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Abstract: Fatigue driving has become one of themain causes of traffic accidents, and driving fatigue detection based on electroencephalogram
(EEG) can effectively evaluate the driver’s mental state and avoid the occurrence of traffic accidents. This article evaluates a feature extraction
method for extracting multiple features of EEG signals and establishes a spatiotemporal convolutional neural network (STCNN) to detect
driver fatigue. Firstly, we constructed a three-dimensional feature of the EEG signal, which includes the frequency domain, time domain, and
spatial features of the EEG signal. Then, we use STCNN for fatigue state classification. STCNN is composed of an attention time network
based on attention mechanism and an attention convolutional neural network based on attentionmechanism. In addition, we conducted fatigue
driving experiments and collected EEG signals from 14 subjects in both awake and fatigued states, ultimately collecting EEG data under three
different driving task loads.We conducted extensive experiments on this basis and compared the effectiveness of STCNN and six competitive
methods. The results show that the classification accuracy of STCNN is 87.55%, which can effectively detect the fatigue status of drivers.
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1. Introduction

With the development of transportation and the continuous
acceleration of urbanization, driving has become an indispensable
part of modern people’s lives. According to the World Health
Organization, the number of deaths caused by fatigue driving
exceeds 10,000 annually, posing a huge threat to road safety
(Racioppi et al., 2004). People often experience fatigue driving
due to factors such as prolonged driving, lack of sufficient sleep,
or high-intensity physical labor. Fatigue leads to a decrease in the
driver’s reaction speed, attention, decision-making ability, vision,
and predictive ability. Fatigue can lead to drivers being unable to
respond to unexpected situations in a timely manner, losing
control of vehicle safety, and increasing the risk of traffic
accidents. In 2011, a study by Coetzer and Hancke (2011) showed
that if drivers were warned in advance, 90% of traffic accidents
could be avoided. Therefore, developing a reliable driving fatigue
detection system has become an important research direction. By
analyzing the driver’s mental state through a fatigue detection
system and timely reminding, the driver can effectively reduce the
probability of traffic accidents.

So far, several fatigue detection methods related to human factors
have been developed, including head state and facial expressions, such

as continuously collecting driver nods, yawns, and blink frequencies
(Sikander & Anwar, 2019). However, these non-physiological
sources are easily influenced by personal differences and
environmental factors, and the accuracy and reliability of detection
are to some extent unreliable. Physiological signals are directly
collected from the human body, such as Electroencephalography,
Electromyography, ECG and EOG. These signals contain all the
information about the state of the human body and have attracted
wide attention. After long-term research and practice, EEG signals
have become the most important physiological signal source in
fatigue detection. EEG signals are directly collected from the
human scalp and have high temporal resolution, high sensitivity,
and other characteristics. When the mental state of the human body
changes, EEG will undergo changes under fatigue (Risqiwati et al.,
2020), such as a decrease in the power of alpha waves and an
increase in the power of theta waves. Therefore, by analyzing EEG
signals, it is possible to identify whether the driver is in a fatigue
state. The collection of EEG signals requires professional EEG
equipment. Various forms of EEG equipment and electrode
technology are rapidly developing (Chi et al., 2012), capable of
adapting to EEG signal acquisition tasks in different scenarios, with
good application prospects.
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(2021) extracted features from different frequency bands using
wavelet transform. Zheng et al. (2022) combined integrated
empirical mode decomposition with power spectral density (PSD)
to explore new EEG features for driving fatigue detection. Abu
Farha et al. (2022) proposed a new wavelet independent
component analysis for processing EEG signals to reduce the
impact of artifacts. This method outperforms existing independent
component analysis (ICA) methods in feature extraction. Zhang
et al. (2021b) proposed a new structure for convolutional
autoencoder and convolutional neural network, which is used to
extract useful features from data and has good performance.
Zhang et al. (2021a) proposed a neural network based on
convolution and short-term memory (CNN+LSTM), which can
quickly learn the information before and after the time series. Du
et al. (2021) proposed a deep learning framework for Takagi-
Sugeno-Kang (TSK) type convolutional recursive fuzzy network,
which can extract spatiotemporal features from EEG signals.
Zhang et al., (2023) proposed a hybrid neural network for
extracting features from single-channel EEG. In 2023, Peng et al.
(2023) evaluated an entropy feature extraction strategy and
proposed a new T-A-MFFNET model that can extract
multidimensional features from multi-channel EEG signals,
achieving good classification results.

Machine learning algorithms have excellent performance in
fatigue state classification tasks. In 2016, Bashivan et al. (2015)
used an Linear Discriminant Analysis (LDA) classifier to classify
EEG signals, particularly in tasks such as finger movement and
visual stimulation. In 2017, Miao et al. (2017) used a weighted
naive Bayes classifier in the EEG classification task, which
achieved good results on two EEG datasets. Djamal et al. (2017)
used fast Fourier transform for feature extraction to classify EEG
signals. Compared to machine learning algorithms, deep learning
algorithms can automatically learn features in EEG signals
without any prior selection (Schirrmeister et al., 2017). Deep
learning technology has achieved excellent results in classification
such as image processing, speech recognition, and object
detection (Mandavifar & Ghorbani, 2019; Marino et al., 2018),
and many researchers have begun to use deep learning methods to
analyze EEG data. In particular, the convolutional neural network
(CNN) transforms EEG signals into different forms by changing
their dimensions. This not only allows for valuable information to
be learned from EEG signals but also does not cause any
significant information loss. These methods have analyzed EEG
signals from different aspects and achieved certain results, but the
extracted features of EEG signals are relatively single, making it
difficult to achieve better performance.

In summary, there are still many shortcomings in the EEG
signal-based driving fatigue detection method, mainly including
the following issues:

(1) Extracting the characteristics of the EEG signal is too single: EEG
signals have a low signal-to-noise ratio, are complex and non-
linear, and are prone to interference from the human body and
external environment during the acquisition process. If only a
single feature is extracted, it will significantly affect the final
classification effect.

(2) Low classification accuracy: Fatigue detection methods based on
EEG signals are fundamental in every aspect, from signal
acquisition, pre-processing, and feature extraction to
classification. If some areas are not handled properly, the final
classification accuracy will not be ideal.

(3) Model performance needs to be more stable: Many factors affect
the performance of a model, such as each person’s fatigue level.
Therefore, improving the stability of model performance under
different levels of fatigue is particularly important.

(4) Different frequency band combinations affect classification
accuracy: The most common types of EEG signals are delta
wave, theta wave, alpha wave, beta wave, and gamma wave.
These frequency bands have different effects on classification
accuracy. Therefore, exploring the impact of different
frequency band combinations on classification performance is
essential.

To address the above issues, we constructed 3D features of EEG
signals and then utilized the proposed spatiotemporal
convolutional neural network (STCNN) for fatigue state
classification. Specifically, (1) this article evaluates a 3D feature
construction method that includes frequency domain and spatial
features, aiming to analyze EEG signals from multiple
perspectives and improve the accuracy of EEG signal
classification. (2) This article proposes a STCNN for fatigue state
classification. STCNN consists of attention time network (ATNet)
and attention-based convolutional neural network (ACNN),
ATNet consists of attention module and bidirectional long- and
short-term memory (BiLSTM), and ACNN consists of attention
module and ConvNeXt. (3) This article inputs 1D features into
ATNet, which can focus on spatiotemporal features in EEG
signals and discard some useless information. By inputting 3D
features into ACNN, this network can further analyze valuable
information in EEG signals, making classification performance
more stable. This article conducted extensive experiments using
this method on three datasets, with the aim of verifying whether
the method can still maintain stability under different levels of
fatigue. Finally, the influence of different frequency band
combinations on fatigue state classification was verified.

The main contributions of this study are as follows: (1) The
proposed 3D feature construction method includes multiple
features from EEG data, being able to learn more useful
information for classification; (2) a new STCNN is proposed to
classify fatigue states; (3) a large number of experiments were
carried out on three self-collected sleep-deprived driving datasets.
Compared with other excellent in-depth learning methods, our
method performs well in the secondary classification task.

The remaining work of this article is as follows: In the second
section, a brief review of relevant work is provided. In the third
section, we provided a detailed introduction to our data collection
process. In the fourth section, we introduced the technical method
we proposed. In the fifth section, the experiment and result
analysis were introduced. In the sixth section, we summarized the
work of this article.

2. Related Work

EEG signals have the characteristics of high dimensionality
and high sampling rate. After dimensionality reduction and
compression, they can extract features related to the target task.
These features can better represent and characterize the
information of EEG signals, helping to classify, recognize, and
analyze important information in EEG signals. Meanwhile,
different features may have different importance for different
tasks and applications, so it is necessary to select appropriate
features based on specific application scenarios.
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Zhang et al. (2019) proposed a cyclic 3D convolutional neural
network (R3DCNNs) for learning EEG features of different tasks
without prior knowledge. This network can simultaneously learn
EEG features from spatial, spectral, and temporal dimensions. Yang
et al. (2018) proposed a three-dimensional representation of EEG
bands to combine signal features from different frequency bands
while preserving spatial information between channels. Zhao et al.
(2020) proposed a three-dimensional CNN model for automatically
extracting spatiotemporal features from EEG signals, which
performed well in binary and quaternary classification tasks based
on emotion recognition datasets. Lin et al. (2020) proposed that 3D-
CNN and 3D-LSTM can remove noise from sEMG signals with a
classification accuracy of 90.52%. Shalsh (2021) proposed a new
CNN deep network model for identifying fatigue or normal fatigue,
which utilizes only one EEG channel signal to estimate the driver’s
fatigue state and has good flexibility. Sheykhivand et al. (2022)
proposed an automatic system for two-stage classification of driving
fatigue based on EEG signals. The compressed EEG data are fed
into the proposed deep CNN for automatic feature extraction and
classification, which can effectively detect driver fatigue.

In summary, the following aspects can be summarized: (1) It is
feasible to construct 3D features of EEG signals, which include
various features of EEG signals. From the multidimensional
features, the state displayed by EEG signals can be more
comprehensively analyzed. (2) The use of deep learning

algorithms can automatically and comprehensively analyze the
features of EEG data, playing a crucial role in identifying fatigue
states. (3) Using CNN and attention mechanism module to
classify fatigue states can achieve better performance.

3. Technical Method

Figure 1 shows the entire workflow. In order to analyze EEG
signals more accurately, we evaluated a 3D feature extraction
method. First, the original signal is divided into five frequency
bands, and then, the PSD of each frequency band is extracted to
obtain 1D features. Then, based on the distribution position of the
electrodes, the PSD features are mapped to a two-dimensional
plane to get two-dimensional features. Finally, five 2D planes are
stacked to obtain 3D elements, mainly temporal and spatial
features. This paper inputs the extracted features into a STCNN.
STCNN consists of an attention-based time domain network
(ATNet) and ACNN. This paper inputs 1D features into ATNet,
composed of attention mechanisms (channel attention and
spatial attention) and BiLSTM. It is mainly used to extract
one-dimensional time domain signal features and focus on some
valuable information. Input 3D features into ACNN, which
comprises attention mechanisms (channel attention and spatial
attention) and CNN. The main body of CNN is the ConvNeXt

Figure 1
Experimental process of the entire work
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pure CNN, as proposed by Liu et al. (2022). This article is mainly
used to analyze the spatiotemporal characteristics of EEG. Finally,
this paper fuses ATNet and ACNN output characteristics and
performs fatigue state prediction based on the obtained features.

3.1. 3D features

We have constructed three-dimensional features aimed at
integrating both temporal and spatial information of EEG signals.
The construction process is shown in Figure 2. Since the dataset
in this article calculates a tag every 10 s, to make each feature
input correspond to the label, this article divides the original EEG
data into several non-overlapping 10-second EEG signal
segments, matching the tag with the corresponding EEG signal
segment. The figure shows the details of extracting signals from
an EEG segment to construct 3D features.

First, the T second signal segment (in this article, T is 10 s) is
divided into T time windows, each with a length of 1 second. Then,
using a Butterworth filter, the EEG signal segments within each time
window are decomposed into five frequency bands (Delta, Theta,
Alpha, Beta, and Gamma). Next, the PSD of different frequency
bands is calculated separately, and PSD can describe more
detailed frequency distribution information to obtain five 1D
features. Finally, the dataset used in this article contains 31
channels. According to the 2D graph of the 31 channels, the PSD
is arranged and superimposed to obtain 3D features. In summary,
each raw EEG signal can be represented as a 3D feature:
Xn 2 Rh�w�d , n=1,2, : : : , N. N is the total number of samples, h
and w represent the height and width of the two-dimensional graph
of electrode positions, respectively, and d represents the number of
frequency bands. In this article, h is 9, w is 9, and d is 5.

Assume that the original signals of the three datasets in this
article are represented as In 2 Rc�r, where c represents the number
of electrode channels and r represents the sampling rate. In this

article, c is 31, and r is 1000. First, each EEG fragment is divided
into T 1-second time windows. Then, this article uses a Butterworth
filter to filter out five frequency bands: Delta (0.5–4 Hz), Theta (4–8
Hz), Alpha (8–12 Hz), Beta (12–30 Hz), and Gamma (30–50 Hz).
Then, calculate the PSD of different frequency bands. PSD is a mea-
surement that describes the energy distribution of a signal in the fre-
quency domain. It is used to analyze the frequency domain
characteristics of signals and can convert time domain signals into
frequency domain signals. The higher the PSD, the greater the energy
in the signal at that frequency. In EEG signal processing, PSD is
often used to analyze brainwave activity in different frequency bands
(Demiralp et al., 2001). If the time domain signal is x(t), its Fourier
transform is:

X fð Þ ¼
Z 1

�1
X tð Þe�j2πftdt (1)

where f is the frequency and X(f) is the complex amplitude
of the signal at frequency f. According to the properties of the
Fourier transform, it can be obtained that the PSD function
of x(t) is:

P fð Þ ¼ lim
T!1

1
T

Z
T=2

�T=2
X tð Þe�j2πftdt

����
����
2

(2)

where P(f) represents the power density of the signal at frequency f.
T represents the length of the time window. When T ! 1 is used,
this formula represents the PSD estimation of the entire signal.

The original EEG signal fragment is converted into a PSD
fragment and used as an input to ATNet, which can be expressed
as Sn 2 Rc�d�T , where c is the number of channels, d is the number
of frequency bands, and T is the length of the signal segment. In this
article, c is 31, d is 5, and T is 10.

Figure 2
Construction process of 3D features
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The International 10–20 System is a standard method for
describing electrode locations and subcortical regions, as shown in
Figure 3. The electrodes marked green are the electrodes used in
EEG experiments. Generally speaking, EEG electrodes are
spatially distributed around the head, with multiple electrodes
adjacent. Different electrodes may interact to generate specific
information or record information on particular areas. One-
dimensional PSD features are transformed into two-dimensional
planes based on the electrode distribution map to preserve spatial
information between adjacent channels. The width and height of
the 2D plane are 9, and unused channels are represented by 0.

Using the above method, five 2D planes for each time window
within the EEG segment can be obtained (i.e., each frequency
segment corresponds to a 2D PSD feature map). Yang et al.
(2018) proposed a 3D design method. Specifically, it refers to
using the representation method of color images to construct the
three-dimensional input of features using the sigma representation.
Referring to this method, this article stacks five 2D planar
elements Sn into 3D EEG features Xn and uses them as input
to ACNN.

Table 1 lists the corresponding operations. Therefore, Xn can be
expressed as Xn 2 Rh�w�d , where h and w are the height and width of
the 2D graph, respectively, and d represents the number of frequency
bands. In this article, h is 9, w is 9, and d is 5.

After the above discussion, 3D features mainly include the
frequency domain features of the five frequency bands of the EEG
signal and the spatial domain features between the electrodes. For
the original EEG signal, the PSD of five frequency bands
represents the frequency domain characteristics. The 2D mapping
plane of 31 channels means the spatial information between the
electrodes.

3.2. STCNN

In the work of this article, STCNN consists of ATNet and
ACNN. ATNet comprises an attention mechanism and a BiLSTM.
The attention mechanism module consists of channel and spatial
attention modules. The ACNN consists of a ConvNeXt network
and an attention module. These sections will be described in
detail next.

3.2.1. Attention module
Attention networks have been widely used in deep learning in

recent years (Woo et al., 2018). Especially in the fields of
classification, anomaly detection, feature extraction, etc., it has
good performance. When using attention networks to process
EEG signals, they can learn the importance of EEG signals at
specific points in time, thereby achieving precise modeling and
analysis of EEG signals.

Figure 3
Building a 2D plane

Table 1
Corresponding terms

Territory

Computer vision EEG

Term description Color image EEG cube
Color channel R G Bð Þ Frequency band δ θ α β γð Þ
Color intensity PSD characteristic value
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It is worth noting that EEG signals are collected from the scalp,
and the electrodes present a spatial distribution pattern on the head,
dependency between channels. Attention networks can learn more
valuable information and discard other useless information,
thereby improving the performance of the model. Therefore, this
article uses channel and spatial attention networks to learn inter-
channel dependency and spatial features from EEG signals.

AttentionModule: This article uses the attentionmodule in both
ATNet and ACNN. In hybrid attention mechanisms, attention
mechanisms can be used in series or parallel. This article’s
attention modules are built in series, as shown in Figure 4. This
module first processes the input features through the channel
attention module, then processes them through the spatial
attention module, and finally obtains the output features.

Channel Attention: The module first performs average and
maximum pooling operations on the input characteristics. This
allows compression of the spatial dimensions of features,
aggregation of spatial information, and learning of correlation
features between channels. Next, the pooled features are subjected
to upsampling and downsampling processing. The purpose of
downsampling is to reduce computing resources while upsampling
is to maintain a constant number of channels.

Spatial Attention: The module first performs maximum pooling
and average pooling on input features to obtain two 1-D global
receptive fields. Then, concatenate the two features to get a 2-D
spatial attention graph, which can bring more valuable
information. Using filters reduces the dimension of features and
the amount of computation.

3.2.2. Time domain network based on attention mechanism
(ATNet)

BiLSTM was initially proposed by Schuster and Paliwal
(1997). BiLSTM is an extension of LSTM, which can better
capture the context in a sequence when processing sequence data.
EEG signals have continuity and timing in time series, and
BiLSTM can better capture the temporal dependencies between
signals, thereby more accurately predicting and classifying them.
For example, the EEG signals of each channel can be input as a
time series into BiLSTM to organize the EEG signals in different
states. Therefore, this paper proposes a time domain network
based on an attention mechanism, which aims to learn more
valuable information from 1D feature input and improve
classification performance. The structure is shown in Figure 5.

Time Network: We define the input 1-D signal
X ¼ x1; x2; . . . ; xNð Þ 2 RN�C�w�h, where N represents the batch size,
C represents the number of channels, andw and h represent the width
and height of the feature. Firstly, through the attention module, the
spatial attention mechanism can weigh EEG signals in the time

domain, allowing greater attention to spatial regions that play an
important role in time series. The channel attention mechanism
can weigh EEG signals in the frequency domain, allowing greater
attention to frequency bands that play an important role in the spec-
trum. The output of the attention module is then sent to BiLSTM.
Through a two-layer BiLSTM network, each layer contains 128
computing units, which can better focus on the time dependence
between signals. The process of entering a sequence through ATNet
can be described as follows:

Qt ¼ σ T σ S C Xð Þð Þð Þð Þð Þ 2 RN�C�w�h (3)

whereC represents channel attention, S represents spatial attention, σ
represents the sigmoid activation function, and T represents the
BiLSTM network.

3.2.3. CNN based on attention mechanism (ACNN)
We input 3D features into ACNN. The ACNN consists of an

attention module and a CNN. CNN is based on the improved
ConvNeXt pure CNN to fuse and classify features. The structure
of CNN is shown in Figure 6, mainly composed of a
convolutional layer, Layer Norm, ConvNeXt Block, Downsample,
pooled layer, and fully connected layer.

Figure 4
Attention module

Figure 5
ATNet network structure diagram
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Convolution layer: The feature input first passes through a
convolution layer with a convolution kernel size of 4 × 4. The
primary purpose of this layer is to receive the feature input and
obtain the feature vector.

Layer Norm: This layer is used after the fully connected layer
and is normalized on a single sample, which can stabilize the feature
distribution, improve the robustness and generalization ability of the
model, and accelerate the convergence speed of the model.

ConvNeXt Block: The architecture of this module is shown in
Figure 7. The selection of activation functions and normalization
layers is the focus of this module. Firstly, this module only uses
an activation function, GELU, instead of ReLU. This function can
be seen as a smoothing variant of ReLU, which can enhance the
model’s performance. The normalization layer is only used once
after the first convolution, and instead of using the conventional
BatchNorm layer, the Layer Norm layer is selected. This is done
to improve convergence and reduce overfitting. In addition, the
Layer Scale operation is a special normalization operation that can
adjust features based on the scale information of the sample,
thereby improving the expression and generalization capabilities
of the network. The final function of DropPath is to regularize

cross-layer connections, reduce network complexity, and reduce
the risk of overfitting.

Downsample: The architecture of this module is shown in
Figure 8. The lower sampling layer comprises a Layer Norm and
a convolution layer with a convolution kernel size of 2 steps and
a distance of 2. The primary purpose is to downsample input data
and to reduce the spatial dimension of the data, thereby reducing
the amount of computation and parameters of the network while
increasing the network’s receptive field and improving the
network’s generalization ability.

Pooling layer: The pooling layer uses global average pooling.
The feature map is dimensionally reduced to convert spatial
information in the height and width directions into features in the
channel direction.

Full connection layer: Finally, the characteristics output from
ATNet and ACNN are combined and input to the full connection
layer for fatigue state classification.

4. Data Preparation

4.1. Experimental subjects

In this experiment, 14 healthy subjects participated in the
complete investigation, all aged between 23 and 26 years,
including 13 males and one female. The investigation requires that
all subjects, be physically and mentally healthy, have no mental
illness, have normal vision, obtain a driving license, and have
some driving experience. To complete the experiment, the
subjects also need to pay attention to the following points
throughout the investigation:

1. All subjects need to ensure normal work and rest one week before
the start of the experiment. Do not exercise vigorously or work
excessively, ensure adequate sleep, and do not stay up late.

2. Do not drink caffeinated or alcoholic beverages before the start of
the experiment.

3. The subjects who participated in the experiment in the morning
should go to bed on time the night before and not stay up late
to ensure sufficient sleep. The subjects who participated in the
investigation in the afternoon or evening had a normal rest at
noon, and those who had a habit of napping had a normal
lunch break.

4. You must wash and blow dry your hair 1 h before the experiment
begins. Before charging the electrode cap, the hair is dry and
should not be too hot or wet.

5. Before the experiment begins, subjects must undergo a pre-test to
ensure they understand and are familiar with the experimental
process. They feel well due to the driving environment or
instrumentation.

6. The entire experiment takes about 150–180 min. Before the

completed, and the subjects should complete them as required.
If there are any questions, they should communicate with
relevant personnel promptly.

investigation, eating regularly and using the bathroom correctly
were necessary. The whole process is not allowed to play with
mobile phones or do other things.

7. During the experiment, corresponding tasks and tests must be

8. Each subject must complete three driving tasks: low, medium,
and high.

9. The experimental process is tedious and time-consuming,
requiring patience, not impatience, and being able to complete
the experiment usually.

Figure 7
Structural diagram of ConvNeXt block

Figure 8
Downsample structure diagram
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4.2. Experimental protocol

In order to ensure the safety of the subjects and ensure that the
collected data is closer to reality. In this experiment, a simulated
driving platform was built, and a simulated driver was purchased
to make the subjects feel like they were driving in real life. The
entire simulated driving platform is shown in Figure 9:

Each participant needs to complete three different driving tasks:
low load, medium load, and high load, with each experiment
completing one task. Low-load task driving scenario: Driving on

2.15–75 and 90–150 min: In these two stages, subjects only

1.0–15, 75–90, and 150–165 min: Subjects are required to fill
out the fatigue self-test scale and the Dundee stress scale respectively
in the first, middle, and last stages of the driving task and complete
behavioral testing tasks such as Pyramid Vision Transformer (PVT)
and decision deviation, with the purpose of assisting in judging the
fatigue status of the subjects. In addition, we placed a camera in front

spacious roads with a speed limit of below 80 km/h (to avoid
collisions), participants can follow the runway and enjoy the
scenery. Medium-load task driving scenario: Driving on a
highway loop in a city involves tasks such as entering a tunnel
and avoiding vehicles traveling back and forth, requiring
participants to maintain attention at all times. High-load task
driving scenario: Driving on rugged mountain roads (one-way
mountain climbing), maintaining attention and speed control at all
times to avoid collisions. Three different driving scenarios were
simulated to simulate different driving environments in real
situations, and our goal was to collect EEG signals from each
participant at different levels of fatigue. The entire experiment
takes about 175 min, and the specific details are shown in Figure 10:

of the subjects to collect video face data.

need to drive the vehicle to complete corresponding driving tasks.

4.3. Data acquisition and pre-processing

The EEG signal of this experiment was obtained using
internationally recognized Back Propagation (BP) acquisition
equipment. In addition to one reference electrode, data from 31
electrode channels can be obtained at a sampling frequency of
1000 Hz. In the experiment of three driving tasks, each subject
must complete a two h driving tasks, collecting 7200s of EEG
data and totaling 7,200,000 sampling points.

This experiment extracts eye movement features from collected
face images, and PERCLOS indicators are calculated as data labels
(Du et al., 2022). The specific formula is as follows:

Figure 9
Simulated driving platform

Figure 10
EEG signal acquisition experimental process
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PERCLOS ¼ blinkþ CLOS
interval

(4)

where interval means the total time, including blinking, closing, and
other states. The calculation formula is as follows:

interval ¼ blinkþ CLOSþ fixationþ saccade (5)

where fixation and saccade mean the gaze and saccade states of
the eye.

The three datasets are labeled every 10 s, totaling (7200/10) 720
tags. The tag value is between 0 and 1, with a smaller value indicating
that the subject is more awake and has a lower level of fatigue. In
comparison, a more significant value indicates a higher level of
fatigue. Labels are divided into two categories based on
PERCLOS values, with 0–0.35 indicating an awake state and
0.35–1 indicating a fatigued state.

We used a validated method to pre-process the three collected
datasets. Specifically, using a bandpass filter to filter out raw data
from 1 to 60 Hz, ICA (Jung et al., 2000) is used to remove noise
and artifacts from the data. The pre-processing process is
completed based on the EEGLAB toolkit (Delorme & Makeig,
2004). Due to the excessive data corruption of one subject, the
data of 13 subjects were used for subsequent research. The three
datasets are fatigue EEG dataset for low-load tasks (LLT-FEDS),
fatigue EEG dataset for medium-load tasks (MLT-FEDS), and
fatigue EEG data assigned for high-load tasks (HLT-FEDS).

5. Experimental Results and Analysis

This article has conducted many experiments on three datasets:
LLT-FEDS, MLT-FEDS, and HLT-FEDS. First, we performed
different verifications on the time window length for dividing
EEG segments and selected the method with the best effect. Then,
this article uses the HLT-FEDS dataset to do a model ablation
experiment, proving that each step of this method benefits the
fatigue detection effect. Then, this article compares the proposed
model and some popular models in recent years on three datasets
to verify the performance of the proposed method. Finally, this
paper demonstrates the impact of different frequency band
combinations on fatigue detection classification.

5.1. Model performance evaluation index

In order to demonstrate the performance of the proposed model
through experimental results, we used the five most commonly used
evaluation indicators in the field of deep learning. They are accuracy,
precision, recall, special effects, and F1 score. Firstly, regarding the
concepts of TP, TN, FP, and FN, TP represents positive sample
determination as positive, TN represents negative sample deter-
mination as negative, FP represents negative sample determination
as positive, and FN represents positive sample determination as
negative.

Among them, accuracy refers to the probability of predicting
positive and negative categories in the total number of samples.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(6)

Precision refers to the proportion of correct predictions being
positive to all predictions being positive.

Precision ¼ TP
TP þ FP

(7)

Recall rate refers to the proportion of correctly predicted positive
results to all actual positive results.

Recall ¼ TP
TP þ FN

(8)

Specificity refers to the probability of accurately predicting among
all negative categories.

Specificity ¼ TN
FP þ TN

(9)

F1score is the harmonic average of accuracy and recall.

F1score ¼ 2�Precision�Recall
Precisionþ Recall

(10)

5.2. Method introduction time window
comparative experiment

In constructing 3D features, this article divides each EEG segment
into time windows of the same length for subsequent operations. Many
experiments have been conducted on time window partitions of 0.5, 1,
2, and 3 s to verify and select the most suitable time window partition
length. As shown in Table 2, the impact of different partition methods
on various performance indicators is shown.

The results in Table 2 show that when the time window is set to 1
second, the proposed model achieves the best performance, with only
one indicator of accuracy lower than the time window setting of 0.5 s
and the other four indicators achieving the best results. The model’s
performance gradually deteriorates as the time window length
increases. The setting of the time window length significantly
impacts the final classification result. If it is too short, it can easily
split the features of the signal and cannot effectively learn the time
dependence in the EEG signal. If it is too long, it can easily lead to
inaccurate extracted features. Therefore, in the later experiment of
this article, the time window length is set to 1 second.

In addition, after many experiments, other parameters most
beneficial to fatigue detection performance have also been
selected. The training iteration is set to 200 rounds, the learning
rate is 0.001, and the data per batch is 128. The Mean Squared
Error (MSE) loss function is assigned to calculate the loss value,
and the optimizer chooses the Adam optimizer. In the proposed
model, a variety of activation function, such as Relu and Gelu,
and convolution kernels of different sizes, such as 1 * 1, 3 * 3,
and 7 * 7, are also used.

Table 2
Experimental results of different time window partitioning

Time
window Specificity Recall Precision F1-Score Accuracy

0.5 s 0.8975 0.8398 0.7812 0.8088 0.8733
1s 0.9011 0.8436 0.7792 0.8178 0.8755
2s 0.8702 0.8139 0.7607 0.7811 0.8593
3s 0.8594 0.7981 0.7403 0.7681 0.8389

Journal of Data Science and Intelligent Systems Vol. 2 Iss. 1 2024

9



5.3. Model ablation experiment

This article conducts ablation experiments on the proposed
model based on the parameter settings in Section 5.2, in order to
verify that each part of the model has a positive impact on fatigue
detection. This article first verifies the effectiveness of
constructing 3D features and then proves the impact of ATNet
and ACNN on classification detection. The experimental results
are shown in Table 3. The specific operation is as follows:

First, the original signal without pre-processing and feature
extraction is input into STCNN and iterated 200 times. The final
classification accuracy of the model is 72.46%, and several other
indicators are also relatively low. The main reason is that the
unprocessed signal contains much noise and is contaminated by
various artifacts. Although STCNN can learn some spatiotemporal
features and achieve individual classification results, it is only
possible for STCNN to perform well by directly inputting
processed EEG signals into the model.

Next, this paper divides the original signal into a time window
of 1 second, performs Butterworth bandpass filtering on the signal to
obtain five common frequency bands, and extracts PSD features of
each of the five frequency bands to get one-dimensional frequency
domain features. After repeated training and verification, the
classification accuracy rate has risen to about 80.32%. The other
indicators also have varying degrees of improvement due to the
pre-processing of raw data and PSD feature extraction, indicating
that extracting one-dimensional features improves the model’s
classification performance.

If only 1D features are input into the ATNet model, only
78.52% classification accuracy can be achieved. This indicates
that the classification effect is affected when removing the ACNN
module. The ACNN model is mainly used to fuse multiple
features and further learn more valuable information, which is
beneficial to improving classification accuracy.

Then, this article inputs the constructed 1D and 3D features into
the ACNN network, respectively. If 1D features are input, an
accuracy rate of 81.08% can be achieved. If you input 3D

features, all indicators have significantly improved, with an
accuracy rate of 84.57%. The experimental results show that 3D
features include frequency and spatial domain features, which
provide a more comprehensive analysis of EEG signals than 1D
feature inputs, and ultimately achieve good results.

Finally, this article inputs 1D and 3D features into the STCNN
network. Specifically, the proposed method achieves the best
classification performance by inputting 1D features into the
ATNet module and 3D parts into the ACNN module.

The experimental results show that the pre-processing operation
of EEG data cannot be ignored, and removing pollution from the
signal can effectively improve the quality of the signal. Simply
analyzing the characteristics of EEG signals can achieve specific
results, but the accuracy rate is low. Therefore, a more
comprehensive analysis of various aspects of EEG signals is
needed. The 1D features and 3D features constructed in this
article can be input into ATNet and ACNN, respectively, which
can effectively extract the spatiotemporal features of EEG signals
and improve the accuracy of fatigue state classification.

5.4. Comparative experiment

To verify the performance of the proposed model, this article
compares it with six highly competitive models. These models are
EEGConv (Zeng et al., 2018), EEGConvR (Zeng et al., 2018),
ESTCNN (Gao et al., 2019), R3DCNNs (Zhang et al., 2019), 3D-
CNN (Lin et al., 2020), and 3D-LSTM (Lin et al., 2020). This
article reproduces these models by introducing models,
parameters, and some details in the original literature. Then, use
the same method to conduct experiments on three datasets: LLT-
FEDS, MLT-FEDS, and HLT-FEDS. The results are shown in
Tables 4, 5, and 6.

By synthesizing the results of the three tables, it can be seen that
among the seven models, except for the ESTCNN, all the other
models have an accuracy rate of over 80%. The accuracy of the
three models, 3D-CNN, 3D-LSTM, and STCNN, has reached
over 85%. According to Table, the method proposed in this paper

Table 4
Experimental results based on the LLT-FEDS dataset

Methods Specificity Recall Precision F1-Score Accuracy

ESTCNN (Gao et al., 2019) 0.6079 0.6524 0.7003 0.7965 0.7708
EEGConvR (Zeng et al., 2018) 0.6643 0.6966 0.7443 0.8101 0.8136
EEGConv (Zeng et al., 2018) 0.6886 0.7264 0.7823 0.8321 0.8238
R3DCNNs (Zhang et al., 2019) 0.7358 0.7484 0.7811 0.8555 0.8333
D-CNN (Lin et al., 2020) 0.7685 0.7977 0.8404 0.8792 0.8658
D-LSTM (Lin et al., 2020) 0.7678 0.7913 0.8195 0.8633 0.8587
STCNN 0.7746 0.8035 0.8422 0.8894 0.8715

Table 3
Ablation experiment of 3D-STCNN model

Methods Specificity Recall Precision F1-Score Accuracy

STCNN+Raw 0.6031 0.6360 0.6740 0.6825 0.7246
STCNN+1D 0.6802 0.7258 0.7522 0.7438 0.8032
ATNet+1D 0.7006 0.7417 0.7555 0.7749 0.7852
ACNN+1D 0.7011 0.7343 0.7686 0.8207 0.8108
ACNN+3D 0.7565 0.7755 0.7970 0.8682 0.8457
STCNN+1D+3D 0.7792 0.8178 0.8436 0.9011 0.8755
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achieves the best performance in EEG datasets based on high-load
driving tasks, with an accuracy rate of up to 87.55%. Although
the recall rate and accuracy are lower than those of 3D-CNN, the
other three indicators are all higher. In addition, the proposed
method performs better in the other two datasets. In addition, the
three datasets are based on EEG datasets collected under different
task loads, which means that participants participating in
experiments with different tasks have different fatigue levels
during the actual experimental process. When subjects complete
relatively easy and low-load driving functions, they feel less tired
and sleepy. When completing a high-load task, the subject will
feel very tired, and due to the high concentration of mental energy
for a long time, the degree of fatigue will be heavier. This is also
similar to real life, where different people have significantly
different fatigue levels due to personal reasons, work stress, or
duration of driving time.

Therefore, the algorithm’s stability in different situations is also
worth studying. The experimental results in the three tables show that
all models perform less well on the dataset of low-load tasks than on
the dataset of high-load assignments. The accuracy of the STCNN
model is 87.15%, 87.37%, and 87.55%, respectively, with a
fluctuation range of 0.4 percentage points. The fluctuation ranges

of the six models of ESTCNN, EEGConvR, EEGConv,
R3DCNNs, 3D-CNN, and 3D-LSTM are 1.12, 1.01, 0.89, 0.64,
0.74, and 1.06 percentage points, respectively. According to these
data, compared to mild fatigue, the more severe the fatigue, the
higher the classification accuracy of any model. This indicates
that the degree of fatigue does affect the final test results. The
fluctuation range of classification accuracy shows that the
fluctuation range of the model proposed in this article is only 0.4
percentage points, which is the smallest among all models.
Therefore, if we can comprehensively analyze the EEG signal
from data pre-processing and feature extraction to classification
and propose a model with better performance, the stability of the
final category can be guaranteed in either case.

5.5. Frequency band experiment

In order to evaluate the impact of frequency bands (such as
Delta) on fatigue state recognition, this article uses the same
method to construct features separately or in combination for 5
frequency bands and then inputs them into the proposed model for
experimentation. The performance of this experiment in the HLT-
FEDS dataset is shown in Table 7.

Table 7
Experimental results in different frequency bands

Bands Specificity Recall Precision F1-Score Accuracy

δ 0.7221 0.7374 0.7412 0.7956 0.7689
θ 0.7584 0.7797 0.7816 0.8329 0.8047
α 0.7635 0.7803 0.7898 0.8479 0.8131
β 0.7884 0.8167 0.8155 0.8642 0.8309
γ 0.8004 0.8089 0.8072 0.8711 0.8406

β+γ 0.7663 0.8067 0.8336 0.8857 0.8655
α+β+γ 0.7722 0.8103 0.8387 0.8873 0.8678

θ+α+β+γ 0.7709 0.8194 0.8482 0.8975 0.8742
All 0.7792 0.8178 0.8436 0.9011 0.8755

Table 5
Experimental results based on MLT-FEDS dataset

Methods Specificity Recall Precision F1-Score Accuracy

ESTCNN (Gao et al., 2019) 0.6125 0.6556 0.7021 0.7977 0.7802
EEGConvR (Zeng et al., 2018) 0.6687 0.7003 0.7498 0.8132 0.8228
EEGConv (Zeng et al., 2018) 0.6908 0.7277 0.7843 0.8335 0.8267
R3DCNNs (Zhang et al., 2019) 0.7403 0.7506 0.7844 0.8578 0.8361
D-CNN (Lin et al., 2020) 0.7794 0.8008 0.8431 0.8847 0.8718
D-LSTM (Lin et al., 2020) 0.7685 0.7934 0.8201 0.8712 0.8668
STCNN 0.7763 0.8065 0.8456 0.8987 0.8737

Table 6
Experimental results based on HLT-FEDS dataset

Methods Specificity Recall Precision F1-Score Accuracy

ESTCNN (Gao et al., 2019) 0.6187 0.6645 0.7079 0.8004 0.7820
EEGConvR (Zeng et al., 2018) 0.6722 0.7063 0.7554 0.8115 0.8237
EEGConv (Zeng et al., 2018) 0.6832 0.7343 0.7806 0.8320 0.8327
R3DCNNs (Zhang et al., 2019) 0.7465 0.7579 0.7863 0.8558 0.8397
D-CNN (Lin et al., 2020) 0.7817 0.8081 0.8456 0.8863 0.8732
D-LSTM (Lin et al., 2020) 0.7792 0.8005 0.8289 0.8745 0.8693
STCNN 0.7792 0.8178 0.8436 0.9011 0.8755
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From the results in the table, it can be seen that when constructing
features separately for 5 frequency bands, the higher the frequency of the
frequency band, the higher the final classification accuracy, among them,
Beta βð Þ And Gamma γð Þ The performance is similar, but significantly
higher than the classification performance of the other three frequency
bands. It is not difficult to find that the features constructed in a single
frequency band have overall low performance and the highest accuracy
is only about 84%, which has a significant impact on the recognition of
fatigue states.

In addition, this article conducts combination experiments on
different frequency bands, and there are many combination methods,
which are not limited to this. This article mainly selects Beta βð Þ And
Gamma γð Þ Two frequency bands are combined with other frequency
bands. From the results, it can be seen that the overall performance of
themulti-band feature constructionmethod is significantly better than that
of the single-band feature construction method. The combination of five
frequency bands showed the best performance on four indicators, and the
combination of four frequency bands had one indicator that was the best.
Therefore, it is not difficult to find that the combination of frequency
bands has a significant impact on fatigue state recognition, and multi-fre-
quency bands have better performance.

This is an experiment that analyzes the importance of frequency
bands from the perspective of neural networks. In experiments with a
single frequency band, Beta βð Þ And Gamma γð Þ, the frequency
band has the most significant impact on the fatigue classification
results. The overall performance of the multi-band combination
method is better and more stable, and it is hoped that this study
can provide some new ideas for future research on fatigue detection.

6. Conclusions

This paper evaluates a method for constructing 3D features and
proposes a STCNN for classifying fatigue states. 3D features include
frequency domain features and spatial features. STCNN consists of
ATNet and ACNN, which can further focus on valuable information
in EEG signals, thereby improving classification accuracy. This paper
uses the proposed method to conduct much experimental verification
on three datasets: LLT-FEDS, MLT-FEDS, and HLT-FEDS. The
experimental results show that the feature extraction method can
extract the spatiotemporal features of EEG signals, and the proposed
STCNN can improve classification performance. Moreover, it can
maintain good stability in different fatigue classification tasks, and this
method is superior to some existing fatigue detection methods based
on deep learning. Finally, this paper uses the proposed approach to
verify the impact of different frequency band combinations on
classification performance. The method proposed in this paper mainly
analyzes the spatiotemporal characteristics of EEG signals, which
improves the classification accuracy of fatigue detection to a certain
extent, providing some ideas for future research.

However, current research has certain limitations. Firstly, due to
the expensive and cumbersome wearing of traditional EEG devices,
EEG data collection could be better; Secondly, the complexity of the
algorithm proposed in this paper is relatively high, and processing
data requires a certain amount of time. Therefore, the real-time
performance could be better. Finally, due to inconsistent methods
of processing data, it is difficult to compare different studies.
Consequently, it is necessary to specify future unified data
processing and feature extraction standards.
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