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Abstract: The bisection method is an iterative approach used in numerical analysis to find solutions to nonlinear equations. The main purpose
of this paper is to study how the parameters of a probability distribution characterizing the coefficients of a cubic polynomial can influence the
convergence of the bisection method. The study covers discrete and continuous distributions, including discrete uniform, continuous uniform,
and normal distributions. It was found that for both types of uniform distribution inputs, a second-degree polynomial equation can predict the
average iteration for a given parameter r, where r indicates the distribution interval [−r, r]. Interestingly, the coefficients of the second-degree
polynomial are nearly identical for discrete and continuous uniform distributions. For normal distribution input, the average iteration does not
depend upon the standard deviation when the mean is fixed and the standard deviation is varying. But when the standard deviation is fixed and
the mean is varying, the second-degree polynomial is still the best fit. This means the average iteration depends upon the mean of the normal
distribution. Overall, our paper concludes that: I. For uniform distribution input, the average iteration does not depend on whether the
distribution is discrete or continuous but rather depends on the range of the distribution which is its parameter. II. For non-uniform
distribution input, the average iteration depends on the mean of the distribution (location parameter) but not on the standard deviation
(scale parameter). Finally, a curtain is raised in the future direction of research in which we propose to combine the bisection method
with the regula falsi and Newton-Raphson methods to increase the rate of convergence.
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1. Introduction

1.1. Introduction to bisection method

It is sometimes difficult to locate the solution of equations
f(x)= 0 in scientific and technical inquiries. Either f(x) is a
quadratic or cubic or biquadratic equation; there is algebraic
approach for locating the roots in terms of the coefficients.
However, if f(x) is a higher-degree polynomial or an equation
with transcendental functions, algebraic approaches are not
available. For instance, when M0, g, u, u0, and uf are supplied,
the equation

M0

M0 � uf t
¼ e uþgtð Þ=u0 (1)

is a nonlinear equation for t. This kind of equation is used in
rocket research. It is difficult to locate the roots of such nonlinear
equations which is frequently encountered in engineering. As a
result, several numerical methods have been developed with the
goal of offering effective ways to discover numerical solutions to
such issues, among which the bisection method was one of the

first numerical methods to be developed. The next section will
include the explanation of the bisection method.

1.2. Bisection method

To “bisect” something implies to slice it down the middle.
The bisection method reduces the search area by half at each
stage while looking for a solution. The bisection method is
thought to possess a linear rate of convergence and provides
acceptable accuracy.

1.2.1. Steps to follow in bisection method

Step 1: Chose a and b such that f(a)> 0 and f(b)< 0.
Step 2:Compute a midpoint, c= (a+ b)/2 as the average. It is known

as interval halving.
Step 3: Evaluate the function f for a specific value of c.
Step 4: Only when f(c)= 0 the root of the function can be located.
Step 5: If f(c) ≠ 0, the sign must be determined:
i. If the sign of f(c) is similar to the sign of f(a), a is swapped with c

while b is kept at its current value.
ii. If the sign of f(c) is similar to the sign of f(b), b is swapped with c

while a is kept at its current value.
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Return to step 2 and recalculate c in order to obtain the
appropriate value using the new values of a or b.

1.3. Literature review

The fundamental approach to finding a root is the bisection
method. Every loop implies a halving of the interval. Since f(a)
and f(b) should have different signs and “f” is a continuous
function in the interval [a, b], then method will surely converge
to a root of “f.” The role of bisection method by Solanki et al.
(2014) helped us to learn more about the area of the bisection
method. In addition to focusing on the bisection method’s
importance in computer science research, this work also offered
a novel method that combines bisection with other methods,
such as the Newton-Raphson method which keeps the root
bracketed while enabling us to take advantage of the Newton-
Raphson method’s speed. To further address the issue of
nonlinear unconstrained minimization, Morozova (2008)
suggested an adaptation of a new multidimensional bisection
method for minimizing function over the simplex. This method
does not need the function to be differentiable and is guaranteed
to converge to the minimizer for the class of strictly unimodal
functions.

Another interesting research study on the bisection method
for triangles was conducted by Adler (1983). According to this
study, the longest edge of a triangle was picked and bisected to
give birth to two daughter triangles and continued the bisection
procedure indefinitely. He established precise estimates for the
longest jth generation edge and demonstrated that the infinite
family of triangles so formed falls into a finite number of
similarity classes. A geometrical approach to the bisection
method by Gutierrez et al. (2004) helped us to know that how
the behavior of the bisection method depends on the
classification of triangles which is to be bisected. Since, the
bisection method is the consecutive bisection of a triangle by
the median of the longest side, therefore partition of the
triangles into classes reflects this behavior by taking into
account some fundamental geometrical properties. Its main
finding is an asymptotic upper constraint on the total number of
triangle similarity classes that may be established on an
iterative bisection-created mesh, that was previously unknown.
It shows that there are finite number of directions on the plane
that may be given by the sides of the resultant triangles. In
addition to these research articles, we made use of other books
and works that are cited in the reference section (Chapra &
Canale, 1985; Frost, 2023a; Frost, 2023b; Sastry, 2003;
Kreyszig, 2006) (http://amsi.org.au/ESA_Senior_Years/
SeniorTopic3/3j/3j_2content_1.html).

For further literature on bisection method, the reader is
referred to Sikorski (1982), Sikorski (1985), Graf et al.
(1989), Novak (1989), Oliveira and Takahashi (2020),
Mourrain et al. (2002), Vrahatis (2020), Kearfott (1979),
Corliss (1977), and Dichotomy Method—Encyclopedia of
Mathematics (2015) (https://corporatefinanceinstitute.com/
resources/data-science/uniform-distribution/).

1.4. Motivation and problem statement

Sometimes we can solve problems in a good, easy, or accurate
way. For instance, equations like quadratic and linear equations may

be solved precisely. However, certain equations might be
considerably trickier to solve than others precisely. In rare cases,
it may even be difficult to pen down an accurate expression for a
solution.

Exercises in mathematics textbooks for schools are frequently
purposefully made to provide exact solutions. However, there is no
reason to anticipate a particularly good outcome when solving
many mathematical equations derived from real-life situations.
Most of the time, what we can expect is an approximate solution
with the required level of precision. We can use approximate
numerical methods to obtain a solution when equations are
challenging to solve. Sometimes getting an approximate solution
is more effective.

This paper primarily focuses on the bisection method, one of
the widely used numerical methods for locating roots. It
determines how the parameter of a probability distribution
which characterizes the coefficient of a cubic polynomial
influence the convergence of the bisection method. Therefore,
this study would help us in taking a decision whether to
recommend or not to recommend bisection method for a
solution if we have prior knowledge that the coefficient of the
equations to be solved coming from a particular probability
distribution. Further if we have knowledge of parameters of
the underlined distributions, we may be able to predict the
average iterations as the function of the distribution parameter.
Research in this direction might be important in tackling many
issues emerging in diverse fields of higher mathematics. Such
a statistical analysis of the bisection method speeds up the
process of solving a problem.

1.5. Paper alignment

The alignment of this paper is as follows:

Section 1: This section presents the background and basis for the
paper. It will provide an overview of bisection method, its
methodology, and research problem.

Section 2: This section examines the performance of bisection
method for a cubic equation with discrete uniform coefficients
through a statistical approach.

Section 3: This section examines the performance of bisection
method for a cubic equation with continuous uniform
coefficients through a statistical approach.

Section 4: This section examines the performance of bisection
method for a cubic equation, with coefficients normally
distributed, through a statistical approach.

Section 5: This section provides a summary of the results and makes
recommendations for further study.

2. Study on Cubic Equation for Discrete Uniform
Coefficients

2.1. Overview

The term “uniform distribution” in statistics refers to a kind of
probability distribution wherein each potential outcome has an equal
chance of occurring, i.e., the probability is constant while every
variable has an equal number of chances of being the outcome.

For illustration, each person who passes by has an equal chance
of receiving the 100-rupee note, if you were to start randomly
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handing out the note while standing on a street corner. The
probability as a percentage equals to 1/entire number of
possibilities (the number of onlookers). On the other hand, the
chances of short persons or women receiving the 100-rupee note
are higher than those of other onlookers if you favor them. But
this is not what is meant by uniform probability.

Based on the types of probable outcomes, uniform
distribution can be divided into two categories: Discrete and
Continuous. This section will cover the discrete uniform
distribution in detail.

2.2. Discrete uniform distribution

The discrete uniform distribution is a statistical distribution in
probability theory and statistics where the probability of outcomes is
equal and has finite values, for instance the possible results of
throwing a 6-sided die. 1, 2, 3, 4, 5, and 6 are the possible values.
Each of the six numbers has a similar chance of appearing in this
scenario. Consequently, each time the 6-sided die is thrown, each
side gets a chance of 1/6.

There is a finite number of values. When rolling a fair die, it is
impossible to obtain a value of 1.3, 4.2, or 5.7. The distribution,
however, is no longer uniform if a second die is added, and they
are both thrown, as the likelihood of the sums is not the same.
The likelihood of tossing a coin is another straightforward
illustration. There can only be two outcomes in such a situation.
Consequently, 2 is the finite value.

To be more specific, take x to be a discrete random variable
with ɱ values in interval [a,b]. Let X has a discrete uniform
distribution if its probability mass function (pmf) can be
expressed as follows:

f xð Þ ¼ 1
k
; x ¼ 1; 2; 3; . . . ; k (2)

2.2.1. Expected value and variance
Two statistics which are often obtained are the expected value

and the variance.
The discrete uniform random variable’s expected value is given

by:

E Xð Þ ¼
Xk
x¼1

x:Ϸ X ¼ xð Þ (3)

which for discrete uniform variate X is

E Xð Þ ¼ kþ 1
2

(4)

The expression for variance is given by:

ϑ Xð Þ ¼ E X2ð Þ � E Xð Þ½ �2 (5)

where E X2ð Þ is given by:

E X2ð Þ ¼
Xk
x¼1

x2: Ϸ X ¼ xð Þ (6)

which, in our case, gives

σ2 ¼ k2 � 1
12

(7)

where σ is standard deviation.

2.3. Methodology

This section will provide the method that has been used to fulfill
the objective of this section. Here, coefficients of cubic equation have
been generated using the function dis_unirand() which includes
inbuilt function rand and rng.

2.3.1. dis_unirand()
u=dis_unirand(r) generates random numbers from the discrete

uniform distribution specified by r which implies the range upto
which random number is generated, i.e.,

[−r, r]. The function dis_unirand() includes following functions:
rand:
X = rand() generates a random scalar in the range (0,1) that is

chosen at random from the uniform distribution.
Example:
r = rand()
r= 0.8140
X= rand(ŋ) generates a uniformly distributed ŋ -by- ŋmatrix of

random integers.
Example:
r = rand(3)
r= 3�3
0.0945 0.1526 0.8103
0.1220 0.9174 0.5069
0.9008 0.2705 0.6624
X = rand(ŋ1, ŋ2 : : : , ŋn) generates an array of random numbers

of size ŋ1-by-ŋ2-by- : : : .-by- ŋn, where ŋ1, ŋ2 : : : , ŋn indicate the size
of each dimension.

Rng:
In random number generator, rng is used to change the seed in

MATLAB to prevent using the same random numbers repeatedly. By
producing a seed based on the current time, rng provides a simple
method for doing that. “Shuffle” reseeds the generator with a
different seed each time you use it. rng can be called without any
inputs to reveal the exact seed that was used.

Example:
rng shuffle
r = rand()
r= 0.1929
INPUT ARGUMENTS
In MATLAB, the “rand()” function is used to obtain random

numbers from a uniform distribution. The function can take one or
two input arguments. When called with a single argument, “ŋ,”
“rand(ŋ)” obtain a “ŋ”-by-“ŋ” matrix of random numbers
uniformly distributed between 0 and 1.

Alternatively, when called with two arguments, “ŋ1” and “ŋ2,”
“rand(ŋ1, ŋ2)” generates a “ŋ1”-by-“ŋ2”matrix of random numbers
with same distribution. In both cases, the resulting matrix of random
numbers is returned as the output of the “rand()” function.

MATLAB CODE—REFER Appendix A
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2.3.2. Steps to follow in Matlab code

1) Enter the range of the random number as r and the value of
tolerance is assumed to be 0.001.

2) Using the function dis_unirand(), the cubic equation’s
coefficients are generated at random from a discrete uniform
distribution.

Example: a0=dis_unirand(10)
a0 = -7
Similarly, other coefficients a1, a2, a3 are generated.

3) The following conditions are checked with the while loop:
i. If a3= 0, then a3 is replaced by another value generated using

dis_unirand() until the condition is false.
ii. If a3< 0, then a0=− a0, a1=− a1, a2=− a2, a3=− a3 until

the condition is false.
4) Now, the guess value is calculated as a and b such that f(a).

f(b)< 0.
5) The values of c= aþb

2 and f(c) are calculated.
6) An if-else conditional statement is now used to check a

condition. If f(c)< 0, then a = c; otherwise, b = c.
7) Repeat step 5.
8) Increment the value of k by 1, which counts the number of

iterations required to reach the root.
9) Steps 6, 7, and 8 have been repeated until the absolute value of

f(c) exceeds the tolerance value using a while loop.
10) An array called arr is used to record the final value of k—the

number of iterations.
11) Simultaneouslywith the root, the respective values of a, b, c, and

f(c) are displayed.
12) Using a for loop, steps 2–11 are repeated 100 times.
13) The array of iterations (arr) has been displayed.
14) The arr’s mean and standard deviation are computed and

displayed at the end.

2.4. Results

Following the above instructions in the MATLAB code stated
in Appendix A, the mean and standard deviation of iteration (k) for a
certain range [-r, r] of parameters over 100 trials were obtained, as
shown in Table 1.

2.5. Statistical analysis and discussion

Figure 1 gives the graph showing how mean iterations in
bisection method varies w.r.t the parameters r of discrete uniform
U(−r, r) distribution characterizing the coefficients of cubic
equations.

From Figure 1, it is clear that resultant second-degree
polynomial equation can be used to predict the average iteration
for a given parameter.

3. Study on Cubic Equation for Continuous
Uniform Coefficients

3.1. Overview

Instead of being discrete, some uniform distributions are
continuous. The most commonly used distribution among the two
is a continuous uniform distribution. Every outcome in this
distribution has an equal chance of appearing though the number
of outcomes is infinite. In the previous section, discrete uniform
distribution has been discussed broadly. Now, this section
contains a detailed analysis of continuous uniform distribution.

3.2. Continuous uniform distribution

The random variable in a continuous uniform distribution, X,
can have values between γ and δ (lower and upper bounds). Both
γ and δ are referred to as the continuous uniform distribution
parameters in the discipline of statistics. We cannot have a result
that is either bigger than δ or smaller than γ. Every variable has an
identical chance of appearing in a continuous uniform distribution,
also known as a rectangle distribution, where the density function
is constant or flat. It has infinite number of outcomes in a given range.

For example: The time it takes a student to finish a mathematics
test ranges evenly between 30 and 60 min, despite the fact that there
are an unlimited number of points between 30 and 60.

To be more specific, take x as a continuous random variable
within the interval [γ, δ], X ∼ U(γ, δ), if its probability
distribution function (pdf) can be expressed as follows:

Table 1
Data of mean and standard deviation of iteration (k) for discrete

uniform distribution

S.
No.

Range of
parameter (r)

Mean iteration
(mean k)

Standard deviation of
iteration

1. 1000 18.77 1.9584
2. 2000 19.7 1.9566
3. 3000 20.51 1.7085
4. 4000 20.63 1.8183
5. 5000 21.12 1.5194
6. 6000 21.37 1.8071
7. 7000 21.79 1.9914
8. 8000 22.03 1.9304
9. 9000 22.13 2.2322
10. 10,000 22.12 1.6894

Figure 1
Graph showing mean iterations for bisection method versus
parameter r of discrete uniform U(-r, r) coefficients of a cubic

equation

y = -4E-08x2 + 0.0008x + 18.171
R² = 0.9859
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fX xð Þ ¼
1

δ�γ
; γ < x < δ

0; x < γ or x > δ

�
(8)

3.2.1 Expected value and variance
The continuous uniform random variable’s expected value is

given by:

E Xð Þ ¼
Z 1

�1
x fX xð Þ dx (9)

Hence, the expected value is

E Xð Þ ¼ γ þ δ

2
(10)

The expression for continuous uniform distribution’s variance
is given by:

ϑ Xð Þ ¼ E X2ð Þ � E Xð Þ½ �2 (11)

where E X2ð Þ is given by:

E X2ð Þ¼2 fX xð Þ dx (12)

Hence, the variance is

σ2 ¼ δ� γð Þ2
12

(13)

where σ is standard deviation.

3.3. Methodology

This section will provide the method that has been used to fulfill
the objective of this section. Here, coefficients of the cubic equation
have been generated using the function con_unirand() which
includes inbuilt function rand and rng.

3.3.1. con_unirand()
u=con_unirand(r) generates random numbers from the

continuous uniform distribution specified by r which implies the
range upto which random number is generated, i.e.,

[-r, r]. The function con_unirand() includes following
functions:

rand:
X = rand() generates a random scalar in the range (0,1) that is

chosen at random from the uniform distribution.
Example:
r = rand()
r= 0.8140
X= rand(ŋ) generates a uniformly distributed ŋ -by- ŋmatrix of

random integers.
Example:
r = rand(3)
r= 3�3
0.0945 0.1526 0.8103
0.1220 0.9174 0.5069
0.9008 0.2705 0.6624
X = rand(ŋ1, ŋ2 : : : , ŋn) generates an array of random numbers

of size ŋ1-by-ŋ2-by- : : : .-by- ŋn, where ŋ1, ŋ2 : : : , ŋn indicate the size
of each dimension.

Rng:
In random number generator, rng is used to change the seed in

MATLAB to prevent using the same random numbers repeatedly. By
producing a seed based on the current time, rng provides a simple
method for doing that. “Shuffle” reseeds the generator with a
different seed each time you use it. rng can be called without any
inputs to reveal the exact seed that was used.

Example:
rng shuffle
r = rand()
r= 0.1929
INPUT ARGUMENTS
In MATLAB, the “rand()” function is used to obtain random

numbers from a uniform distribution. The function can take one or
two input arguments. When called with a single argument, “ŋ,”
“rand(ŋ)” obtain a “ŋ”-by-“ŋ” matrix of random numbers
uniformly distributed between 0 and 1.

Alternatively, when called with two arguments, “ŋ1” and “ŋ2,”
“rand(ŋ1, ŋ2)” generate a “ŋ1”-by-“ŋ2” matrix of random numbers
with same distribution. In both cases, the resulting matrix of random
numbers is returned as the output of the “rand()” function.

MATLAB CODE—REFER Appendix B

3.3.2. Steps to follow in Matlab code

1) Enter the range of the random number as r and the value of
tolerance is assumed to be 0.001.

2) Using the function con_unirand(), the cubic equation’s
coefficients are generated at random from a continuous
uniform distribution.

Example: a0=con_unirand(10)
a0 = 5.3115
Similarly, other coefficients a1, a2, a3 are generated.

3) The following conditions are checked with the while loop:
i. If a3=0, then a3 is replaced by another value generated using

con_unirand() until the condition is false.
ii. If a3<0, then a0=- a0, a1=- a1, a2=- a2, a3=- a3 until the

condition is false.
4) Now, the guess value is calculated as a and b such that f(a). f(b)

<0.
5) The values of c= aþb

2 and f(c) are calculated.
6) An if-else conditional statement is now used to check a

condition. If f(c)<0, then a = c; otherwise, b = c.
7) Repeat step 5.
8) Increment the value of k by 1, which counts the number of

iterations required to reach the root.
9) Steps 6, 7, and 8 have been repeated until the absolute value of

f(c) exceeds the tolerance value using a while loop.
10) An array called arr is used to record the final value of k—the

number of iterations.
11) Simultaneouslywith the root, the respective values of a, b, c, and

f(c) are displayed.
12) Using a for loop, steps 2–11 are repeated 100 times.
13) The array of iterations (arr) has been displayed.
14) The arr’s mean and standard deviation are computed and

displayed at the end.

3.4. Results

Following the above instructions in the MATLAB code stated
in APPENDIX B, the mean and standard deviation of iteration (k) for
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a certain range [−r, r] of parameters over 100 trials were obtained, as
shown in Table 2.

3.5. Statistical analysis and discussion

Figure 2 gives the graph showing how mean iterations in
bisection method vary w.r.t the parameters r of continuous
uniform U(−r, r) distribution characterizing the coefficients of
cubic equations.

From Figure 2, it is clear that resultant second-degree
polynomial equation can be used to predict the average iteration
for a given parameter.

3.6. Comparison between discrete and continuous
uniform distribution results

In discrete as well as continuous uniform distribution, second-
degree polynomial equation can be used to predict the average
iterations for a given parameter, i.e., second-degree polynomial is
the best fit. On comparison, even the coefficients of both the
second-degree polynomial are almost same which implies that the
average iteration does not depend on whether the distribution is
discrete or continuous but rather depend on the range of the

distribution which is a parameter. Hence, in uniform distribution
second-degree polynomial is the best fit.

4. Study on Cubic Equation for Coefficients
Normally Distributed

4.1. Overview

The normal distribution, sometimes known as the Gaussian
distribution, is the most important probability distribution in
statistics for independent, random variables. Its well-known bell-
shaped curve is readily noticed in statistics reports.

Most of the observations tend to cluster around the central peak
of a normal distribution, which is a type of continuous probability
distribution that is symmetrically distributed around its mean. The
probability of obtaining values that are further away from the
mean decreases at an equal rate in both directions, and extreme
values in the tails of the distribution are also infrequent. It is
worth noting that while the normal distribution is symmetrical, not
all symmetrical distributions are normal.

The normal distribution is a probability distribution that
describes how a variable’s values are distributed, similar to other
probability distributions. Due to its ability to accurately represent
the distribution of values for many natural phenomena, it is
considered the most important probability distribution in statistics.
Normal distributions are commonly used to describe
characteristics that are the result of multiple independent
processes. For example, the normal distribution is commonly
observed in traits such as height, blood pressure, measurement
error, and IQ scores.

4.2. Parameters of normal distribution

The normal distribution’s parameters ultimately determine its
structure and probabilities, just like with any other probability
distribution. The mean and standard deviation are the two
variables that jointly form the normal distribution. There is not
just one variant of the Gaussian distribution. Instead, the form
alters according to the values of the parameter.

Mean:
The mean of the normal distribution represents its center of

tendency and identifies the location of the peak of the bell curve.
The majority of the data is clustered around the mean. When the

Table 2
Data of mean and standard deviation of iteration (k) for

continuous uniform distribution

S.No.
Range of
parameter (r)

Mean iteration
(mean k)

Standard deviation of
iteration

1. 1000 18.69 2.1728
2. 2000 19.68 1.9010
3. 3000 20.59 1.8592
4. 4000 20.79 1.6162
5. 5000 21.26 1.7034
6. 6000 21.26 2.2680
7. 7000 21.93 1.5971
8. 8000 22.02 1.7865
9. 9000 22.04 2.1692
10. 10,000 22.19 2.0582

Figure 2
Graph showing mean iterations for bisection method versus

parameter r of continuous uniform U(-r, r) coefficients of a cubic
equation

y = -5E-08x2 + 0.0009x + 18.081
R² = 0.9753
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Figure 3
Graph shows the shift of the normal distribution curve as the

mean changes
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mean is changed on a graph, the entire curve shifts to the left or right
on the X-axis, as illustrated in Figure 3 (Frost, 2023a).

Standard deviation:
The standard deviation is a measure of variability that

determines the spread of the normal distribution. It quantifies how
much the data typically deviate from the mean and represent the
typical distance between observations and the mean. It is used to
display the normal separation between the average and the
observations, with a larger standard deviation indicating that the
data are more spread out, while a smaller standard deviation
indicates that the data are more tightly clustered around the mean.

As shown in Figure 4 (Frost, 2023b), altering the standard
deviation causes the width of the distribution along the X-axis to
either tighten or spread out. Wider distributions are produced by
higher standard deviations.

When distributions are narrow, there is a higher probability that
values will not deviate significantly from the mean. Conversely, as
the dispersion of the bell curve widens, there is a greater likelihood
that observations will deviate further away from the mean. In other
words, the risk of significant deviations from the mean increases as
the normal distribution becomes more spread out.

4.3. Normal distribution probability density
function

Normal distribution is obtained as a limiting case of binomial
distribution. Let X be a binomial variate with parameters n and p. Let

Z ¼ X � npð Þffiffiffiffiffiffiffiffi
npq

p (14)

where np=θ and
ffiffiffiffiffiffiffiffi
npq

p
=σ, which means

Z ¼ X�θð Þ
σ

(15)

Naturally, Z is a standardized form of binomial variate. When
the two limiting conditions:
i. n→∞
ii. p is neither small nor large

are applied on Z, then it can be shown that Z becomes a standard
normal variate with probability density function (pdf) given by:

ϕ zð Þ ¼ 1ffiffiffi
2

p e
�z2
2 ; �1 < z < 1 (16)

ϕ zð Þdz ¼ 1ffiffiffiffiffiffi
2π

p e
�z2
2 dz ; where dz ¼ dx

σ
(17)

ϕ(z) is probability density function of Z; ϕ(z)dz is called
probability differential of Z.

X becomes a normal variate with probability density function
given by:

f xð Þ ¼ 1

σ
ffiffiffiffiffiffi
2π

p e
� x�θð Þ2

2σ2 ;where �1 < x < 1; �1 < θ < 1; σ > 0

(18)

f xð Þdx ¼ 1

σ
ffiffiffiffiffiffi
2π

p e
� x�θð Þ2

2σ2 dx (19)

f xð Þ is probability density function of X; f xð Þdx is called prob-
ability differential of X.

X is a normal variate with mean θ and variance σ2. In symbols,
X∼N(θ, σ2).

Z is a standard normal variate. In symbols, Z∼N(0,1).
Normal distribution is so called because there was an attempt to

project this distribution as the benchmark for all continuous
probability distributions. The attempt failed as many continuous
distributions turned out to be very different from normal.
However, the nomenclature “normal” stayed.

4.4. Methodology

This section will provide the method that has been used to fulfill
the objective of this section. Here, coefficients of the cubic equation
have been generated using the function normal() which includes
inbuilt function rand and rng.

4.4.1. normal()
u = normal(m, sigma) generates random numbers from the

normal distribution specified by m and sigma which implies the
mean and standard deviation, respectively. The function normal()
includes following functions:

rand:
X = rand() generates a random scalar in the range (0,1) that is

chosen at random from the uniform distribution.
Example:
r= rand()
r= 0.8140
X= rand(ŋ) generates a uniformly distributed ŋ -by- ŋmatrix of

random integers.
Example:
r = rand(3)
r= 3�3
0.0945 0.1526 0.8103
0.1220 0.9174 0.5069
0.9008 0.2705 0.6624
X = rand(ŋ1, ŋ2 : : : , ŋn) generates an array of random numbers

of size ŋ1-by-ŋ2-by- : : : .-by- ŋn, where ŋ1, ŋ2 : : : , ŋn indicate the size
of each dimension.

Rng:
In random number generator, rng is used to change the seed in

MATLAB to prevent using the same random numbers repeatedly. By
producing a seed based on the current time, rng provides a simple

Figure 4
Graph shows the structure of the normal distribution curve as

the standard deviation changes
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method for doing that. “Shuffle” reseeds the generator with a
different seed each time you use it. rng can be called without any
inputs to reveal the exact seed that was used.

Example:
rng shuffle
r = rand()
r= 0.1929
INPUT ARGUMENTS
In MATLAB, the “rand()” function is used to obtain random

numbers from a uniform distribution. The function can take one or
two input arguments. When called with a single argument, “ŋ,”
“rand(ŋ)” obtain a “ŋ”-by-“ŋ” matrix of random numbers
uniformly distributed between 0 and 1.

Alternatively, when called with two arguments, “ŋ1” and “ŋ2,”
“rand(ŋ1, ŋ2)” generates a “ŋ1”-by-“ŋ2”matrix of random numbers
with same distribution. In both cases, the resulting matrix of random
numbers is returned as the output of the “rand()” function.

MATLAB CODE—REFER Appendix C

4.4.2. Steps to follow in Matlab code

1) Enter the value of mean as m and the value of standard deviation
as sigma, and the value of tolerance is assumed to be 0.001.

2) Using the function normal(), the cubic equation’s coefficients are
generated at random from a normal distribution.

Example: a0 =normal(100, 10)
a0=101.7212
Similarly, other coefficients a1, a2, a3 are generated.

3) The following condition is checked with the while loop: If a3=0,
then a3 and a2 are replaced by another value generated using
normal() until the condition is false.

4) Now, the guess value is calculated as a and b such that f(a). f(b)
<0.

5) The values of c= aþb
2 and f(c) are calculated.

6) An if-else conditional statement is now used to check a
condition. If f(c)<0, then a=c; otherwise, b=c.

7) Repeat step 5.
8) Increment the value of k by 1, which counts the number of

iterations required to reach the root.
9) Steps 6, 7, and 8 have been repeated until the absolute value of

f(c) exceeds the tolerance value using a while loop.
10) An array called arr is used to record the final value of k—the

number of iterations.
11) Simultaneouslywith the root, the respective values of a, b, c, and

f(c) are displayed.
12) Using a for loop, steps 2–11 are repeated 100 times.
13) The array of iterations (arr) have been displayed.
14) The arr’s mean and standard deviation are computed and

displayed at the end.

4.5. Results

Following the above instructions in the MATLAB code stated
in Appendix C, the mean and standard deviation of iteration (k), once
for a fixed parameter—mean(m) and varied parameter—standard
deviation(sigma) of normal distribution, as shown in Tables 3 and
4 and another for a fixed parameter—standard deviation(sigma)
and varied parameter—mean(m) of normal distribution, as shown
in Tables 5 and 6 over 100 trials were obtained.

Table 3
Data of mean and standard deviation of iteration (k) for normal

distribution where m= 100 (fixed)

S.No.

Standard deviation
(sigma) of normal
distribution

Mean iteration
(mean k) (over
100 trials)

Standard deviation
of iteration (over

100 trials)

1. 2 15.6 1.4071
2. 4 15.78 1.5412
3. 6 15.72 1.3263
4. 8 15.65 1.6229
5. 10 15.62 1.6924
6. 12 15.69 1.4404
7. 14 15.87 1.2922
8. 16 15.78 1.4184
9. 18 15.65 1.9867
10. 20 15.55 1.6291

Table 4
Data of mean and standard deviation of iteration (k) for normal

distribution where m= 30,000 (fixed)

S.No.

Standard deviation
(sigma) of normal
distribution

Mean iteration
(mean k) (over
100 trials)

Standard deviation
of iteration (over

100 trials)

1. 1000 23.72 1.7643
2. 2000 23.74 1.5349
3. 3000 23.81 1.4886
4. 4000 23.67 1.6457
5. 5000 23.9 1.2185
6. 6000 23.91 1.4005
7. 7000 23.97 1.4596
8. 8000 23.89 1.7402
9. 9000 23.89 1.7460
10. 10,000 24.13 1.3607

Table 5
Data of mean and standard deviation of iteration (k) for normal

distribution where sigma= 2 (fixed)

S.No.

Mean(m) of
normal distri-
bution

Mean iteration
(mean k) (over
100 trials)

Standard deviation of
iteration (over 100

trials)

1. 100 15.67 1.4637
2. 200 16.48 1.3218
3. 300 17.31 1.5155
4. 400 17.78 1.5014
5. 500 17.93 1.4017
6. 600 18.24 1.3935
7. 700 18.5 1.4737
8. 800 18.63 1.3901
9. 900 18.85 1.1924
10. 1000 19.06 1.4759
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4.6. Statistical analysis and discussion

For Table 3, the equation obtained is y= 15.691, i.e., almost
constant value is coming for a given set of inputs, where mean is
fixed at 100 and standard deviation is varying for small intervals.

For Table 4, the equation obtained is y= 23.863, i.e., almost
constant value is coming for a given set of inputs, where mean is
fixed at 30,000 and standard deviation is varying for large intervals.

For Table 5, the equation obtained is y = −4E-06x2 +
0.0077x+ 15.104 and R2= 0.9815, i.e., second-degree polynomial
equation can be used to predict the average iterations for a given
parameter, where standard deviation is fixed at 2 and mean is
varying for small intervals.

For Table 6, the equation obtained is y = −4E-10x2+7E-05x
+21.971 and R²=0.976, i.e., second-degree polynomial equation
can be used to predict the average iterations for a given
parameter, where standard deviation is fixed at 1000 and mean is
varying for large intervals as shown in Figure 5.

For further literature on numerical methods and analysis, the
reader may consult (Epperson, 2007).

5. Conclusion and Future Scope

5.1. Conclusion

Having knowledge of statistics allows us to make informed
decisions about the most appropriate data collection techniques,
apply suitable statistical analyses, and effectively communicate
the resulting findings. Making decisions based on data, predicting
future outcomes, and making scientific discoveries all rely on
statistical knowledge and skills. In other words, statistics is a
crucial tool that allows us to draw meaningful conclusions from
data and make evidence-based decisions, therefore applying
statistical analysis on bisection method to analyze its performance
in a cubic equation when coefficients are coming from particular
distribution.

The convergence of the bisection method for solving a cubic
equation will depend on the coefficients of the equation. Now, if
the coefficients are coming from some probability distribution,
then it is logical that the parameters of that probability distribution
will influence the convergence. Hence, our study is to investigate
in what way the parameter influences the convergence and
considered both uniform and non-uniform distribution which
includes discrete uniform distribution, continuous uniform
distribution, and normal distribution. In order to generate random
number from this distribution, various functions have been created
like dis_unirand(), con_unirand(), normal() with the help of
inbuilt functions rand and rng in MATLAB.

After analysis, in all the three distributions second-degree
polynomial equation can be used to predict the average iteration
for a given parameter. On the other hand, coefficients of the
polynomial are almost same for discrete and continuous uniform
distribution, whereas in the normal distribution the coefficients are
different, which conclude the following:
i. In case of uniform distribution input, the average iteration does

not depend on whether the distribution is discrete or
continuous but rather depend on the range of the distribution
which is a parameter.

ii. In case of non-uniform distribution input, the average iteration
depends on the mean of the distribution but not on the
standard deviation. Thus, it depends on the location parameter
but not on the scale parameter.

Our statistical study of bisection method for cubic equations is
intended to inspire other scholars to conduct related research.

5.2. Future scope of this work

Other distributions can also be used to study bisection method
like Bernoulli distribution, exponential distribution, etc. Since the
bisection method is guaranteed to converge, though it is slow,
therefore a new improvised method can be generated to improve
the rate of convergence of bisection method by combining it with
the regula falsi method or the Newton-Raphson method. A similar
statistical study of the new improvised method can be done along
with comparison with the traditional method but such new methods
would add new limitations to the data set (for instance, in case of
the Newton-Raphson method, the first derivative of the polynomial
should not be equal to 0) and therefore demands a confirmable new
data set for the resultant output and comparison. Hence, it provides
new scope to this work in future with more improvised algorithm
and appropriate data set and makes it more reliable to find the root
of any equation in real life for wider applications.

Table 6
Data of mean and standard deviation of iteration (k) for normal

distribution where sigma= 1000 (fixed)

S.No.

Mean(m) of
normal distri-

bution

Mean iteration
(mean k) (over
100 trials)

Standard deviation of
iteration (over 100

trials)

1. 10,000 22.46 1.2425
2. 20,000 23.24 1.5513
3. 30,000 24.06 1.4482
4. 40,000 24.34 1.5389
5. 50,000 24.63 1.5996
6. 60,000 24.85 1.4240
7. 70,000 25.07 1.4788
8. 80,000 25.12 1.8764
9. 90,000 25.44 1.2579
10. 100,000 25.61 1.3991

Figure 5
Graph showing mean iterations for bisection method versus
parameter m of a cubic equation for coefficients normally

distributed

y = -4E-10x2 + 7E-05x + 21.971
R² = 0.976
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Appendix A Matlab Code for Discrete Uniform
Distribution
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Appendix B Matlab Code for Continuous Uniform
Distribution
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Appendix C Matlab Code for Normal Distribution
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