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Abstract: Self-compacting concrete (SCC) is an innovative building material that can flow and compact itself without the use of external
vibrations. It is an effective material to enhance the use of industrial waste products such as fly ash and silica fume in concrete to reduce the
carbon emissions from construction industry. Despite the many advantages of SCC over conventional concrete, there are very few methods
that can effectively forecast compressive strength of SCC. It is due to the non-linear behavior of SCC in relation to its mixture components.
Thus, an innovative machine learning technique called gene expression programming (GEP) is employed to estimate the strength of SCC. For
this purpose, a database consisting of 231 datapoints is constructed using extensive literature search. The algorithm resulted in an empirical
equation that relates compressive strength with seven most influential parameters: cement, fly ash, silica fume, coarse and fine aggregate,
water, and superplasticizer. The dataset is split into two sets called the training and validation datasets having 70 and 30% of the data,
respectively. The training and validation data will be used to train and validate the algorithm, respectively. The algorithm’s accuracy is
checked by calculating the four commonly used error metrices: mean absolute error, root mean square error, coefficient of correlation
(R), and performance index (p) for both datasets. The statistical evaluation revealed that the errors are within the ranges specified in the
literature. The accuracy of the algorithm is also verified by plotting scatter and series plots of training and validation datasets. Thus, the
developed equation by GEP algorithm can be effectively used to forecast the 28-day compressive strength of SCC having fly ash and
silica fume as mineral admixtures.

Keywords: self-compacting concrete (SCC), gene expression programming (GEP), machine learning (ML), artificial intelligence (AI), fly
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1. Introduction

Conventional concrete uses Portland cement as the main
binding agent, which is the main source of carbon emissions from
the construction industry (Onat & Kucukvar, 2020). The annual
production of concrete is 25 billion tons, and it contributes
significantly to the global CO2 emissions. The concrete industry
has changed rapidly in the past few years. One of the main advance-
ments is the use of industrial waste products in place of cement.
Many industrial wastes such as fly ash, limestone powder, silica
fume, and slag have been used in concrete in place of cement. Thus,
to foster the use of waste materials in concrete and reduce the asso-
ciated carbon emissions, a special concrete called self-compacting
concrete (SCC) has been introduced (Brouwers & Radix, 2005).

SCC is a special variant of concrete having enhanced flowing
properties and it can compact itself without the use of external
force. Due to these properties, it can be effectively used in places
having delicate rebar structures or where conventional compaction
methods are not applicable. Additionally, the use of SCC

containing waste materials as mineral admixtures such as fly ash
and silica fume results in good surface finish, higher strength, and
improved working conditions (Asteris et al., 2016; Grdic et al.,
2008). Several studies reported the use of secondary cementitious
materials in SCC and their effect on the properties of SCC
(Boukendakdji et al., 2009; Fathi et al., 2013; Gesoğlu et al.,
2009; Gesoğlu & Özbay, 2007; Mohamed, 2018; Raman &
Krishnan, 2017).

Themixture composition of SCC is the key to achieve the desired
flowing and self-compacting properties. It includes use of higher
quantities of fines such as sand and other mineral admixtures such
as fly ash and silica fume. A superplasticizer is usually added along
these fines to help achieve the desired flowability. Generally, SCC
mixes have high water-to-cement ratio and low coarse aggregate as
compared to the normal concrete (Valcuende et al., 2012).
Although SCC has been readily used in the construction and it has
the potential to revolutionize the construction industry, there are
very few works attributed to accurate prediction of 28-day
compressive strength of SCC. It is largely due to the non-linear
behavior SCC has in relation to its mixture components (Asteris &
Kolovos, 2019). Any variation in the cement, sand, mineral, or
chemical additives can result in variation in strength of SCC
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(Boukendakdji et al., 2012). Another reason maybe the lack of
expertise and familiarity required to accurately estimate the
compressive strength of SCC. Thus, to foster the use of SCC in the
construction industry, it is very important to have a method that can
accurately forecast the 28-day compressive strength of SCC.

2. Literature Review

It is necessary to have an estimate of concrete strength prior to
construction to make sure the safety and performance of the
structure. Recently, the prediction of different properties of
concrete using machine learning (ML) algorithms has emerged as
an effective tool to reduce the construction waste and foster the
use of waste materials in construction industry (Farooq et al.,
2021; Sonebi, 2004). ML algorithms offer the advantage of
identifying the hidden mechanisms in the data. It is due to their
ability to learn patterns and associations from the data. Thus, ML
algorithms can extract useful insights from the data and use them
to make accurate predictions (Nunez et al., 2020). In the past,
different ML algorithms such as artificial neural networks
(ANNs), decision trees, support vector machine, and random
forest (RF) have been utilized in the domain of civil engineering
to predict different mechanical properties of concrete composites,
soil compaction factors, slope failure, etc. (Alavi et al., 2010;
Chen et al., 2022; Chu et al., 2021; Cui et al., 2021; Demir, 2015;
Dias & Pooliyadda, 2001; Jalal et al., 2023; Khan et al., 2022;
Marani et al., 2020; Qi & Tang, 2018; Saridemir, 2010; Singh
et al., 2023; Wang et al., 2021).

Regarding the estimation of SCC properties using ML
algorithms, Mai et al. (2023) employed different boosting
algorithms like light gradient boosting machine (LGBM), extreme
gradient boosting (XGB), and decision tree to forecast strength of
SCC on a dataset of more than 350 samples using 17 input
variables. The accuracy of the algorithms was assessed by using
R2 and mean absolute error (MAE). The results revealed that
XGB is the most accurate algorithm with R2 ¼ 0:992 and average
error equal to 1.438. Similarly, Siddique et al. (2011) leveraged neu-
ral networks to predict strength of SCC containing bottom ash as par-
tial replacement of cement. The results revealed that ANN has
excellent predictive ability demonstrated by MAE 0.63 and maxi-
mum correlation coefficient equal to 0.96. Also, De-Prado-gil
et al. (2022) utilized various ML techniques including k-nearest
neighbor (KNN), extremely randomized trees, gradient boosting,
category boosting, RF, LGBM, inverse Gaussian, and Poisson Gaus-
sian to predict CS of SCC containing recycled aggregates. The accu-
racy of the algorithms was assessed by using R2 and the authors
concluded that RF is the most accurate algorithm with R2 ¼ 0:69
and MAE= 0.05. The results indicate the robustness of ML algo-
rithms to accurately predict different properties of SCC. In 2017,
Kaveh et al. (2018) used multiadaptive regression spline (MARS)-
based predictive model to predict strength of SCC modified with
fly ash along with L-box ratio and V-funnel time. The study utilized
a dataset of 114 samples and revealed that MARS predictive model
can estimate the concrete strength with 92% accuracy and V-funnel
time with 86% accuracy. Moreover, Asteris et al. (2016) conducted a
study to predict CS of SCC having a variety of admixtures including
fly ash, slag silica fume, limestone powder, etc. using ANN. The
study concluded that ANN has immense potential to accurately pre-
dict different concrete composites demonstrated by the correlation
between experimental and predicted values equal to 0.98. The sum-
mary of the literature review related to predicting strength of SCC
using ML techniques is presented in Table 1. It is evident from
Table 1 that there are not many works regarding the prediction of

SCC compressive strength using gene expression programming
(GEP) containing fly ash and silica fume.

3. Research Significance

It is clear from literature review that the different ML techniques
such asANN,KNN, and RF can efficiently predict different properties
of SCC. However, all the techniques used in previous studies are
classified as black box techniques. It means that the user cannot
visualize what is going on at the back of the prediction process.
GEP offers the advantage of displaying the result in the form of an
empirical equation relating the output and input parameters. Thus,
the GEP technique is more transparent than other black box
techniques. Also, in the literature, there are very few works
focusing on predicting strength of SCC containing fly ash and silica
fume using GEP. Thus, the significance of this study is to use a
comprehensive dataset of experimental values of SCC strength
having fly ash and silica fume as mineral admixtures obtained from
published literature to develop a transparent and accurate prediction
model using GEP.

4. Gene Expression Programming

GEP is a novel artificial intelligence technique that uses
evolutionary algorithms. It is a subtype of genetic programming
and is based on Darwin’s principle of natural selection. The
problem-solving technique of GEP is like genetic system in
humans. The basic idea of GEP is to find solution of a problem
by developing a mathematical expression called chromosome that
contains multiple genes. GEP uses a set of functions to build
these genes. These functions range from simple mathematical
operations like addition, etc. to more complex ones like sin, cos,
etc. The genes are created by combining these functions in
different ways and then these genes are combined to create a
computer program. The mathematical expression is encoded as
string of fixed length and later it is represented as an expression
tree (Koza, 1995).

The process of creating a computer program begins by defining
the problem and the desired outcome. Then the GEP algorithm
creates a population of random chromosomes and expresses them
as expression trees. These expression trees are executed, and the
value generated from the expression tree is compared with the

Table 1
Summary of literature view

Algorithm
used Dataset Prediction Admixtures Reference

ANN 205 Compressive
strength

Fly ash,
slag, rice
husk ash

(Asteris &
Kolovos,
2019)

ANN 114 Compressive
strength

Fly ash (Belalia
Douma
et al.,
2017)

ANN 80 Compressive
strength

Fly ash (Siddique,
2011)

RF 131 Compressive
strength

Fly ash,
slag, silica
fume

(Guo et al.,
2020)

GEP 90 Compressive
strength

Fly ash, rice
husk ash

(Tanyildizi &
Çevik,
2010)
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actual value. If the initial termination criteria is satisfied, the
algorithm stops, if the desired results are not achieved, these
chromosomes go under the processes of mutation and
recombination to create a new population of chromosomes. The
best performing chromosomes are selected for the next generation,
while others are discarded. This process of creating chromosomes
is repeated for many generations until the required fitness is
reached (Oltean & Grosan, 2003). After reaching the desired
accuracy, the process is terminated, and the chromosomes are
decoded to get a mathematical expression representing the
solution of the problem. The main advantage of GEP is that it can
discover underlying mechanisms and learn patterns and
associations from data to reveal hidden relationships between
variables, making it a suitable option to solve problems. The
flowchart of GEP algorithm is shown in Figure 1.

5. Data Acquisition

A database of experimental tests is important for the
development of a GEP model. Thus, a database consisting of 231
data points is collected from internationally published literature
(Bani Ardalan et al., 2017; Choudhary et al., 2020; Da Silva &
De Brito, 2015; Felekoğlu et al., 2007; Guo et al., 2020; Leung
et al., 2016; Ofuyatan et al., 2021; Ramanathan et al., 2013;
Siddique, 2011; Wongkeo et al., 2014; Yang et al., 2021; Yazici,
2008; Zhao et al., 2015). A detailed evaluation was done to find
the most influential parameters to predict the strength of SCC and
the following seven parameters were selected: cement, fly ash,
silica fume, coarse aggregate, fine aggregate, water, and
superplasticizer.

The collected dataset is split into training dataset having 70% of
the data used for training the algorithm and validation set having 30%
of the data used for validation of the algorithm. This splitting is done

to avoid overfitting of model to the training data (Gholampour et al.,
2017). The range of the input and output variables used in the model
development is given in Table 1. It is advised to use the developed
models within the range given in Table 2. The frequency distribution
histograms of variables used in the model are given in Figure 2.

This study uses seven input parameters to predict one output
parameter. The relationships between these variables can be better
understood by using a statistical technique called correlation
matrix. It is frequently used to get information about the effect of
fluctuation of variables and the relationship between input
variables and the output. A positive correlation means that
increase in one variable causes an increase in the other variable
and a negative correlation implies that increase in one variable
causes a decrease in the other variable. The correlation matrix of
the variables used in model development is shown in Figure 3.

6. Performance Assessment

The accuracy and effectiveness of developed model will be
assessed by using the following four commonly used error metrices:

Mean absolute error MAEð Þ ¼ Σ x � yj j
n

Figure 1
Flowchart of GEP algorithm

Table 2
Range of variables used in model development

Parameters Symbol Minimum Maximum
Standard
deviation

Cement d0 311.98 135 542.10
Fly ash d1 145.45 0 390
Silica fume d2 17.90 0 67.5
Coarse
aggregate

d3 829.58 565 1091.4

Fine aggregate d4 851.36 630 1120
Water d5 180.79 150 202.10
Superplasticizer d6 1.33 0 8.70
Strength f

0
c 45.50 21.54 94.40

Figure 2
Frequency distribution of variables used in the model
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Figure 3
Correlation matrix of the variables
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Figure 4
Expression tree representation of GEP model
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Rootmean squared error RMSEð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x � yð Þ2
n

r

Coeff: of correlation Rð Þ ¼ n
P

xy � P
xð Þ P yð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

x2 � P
xð Þ2ð Þ n

P
y2 � P

yð Þ2ð Þ
p

Performance index ðpÞ ¼ RRMSE

1þ R

For a model to be reliable, it should have R value greater than 0.8 and
minimum value of other error metrices such as MAE and RMSE
(Alavi et al., 2010). MAE measures the average deviation between
actual and predicted values, whereas RMSE indicates the presence
of large errors. The errors are squared before taking mean in
RMSE, so it gives more weight to larger errors. Its value is
always greater than MAE. A model with high RMSE implies that
the percentage of predictions with larger errors is greater and
should be minimized (Iftikhar et al., 2022). The performance
index offers the advantage of considering the values of relative
root mean square error (RRMSE) and R simultaneously. Its values
range from zero to infinity and the model will be reliable if its
value is less than 0.2 (Gandomi & Roke, 2015).

7. Model Development

The GEP algorithm is implemented using a software called
GeneXpro Tools. For the development of an accurate model,
various GEP tuning parameters need to be specified. These
parameters are selected using literature recommendations and a
trial-and-error method (Mousavi et al., 2010). The final
parameters used in algorithm development are shown in Table 3.

The running duration of program is specified by population size
of chromosomes. The number of chromosomes is set at 100 after
many trials considering the accuracy and length of the resulting
equation. The complexity of each expression tree and the resulting
subexpression is specified by number of genes and head size. The
number of genes is set to 10 after many trials. The linking
function used for GEP model development is addition along other
mathematical operations.

8. Results

The most important factor in the creation of a GEP model is to
select the most influential parameters that affect the output. For this

purpose, a thorough evaluation was carried out and several initial
runs were performed to select the most influential parameters. The
resulting equation by GEP algorithm is a function of the input
parameters given below.

f
0
c ¼ ðd0; d1; d2; d3; d5; d6; Þ

Figure 4 displays the expression tree given by GEP algorithm, and it
is decoded to get the mathematical expression for the estimation of
compressive strength. The equation thus derived is given below. The
description of the variables used in GEP empirical equation is given
in Table 2.

f
0
c ¼ Aþ Bþ C þ Dþ E (1)

Table 3
Parameters of GEP model

Parameter Settings

No. of chromosomes 100
No. of genes 10
Head size 5
Linking function Addition
Constants per gene 10
Data category Floating
Lower and upper limits −10 to 10
Functions +, −, ×, sqrt, 10^x

Figure 5
Scatter plot of training data
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Figure 6
Scatter plot of validation data
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where

A =
128:52ffiffiffiffiffi
d5

p þ ðd6Þ3
� 0:608

ffiffiffiffiffi
d1

p !

B =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2d6

3
p � d22 þ d65ð Þ� �5q

3

r
3

s

C = d6 þ
9:01ð Þ5ffiffiffiffiffiffiffiffiffiffiffi

0:477
do

3

r
� d3 � d2ð Þ

� �2

0
BBB@

1
CCCA

0
BBB@

1
CCCA

D =
�82:52þ d1ð Þ þ do � d5ð Þ

16:542

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
do

3
p

3

q
Þ

�

E ¼
ffiffiffiffiffi
d3

3
p

The accuracy of the developed model can be visualized by plotting
the scatter plots between actual and predicted values for training and
validation datasets. Figures 5 and 6 represent the scatter plot of
training and validation data, respectively.

The error metrices are calculated for both datasets and are
shown in Table 4. The R value of both datasets is greater than 0.8
and the performance index is less than 0.2, which shows the
model is accurate and reliable. Also, the error values of validation
are less than training data, which shows the problem of overfitting
has been effectively removed. The difference between actual and
predicted values can also be visualized by means of a series plot
as shown in Figure 7.

9. Conclusions

This study aimed at fostering the use of fly ash and silica fume in
concrete by introducing a novel technique for estimation of 28-day
compressive strength of SCC using GEP. The database consisting of
231 datapoints is constructed for this purpose and the algorithm
resulted in an empirical equation relating strength to seven most
influential parameters. The dataset was split into two sets called
training and validation datasets. The accuracy of the developed
equation is verified by calculating four commonly used error
metrices for both training and validation datasets with the R value
of training and validation data equal to 0.93 and 0.94,
respectively. The other error metrices were also in the range
specified in the literature. Thus, the developed equation can be
effectively used to predict the 28-day compressive strength of
SCC containing fly ash and silica fume as mineral admixtures.
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