generated power signal variation observed
can lead to electromagnetic interference, affecting other electronic
devices and communication systems coupled to the power grid.
The variation may lead to increased losses in the distribution line
due to additional heating effects. This could reduce the efficiency

of distribution equipment such as transformers, circuit breakers,
and other components.

The power generation under the two controllers is consistent
with the available operating condition of the PV system.
However, the energy generation under the ANCS remains higher
than that produced under the P&O-EADRC. As observed in

Figure 10
Grid voltage and current profile. (a) Grid voltage under P&O-

EADRC. (b) Enlarged grid voltage under P&O-EADRC.
(c) Grid current under P&O-EADRC. (d) Grid voltage under

ANCS. (e) Enlarged grid voltage under ANCS.
(f) Grid current under ANCS

(a)

(b)

(c)

(e)

(d)

(f)
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Table 3, the generated power increases with an increase in the solar
irradiance, but the actual generation from the PV system lags the
irradiance. These are traceable at the irradiance interval of 1000
W/m2 at 2.99 sec and 500 W/m2 at 3 sec, where the power
generation at 2.99 sec remains until after the instantaneous change
of the irradiance at 3 sec. A similar scenario is observed at 4.49
sec to 4.50 sec for the sudden solar irradiance change from 500
W/m2 to 1000 W/m2, respectively.

The grid voltage and current profile under the ANSC look more
refined than the P&O-EADRC produced voltage profile, as observed
above. The transient variation in voltage and current profiles under the
P&O-EADRC appears at 1–2 sec and 3–4.5 sec intervals. However, at
the initial time of the power generation, there is maximum overshoot
and undershoot current. In comparison, the corresponding initial
voltage spike is higher in Figure 12(a) than in Figure 12(c). These

suggest the ANSC control capability in assuring stability and
smooth power generation in a grid-tied PV setup.

The presence of overshoot and undershoot in the grid voltage
and current profiles indicates the oscillatory behavior of the P&O-
EADRC around the maximum power point. As environmental
conditions change, this controller faces challenges in adapting to
the new operating conditions, leading to instability. In essence,
these overshoots and undershoots are indicative of the controller’s
dynamic behavior and its response to changing environmental
conditions.

The grid voltage and current profiles under ANSC exhibit more
stable behavior than P&O-EADRC. These suggest superior control
capability for ensuring smoother power generation in a grid-tied PV
system. The differences in dynamic behavior between the two
controllers highlight the importance of controller selection for

Figure 11
Grid-tied power output based on the MPPT controller. (a) Solar irradiance profile. (b) Temperature profile. (c) P&O-EADRC.

(d) ANCS

(a)

(b)

(c)

(d)
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optimizing the performance of PV systems in diverse operating
conditions.

5. Conclusion

The currentwork presented the analysis of the grid-tied PVoptimal
power point tracking under adaptive neuro-fuzzy control. These
demonstrated the need and impact of stable power generation in a

power supply network. The ANCS control outperforms the P&O-
EADRC in stabilized power generation. The zero transients’ voltage
and current within the ANCS demonstrate the influence of the
adaptive neuro-fuzzy control in enabling stable power generation.
However, the impact of the irradiance and heat level on the solar
grid-tied PV has been determined. However, the temperature alone
contributes to a reduction of more than 15% in power generation on
the grid when the temperature reached 45 °C. While the temperature
drop-off to 5 °C, the generated power increases from 100.72 kW at
25 °C to 103.01 kW under ANCS. These validate the solar PV
energy conversion characteristics concerning temperature.

As P&O-EADRC demonstrates transient variations in voltage
and current profiles occurring at 1–2 sec and 3–4.5 sec intervals,
ANSC assures stability. These imply that ANSC responds much
more favorably to environmental changes, contributing to a more
controlled and stable PV-tied system operation. The absence of
transients under ANCS indicates a smooth transition between
different operating conditions. The achieved smooth transition
demonstrates stable and grid-friendly power injection. This stability
is crucial for the seamless integration of grid-tied PV into the
transmission network. However, the practical implications of these
findings suggest that ANCS has the potential to contribute to the
evolution of grid-tied PV system technology, offering insights that
can guide system design, operation, and future research endeavors.
Thus, this study sheds valuable light on the role of control
strategies, highlighting the efficacy of ANCSs in grid-tied PV systems.

The study mainly focused on specific environmental conditions,
and the generalizability of the findings to diverse climates and
geographical locations warrants thorough consideration. Future
research works could address these limitations by conducting
extensive field studies across varied environmental contexts to
validate the robustness of ANCS under diverse conditions.
Exploring the scalability and adaptability of ANCS in larger-scale
PV systems and its integration with emerging technologies could
also be avenues for further research. Moreover, in-depth studies of
the economic feasibility and cost-effectiveness of implementing
ANCS in real-world applications could furnish valuable insights for
industry stakeholders and policymakers.
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Table 3
Power generation performance

Time (S) Irradiance (W/m2)
P&O-EADRC ANCS

Temperature (°C)
P&O-EADRC ANCS

Power (kW) Power (kW) Power (kW) Power (kW)

0.5 1000 100.50 100.72 25 100.50 100.72
1.0 250 22.33 25.72 25 22.33 25.74
2.0 1000 98.51 99.25 25 98.51 99.25
3.0 500 100.49 100.64 45 86.72 86.75
4.5 1000 30.56 27.06 25 30.56 27.06
6.0 1000 100.49 100.72 5 100.70 103.01

Figure 12
Grid voltage and current profile during temperature variation.
(a) Enlarged grid voltage under P&O-EADRC. (b) Grid current
under P&O-EADRC. (c) Enlarged grid voltage under ANCS. (f)

Grid current under ANCS

(a)

(b)

(c)

(d)
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