

© The Author(s) 2024. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/

licenses/by/4.0/).

1

Received: 7 February 2024 | Revised: 28 May 2024 | Accepted: 31 May 2024 | Published online: 19 June 2024

RESEARCH ARTICLE

Analysis of Cybersecurity

Vulnerabilities in Mobile Payment

Applications

Archives of Advanced Engineering Science

yyyy, Vol. XX(XX) 1–12

DOI: 10.47852/bonviewAAES42022595

Esther Edem Archibong
1
, Bliss Utibe-Abasi Stephen

1, *
 and Philip Asuquo

1

1 Computer Engineering Department, University of Uyo, Nigeria

*Corresponding author: Bliss Utibe-Abasi Stephen, Computer Engineering Department, University of Uyo, Nigeria. Email: blissstephen@uniuyo.edu.ng

ORCID: 0000-0002-2535-4492

Abstract: Skepticism about security of mobile payment applications has plagued user adoption of such platforms in some countries.
Software developers have generally de-emphasized core principles guiding delivering safe mobile applications since for mobile
payment applications, movement of monetary value is their priority. We find in surveyed literature that this situation is prevalent
in low economy/low financial inclusion countries. Selected were 50 Fintech and traditional banks m-payment applications in both
high and lower economic and technological advancement (high E&T apps and lower E&T apps respectively) countries in Africa.
This work may have significance in finance or economy, but it is mainly to unravel cybersecurity concerns. The analyses (static
and dynamic) of the applications targeted top ten vulnerabilities on 2023 Common Weakness Enumeration (CWE) and Open
Worldwide Application Security Project (OWASP) lists. The study employed Mobile Security Framework (MobSF) as the primary

tool for both Android and iOS application while Automated Security Risk Assessment (AUSERA) tool was used to validate the
vulnerabilities reported by MobSF. Results show that traditional m-payment apps were generally more secure than Fintech m-
payment apps. In the later category, vulnerabilities under information leakage and cryptography category were the most prevalent.
On the average, no marked difference was observed in security performance between high E&T apps and lower E&T apps. Incorrect
default permission, cleartext storage of sensitive information, use of risky cryptographic algorithm, use of insufficiently random
values and information exposure were the most prevalent vulnerabilities. Conversely, insecure implementation of SSL and trusting
all certificates or accepting self-signed certificates had fewest occurrences. Poor code quality was the highest source of security
vulnerabilities in the study. Declining statistics of SMS leakage in recent studies was confirmed in this work. The most implemented

security measure was certificate pinning for preventing or detecting man-in-the-middle attack.

Keywords: vulnerability analysis, CWE, OWASP, cryptography, certificates, cybersecurity

1. Introduction

In recent years, developed countries have relied heavily on
the near instantaneous movement of vast and small digital
money for payment of goods and services irrespective of

physical distance [1]. When investigated further, the state of
the industry report on mobile money by GSMA [2] shows
massive mobile payment adoption in Africa with 166 live
services, 781 million registered accounts, $42.9 billion
transaction volume, and $836.5 billion transaction value.
Mobile payments applications, also written as mobile
payment apps or m-payment apps, have been a significant
way to achieving such level of commerce in underbanked

regions in Africa [3]. Mobile banking applications for a
while depended on physical access to banks which
underbanked regions are not privy to. This has brought on a
proliferation of branchless and Financial Technology
(Fintech) banks. Though it has improved access to banking
services, there is still wide skepticism surrounding them.

Although massive adoption of different forms of mobile

payment apps has been witnessed in both high-income and
Low/Middle-Income Countries (LMICs), hundreds of
barriers threaten the use of this payment method, especially
in LMICs. These barriers include but are not limited to
security factors, integrity, and perceived trust [4, 5].
Vulnerabilities in mobile payment applications are more
dominant in third-world regions than Europe, for instance
[6]. Gao and Waechter [7] established as adoption

determinants perceived trust, benefit, and convenience.
Integrity in mobile banking implies that mobile banking
firms observe specific rules [8], while perceived trust is the
user’s willingness to be vulnerable.

Perceived trust influences customer's choice to use
mobile payment, but with perceived security or perceived
risk as mediation [9, 10]. Perceived risk can be classified
into perceived information risk and perceived financial
risk [11], as well as perceived performance risk [12].

Perceived financial risk is refers to users’ beliefs,
sentiments and behaviors of the risk make up of an m-

mailto:blissstephen@uniuyo.edu.ng

Archives of Advanced Engineering Science Vol. XX Iss. XX yyyy

__

 2

payment app [13, 14]. Perceived performance risk is the
extent to which a user evaluates an m-payment app to have
features or performance alien to what he needs. All these
forms of perceived risk are basically rooted in insecurity

in the mobile payment applications. The scenario is more
concerning for African countries where some emerging
financial policies (or poor implementation of same) mean
that users are compelled to use mobile payment applications,
regardless of the perceived risks. This presents a rise in the
number of users exposed to the vulnerabilities in the system.
Take Nigeria for instance, where a scatter gun approach to
cashless policies saw meteoric rise in number of mobile

payment app users in 2023. It is such forced exposure to
vulnerabilities that informed the choice of Africa as case
study.
 From the background provided so far, the problem x-
rayed may have massive economic significance. But it is in
the first instance a cybersecurity (IT) problem. Lien et al. [15]
highlighted security requirements that would provide safety
for people using mobile banking to include confidentiality,

integrity, availability, and authentication. Security practices
ensuring confidentiality are carried out to enforce that only
an authorized person accesses the right kind of data. The
availability of the mobile banking system is also paramount.
Apart from these, putting modalities in place to authenticate
the user and secure financial data from being altered by
unauthorized users is of significant concern. To guide these
modalities, this paper assesses the vulnerabilities in the most

used mobile payment applications in a third-world continent
– Africa. Conventions are often used as guide for assessment
of vulnerabilities e.g. Common Weakness Evaluation/Open
Worldwide Application Security Project (CWE/OWASP).
CWE is a community-developed list of standard software
and hardware weaknesses dating back to their first release in
2006 while OWASP is an open-source, non-profit
foundation that works to improve software security by
testing and reporting known software vulnerabilities. Both

CWE and OWASP routinely release a list of reported
vulnerabilities, and rank them.
 In summary, this study makes the following major
contributions:
a. To enable us focus on most prevalent cyber security

vulnerabilities, the work adopts top vulnerabilities
ranked by community-named conventions - CWE and
OWASP 2023.

b. To accommodate bulging number of Fintech mobile
apps in Africa, the study sample features a 26:24 mix of
Fintech and traditional mobile banking applications in
Africa. Then comparing performance of the two classes
of m-payment apps.

c. We also present a study sample uniformly covering the
5 regions in Africa, taking into cognizance countries
high economic and technological advancements (high

E&T) and lower in economic and technological
advancements (lower E&T); and a performance
comparison between high E&T and lower E&T.

The remainder of this paper is structure as follows:

section 2 presents review of related literature, section 3
provides the methodology adopted for the vulnerability

assessment, while section 4 gives the results. The paper does
not end without conclusion, found in section 5.

2. Literature Review

There have been some advancements on assessment of

vulnerabilities of m-payment apps. Speaking generally, the

lack of security awareness among developers has been a
major cause of vulnerabilities in mobile applications [16]. In
terms of attacks. Man-in-the-middle (MITM) attacks were
major attacks found in Abdullah and Zeebaree [16] and
Shahriar et al. [17]. Non-obfuscation of source code, external
storage access, exportation of activities to other apps, logs
information, use of object de-serialization [18]. In Africa, the
region of interest to us, outstanding statistics were SMS

spoofing, server attacks, MITM attacks and non-definition
of privacy perceptions by users from external libraries
tracking within a context [19]. In fact, the use of vulnerable
third party libraries in mobile app development is a major
source of vulnerabilities in mobile applications as a whole
[20]. In a later work, Bassolé et al. [21], most mobile
payment applications in Africa have access to precise
location and write information to the SD card (71.7%); allow
contacts to be read (60.38%); and provide access to the

camera (45.28%).
Approaches adopted for vulnerabilities assessment has

predominantly been static and dynamic analyses [17, 22].
Static analysis generally encompasses scanning the source
code or object code of an application and examining it
without having to execute the program [23]. Dynamic
analysis is used to detect vulnerabilities which occur during
the run-time of an application cycle [18]. Unlike static

analysis, dynamic analysis is more complex and requires the
installation of additional applications simulation of user
input for analysis-based proposes.

Automated Security Risk Assessment (AUSERA), a
system of security risk assessment automated on three levels,
was applied in Chen et al. [6]. Input harvest, capturing of
application can input data that is sensitive like users'
transaction information, data storage (considering if the

application writes to external storage); data transmission
(transferring data that is sensitive through SMS, data
leakage); and communication structure were assessed. In the
same work, Automated Security Risk Assessment
(AUSERA) although limited to Android outperformed
Qihoo360, AndroBugs, Mobile Security Framework
(MobSF), and Quick Android Review Kit (QARK) in both
precision and time cost [6].

Interestingly, prior works mostly assessed/analyzed
only Android permissions, very few considering iOS
permissions. Also, though Fintech mobile payment
applications have become near mainstream in African
countries [22], they have not had the needed attention in
prior vulnerability analyses. Researches classifying
vulnerabilities in mobile payment applications according to
community-named conventions are not prevalent yet – in the
selected literature, such adoption was found only in Reaves

et al. [24]. Adoption of such standards allows focus of
resources on statistically critical vulnerabilities. We also
observed that top vulnerabilities on CWE and OWASP

Archives of Advanced Engineering Science Vol. XX Iss. XX yyyy

__

 3

listings, are usually a superset of top occurring
vulnerabilities in existing literature. For instance,
Shahriar et al. [17] found that most malicious mobile attacks
exploit vulnerabilities such as sensitive data leakage,

unsecured sensitive data storage and transition of data. These
vulnerabilities are part of the CWE and OWASP top 10
listings.

3. Research Methodology

3.1. System model

The system proposed in the work is as shown in Figure
1, specifically the analyses. As would be discussed in details
subsequently, what is core to the analyses is assessing the
vulnerabilities of select m-payment apps (testing
application). Scripts were written to query the internet for m-
payment apps meeting the study’s inclusion criteria. This
was to automate the process. The assessment results were
retrieved and analyzed to extract data related to the study

objectives.

Figure 1

System Model

The vulnerabilities assessment was carried out in a five-
step process, as shown in Figure 2, from region selection
process, application selection process, static and dynamic
analyses to result analysis.

Figure 2

Research process flow

3.2. Study region selection

First, low financial inclusion countries were identified,
from which select mobile payment applications were used
for the vulnerability assessment. The work focused on the
five regions in Africa viz: North Africa (Egypt and
Morocco), Central Africa (Cameroon and Gabon), Eastern
Africa (Rwanda and Kenya), Western Africa (Nigeria and

Mali) and Southern Africa (Angola and South Africa). In
selecting two countries from each region, different strategies
were employed. First, population ratio, a country with a high
population and another with less population for that region;

secondly, economic and technological strengths, choosing a
country with a good economy and technology, here on stated
as high E&T (e.g. Egypt in the Northern region, Cameroon
in the Central region, Rwanda in the Eastern region, Nigeria
in the Western region and South Africa in the Southern
region); and another with lower economic stability or
technological advancement (lower E&T). This will enable
the work establish whether or not there is a relationship

between economic and technology strengths of the countries
considered and the security ratings of the apps in those
countries.

3.3. App selection process

 To select an application, considering the humongous
number of applications available for mobile platforms, a
sorting algorithm was employed. As depicted in Figure 3, the
process starts by considering only applications found in the
financial category of any of Google play store and App store.
Next, it screens out applications not used in the countries of

interest. Further, non-popular applications were screened out
(applications below 3-star rating). This enabled selection of
best performing applications by user reviews. App ratings
might not offer much insight to developers for
improvements, but it sure shows how popular an application
is with users [25]. To ensure applications considered for the
work captures a fair population of users, anyone below 1,000
downloads was delisted. Thirdly, a check for support on

mobile operating system was conducted to eliminate
application not available for mobile, considering the study is
focused on payment applications that run on mobile devices.
Further criteria considered were a non-duplication of any
application (i.e. each application appears for only one
country; a total of five applications per country); ratio of
traditional bank apps to Fintech apps being 26:24. A total of
fifty (50) applications were assessed.

Figure 3

Archives of Advanced Engineering Science Vol. XX Iss. XX yyyy

__

 4

Application Selection process

3.4. Vulnerability analyses

3.4.1. Study taxonomy

The vulnerabilities assessed in the work followed the
Confidentiality, Integrity and Availability (CIA)
classification. Using the Common Weakness
Evaluation/Open Worldwide Application Security Project
(CWE/OWASP) naming convention, Confidentiality
(certificates), Integrity (information storage and
cryptography) and Availability (access control) vulnerability

types were covered. We assessed the selected applications
for the top ten (10) vulnerabilities in both CWE and OWASP
listing for 2023 [26, 27]. Table 1 describes the study
taxonomy listing different sensitive data which may be
exposed to malicious entities, particularly CWE and
OWASP top ten (10) vulnerabilities. Only 40% of the
applications were checked for both iOS and Android
permissions. The remaining 60% were assessed for just
Android permissions.

Table 1

Study taxonomy by CWE/OWASP naming convention

ID CWE / OWASP Top 10

Information/Storage

Leakage

CWE-200 Exposure of sensitive information to

unauthorized actor

CWE-276/OWASP:M2 Incorrect Default Permission/Insecure

Data Storage

CWE-312/ OWASP: M9 Cleartext Storage of Sensitive

Information / Reverse Engineering

Access Control

CWE-749/OWASP: M1 Exposed Dangerous Method or Function/

Improper Platform Usage

CWE-919 Weakness in Mobile Applications

(Webview is enabled)

CWE-89/OWASP: M7 Improper SQL Element Use (SQL

Injection)/Client Code Quality

Cryptography

CWE-327 / OWASP:M5 Use a Broken or unreliable Cryptographic

Algorithm / Insufficient Cryptography

CWE-330 Use of Insufficiently Random Values

CWE-649/OWASP:M5 Dependence on Obfuscation or

Encryption of Security-connected Inputs

without checking integrity

Certificate

CWE-295 Improper Certificate Validation

3.4.2. Experiment setup

System requirements were two personal computers, one
running Linux Ubuntu 23.04 Lunar Lobster OS and the other
an M1 chip Apple MacBook, and a 32-channel Mi-Fi. The
tools included Anaconda suite with Python 2.7, 3.6, and 3.8

loaded with MobSF, QARK and AUSERA requirements
libraries, Xcode, Fish terminal, ApkTool version 2.3,
MobSF framework, and AUSERA. MobSF as the primary
tool was used for the study's static Analysis (SA), for both
Android and iOS applications. AUSERA Tool was used to
validate the vulnerabilities reported by MobSF. Thus,
reducing the false positives reported by each vulnerability
analysis tool. However, due to the limitation of AUSERA,

supporting only Android operating system applications, iOS
applications static analysis was conducted on MobSF only.

a. Static analysis: To conduct the SA, as depicted in

Figure 4, an application raw file saved to the study
database from the application selection process is
extracted. The MobSF environment is started via a
terminal running on the local host using port 8080 to
produce MobSF Graphic User Interface (GUI). The
extracted application file is uploaded to MobSF using

the upload a file button. Using different plug-ins coded
into MobSF, such as dex and smali, the uploaded file is
decomposed into various files depending on the
application type uploaded. On successful
decomposition of application file to different file,
analysis is automatically executed for each file, testing
for vulnerabilities in application source code,
application manifest/plist, dex class or method, network
configuration, and certificate configuration and

signature. This process is repeated until all applications
for the study dataset is exhausted. The same procedures
are employed for static analysis with AUSERA.
However, AUSERA does not support GUI and iOS
applications. Therefore, all analyses are carried out on
a CLI terminal and for Android applications only.

Archives of Advanced Engineering Science Vol. XX Iss. XX yyyy

__

 5

Figure 4

Static Analysis flow process

b. Dynamic Analysis: Dynamic Analysis (DA) was

implemented using the same Tools and assessment
settings as in static analysis. The process began with
extraction of the application raw file saved to the study
database during the application selection process. Next,

an Android Virtual Device (AVD) emulator was
launched, and the extracted raw file installed, then
launched on the virtual device. MobSF environment
was started via a fish terminal running on the local host
using port 8000 to produce MobSF GUI. MobSF is
connected to the AVD to perform real time
vulnerabilities' detection on the running application.

4. Results

 This section presents performance evaluation results,

and a discussion on the vulnerabilities and vulnerability
sources observed in the study.

4.1. Performance evaluation

 A security grading system was also used in evaluating
performance of the apps viz: A=70–100; B=60–69; C=50–
59; D=45–49; E=40–44; F=0–39. The security scores are as
shown at the foot of the heatmaps in Figures 6, 7, 8, 9 and

10. Scores with asterisks are from high E&T apps (Egypt in
the northern region, Cameroon in central, Rwanda in the
Eastern, Nigeria in the Western and South Africa in the
southern region). At the header of the heatmaps are the m-

payment apps listed in blue for traditional banks, and red for
Fintech banks. A vast majority (70%) of the applications
performed at Grade C level, as seen in Figure 5. Further
detail on this is seen in Figure 10, where Mali in West Africa

had the most secure applications, boasting one A Grade, 3 B
Grades, and a C Grade payment application. Reaves et al.
[24] study of 7 mobile money wallets also achieved similar
results for this region, reporting two A-grade applications in
the form of Airtel mobile money in Western Africa and
Zuum in the southern region. Figures 6, 7, 8, 9 and 10
provide details of security scores of apps at the foot of the
heatmaps. At the top, m-payment apps from traditional

banks are listed in blue, while Fintech ones are listed in red.
Performance evaluation was done to confirm impact of
adopting the OWASP/CWE convention, compare
performance of traditional m-payment apps and those of
Fintech banks, and investigate if or not economic and
technological statues of countries affect security of m-
payment apps in those countries.

Figure 5

Chart showing application vulnerability grades

Figure 6

Vulnerabilities in Northern Africa M-payment

apps

CIB Egypt (CIBE), CIB Smart Wallet (CIBW), L’bankalik
(L’BK), Pocket Bank (POKB), CIH Mobile (CIHM),
Orange Money Egypt(OME), Halan Lending (HLN), True
Bill (TRBL), Waffarha (WFFH), CashPlus Mobile Wallet
(CPMW)

Figure 7

Vulnerabilities in Central Africa M-payment apps

Archives of Advanced Engineering Science Vol. XX Iss. XX yyyy

__

 6

NFC Bank (NFCB), AFG Mobile (AFGM), EBank Mobile
(EBAM), GO2bank (GOBA), Mes Comptes-LCL (MESO),
Orange Money Pro Cameroon (OMPC), SG Connect (SGC),
Gabon Pay (GBPA), GamPay (GMPA), Glotelho Pay
(GLOP).

Figure 8

Vulnerabilities in Eastern Africa M-payment apps

KCB, KCB iBank (KCBB), BK Mobile (BKMB), NCBA
Mobile Rwanda (NMRW), USACCO (USCO), Bayes

(BAYS), Leja (LEJA), M-KOPA (MKPA), WorldRemit
(WLRM), SPENN (SPNN).

Figure 9

Vulnerabilities in Western Africa M-payment apps

Atlatique Mobile = ATLQ, MyBOA Mali = MBOA, UBA
Mobile Banking (UBAM), First Bank Mobile (FRBM), GT
World (GTWL), BIM Mobile Banking = BIMB, Coris

Money = CORM, EBNDA = ENDA, OPAY, PalmPay
(PLPY).

Figure 10

Vulnerabilities in Southern Africa M-payment apps

BCINET (BNET), Multicaixa (MLCI), Atlantico (ALTC),
African Bank (AFRB), TymeBank (TYMB), SALAAM
Africa Bank (SALM), UNTEL Money Perceiros (UNIM),
BFA App (BFAA), PayJustNow (PJNW), Spot Money
(SPTM).

4.1.1. Adoption of OWASP/CWE convention

Figure 11 presents a justification for the use of
OWASP/CWE top vulnerabilities in the analysis. In it, we
have that 80% of vulnerabilities checked for had above 30%

occurrences. Only two vulnerabilities (of the ten adopted)

turned out not to have significant occurrences. This is an
improvement on study results where conventions like CWE
and OWASP were not adopted as guide for top
vulnerabilities. The use of CWE and OWASP listing helped

the work target statistically critical vulnerabilities.

Figure 11

Percentage of apps per vulnerability

4.1.2. Traditional vs fintech apps

M-payment apps from traditional banks were found to
be generally more secure than their Fintech counterpart.
Only in the Western region did both classes have same
number of vulnerabilities. Specifically, as presented in
Figures 6, 7, 8, 9 and 10, Fintech apps generally failed
assessments on information leakage and cryptography in the

northern, central and eastern regions.

4.1.3 Impact of economic and technological

advantages

We observed a general marginal performance

difference between m-payment apps in high E&T countries

and those in lower E&T. We have 53.76 and 55.32 average
security scores in high E&T apps and lower E&T apps,
respectively. Similar marginality was observed when
comparing lowest security scores. However, in terms of
highest security scores, northern and western regions had
wide but converse margins in performance between high
E&T apps and lower E&T apps. Northern region: the
highest performing app in Egypt, a high E&T country
(CIBW), outperformed the best in Morocco, lower E&T

(POKB) by 10 points. Western region: the highest
performing app in Mali, lower E&T (ATLQ), outperformed
the best in Nigeria, high E&T (GTWL), by 11 points, a
converse position to Egypt vs Morocco.

4.2. Vulnerabilities

4.2.1. CWE-200 (exposure of sensitive
information to unauthorized actor)

We observed this vulnerability to be fifth most

occurring in the entire study, most dominant in m-payment
apps in the northern and southern regions, and almost non-
existent in apps central region. Instances of disclosure of
sensitive information were observed more in Fintech apps

Archives of Advanced Engineering Science Vol. XX Iss. XX yyyy

__

 7

than in m-payment apps from traditional banks. Specifically,
violation of principle of deny by default was observed.

4.2.2. CWE-276/OWASP: M2 (incorrect default

permission/insecure data storage)

Corroborating the study in Bassolé et al [21], insecure
data storage (CWE 276) was the highest occurring
vulnerability, affecting 41 applications (82%) or at least
seven applications from each region as seen in Figure 11.
True Bill (TRBL) app’s wrong implementation may store

sensitive information in plaintext for JSON dump files. This
vulnerability was also discovered in L'BK app, which, on
password reset, saved user details in cleartext. SGC wrong
implementation for TokenRequest led to user credentials
being saved in cleartext. However, CashPlus Mobile Wallet
(CPMW) stores user information temporarily in plaintext by
permitting contents such as names to be copied to the
clipboard. Like CPMW app, GLOP app creates a temporary

file for writing session details such as authentication tokens.
WHFF app exposes the user's IP address in plaintext using
the verbose logging facility on HTTP error encounters. Full
meaning of all mobile payment applications evaluated in this
work are available in Figures 6, 7, 8, 9 and 10. The acronyms
were used in the body of the work for easier read.

4.2.3. CWE749/OWASP: M1 (exposed

dangerous method or function/improper

platform usage)

Exposure of dangerous method or function (CWE 749)
impacted 16 applications, this vulnerability implementation
is closely related to CWE 919, in that it in most times
involves JavaScript user code execution. Applications such
as OME, OMPC, and UBAM apps were heavily affected by
this vulnerability.

4.2.4. CWE-919: weakness in mobile

applications (webview is enabled)

Access control such as Webview database view /
debugging (CWE 919) is a critical security threat and should
never be enabled. Within the study, this vulnerability was
indicated as critical. However, as seen in Figure 11, only 3

applications (6%) were found to have implemented such a
method. PLPY app in the western region of Africa, located
in Nigeria, is the most affected. Static code analysis reveals
multiple implementations of the application, giving access to
remote Webview being enabled for in-app activities and http
error (see Figure 9). In Figure 8, static analysis on SPNN app
reveals WebView debugging is enabled with an error
message, creating an avenue for its user information being

written in clear text. BFFA app also implements this
vulnerable method to manage its web activities. The
vulnerability enables a malicious entity to be able to
remotely view or change the internal set of the application,
presenting such entity with the power to effect memory
modification to exploit the application.

4.2.5. CWE 89/OWASP: M7 (improper SQL

element use (SQL injection)/(client code quality)

Majority of the application when tested for improper
SQL element use / SQL injection were found to utilize user
input in back-end queries or commands. However, by
injecting meta-characters, a malicious entity can execute
malicious code that inadvertently will be interpreted as part
of the command or query, whereby being able to retrieve
arbitrary database records or manipulate the content of the
back-end database. A total of 18 of the 50 applications tested

employed this insecure method, applications such as BFAA,
USCO, and MKPA apps.

4.2.6. CWE-312/OWASP:M9 (cleartext storage
of sensitive information/reverse engineering)

Several applications analyzed were vulnerable to one or
more wrong implementations of processing/ storing user
information with little or no encryption, exposing personal
user information and data critical to transactional integrity
through one of these methods viz: enabling clear text in
manifest to all or specific domains in scope, writing sensitive
data to external storage, or user data logging. Static analysis
by MobSF showed 37 applications from the dataset store
cleartext of sensitive information.

4.2.7. CWE 327/OWASP:M5 (use of broken or

risky cryptographic algorithm/insufficient

cryptography)

The use of a broken or risky cryptographic algorithm or
insufficient cryptography affected 37 of 50 applications
analyzed, making it the second most prevalent vulnerability
found in the work. It affected on average 7 applications from
each region. However, the majority of these implementations

were non-critical to the application functionalities.
Nonetheless, the use of broken or risky cryptographic
algorithms exposes users’ sensitive information to malicious
entities. The applications studied mostly used either of
SHA1 or MD5 to encrypt and decrypt its application's
public, privet key, and signature during communication and
data exchange.

4.2.8. CWE 330 (Use of insufficient random

values)

The use of insufficiently random values was found in
34 applications of the study’s dataset. Due to the
deterministic nature of computers or mobile device,
producing truly random numbers are fundamentally

impossible. Pseudo-random number generators (RNG) are
used to tackle this flaw, however, the quality of numbers
generated varies with the type of RNG algorithm used and
greatly impacts the degree of randomness resilient against
prediction attacks. BKMB app utilizes weak default Java
method for random number generator for generating its
biometric data. GTWL app also implements a vulnerable
default Java method for random number generation for its

Archives of Advanced Engineering Science Vol. XX Iss. XX yyyy

__

 8

transaction requests_id. The application fails to generate a
long random key for input, instead 17 bits of key are
generated randomly, and the remaining bits are padded with
mobile number or date by the mobile operating system.

WHFF app in contrast to the others is affected critically as it
implements an insufficient random number generator paired
with a weak hash algorithm (MD5) for validating
communication handshake.

4.2.9. CWE-649/OWASP: M5 (insertion of

sensitive info into log file)

A total of 18 applications (36%) were vulnerable to
reliance on code obfuscation as seen in Figure 11. 100% of
these applications failed the obfuscation test to protect its
code structure. Using QARK to attempt reverse engineering
each application APK yielded an 80% success rate for
creating a malicious APK file using the vulnerabilities found
within each application, given time and resource. Chen et al.

[28] reportedly employed QARK for vulnerability fixing in
their study. Nonetheless, they reported the tool accuracy
inferior to other tools implemented within the study,
suggesting the QARK exploitation function for creating
vulnerable APK as its significant strength, not for
performing analysis. However, QARK only supports
Android application reverse engineering; the results
obtained for this study exploited APK creation remains

inconclusive if the same results can be obtained for the iOS
application.

4.2.10. CWE-295 (improper certificate
validation)

Improper validation of certificates remains a critical

security loophole, and as shown by different works, many
applications fail to validate SSL/TLS certificates properly.
Applications that implement improper certificate validation
are caused by poorly designed API calls that make it easy to
make validation mistakes. Four (4) applications within the
study were found to have this vulnerability. Due to the
severity of security this poses, it causes a severe threat to
these application's functionality. The simple explanation for

improper certificate validation implementation may present
itself as, during the development phase, developers often
opt-in for more straightforward but less secure solutions
such as accepting any certificate or self-signed Certificate to
speed up the development phase. However, these less secure
solutions are often deployed to application production code,
exposing the application to MITM attacks. Two key issues
that should be addressed to mitigate this practice include:

a. Verifying a certificate comes from a trusted source
such as Certificate Authority (CA) and determining the
endpoint server presents the proper Certificate before
authentication. In the case of ALTCO app, which fails
to conduct valid hostname verification, this results
from failing to follow the recommended Hostname
Verifier method recommended in the official Android
and iOS documentation.

b. Where lack of proper certificate management practices

are implemented at the application layer (code), the

most viable solutions are to enforce SSL/TLS
configuration at the operating system layer and
Certificate pinning at both code and application
manifest. This solution has been adopted as Figure 12

shows 54% of the applications implementing
Certificate pinning to detect or prevent MITM attacks.
Two applications implement a certificate that does not
expire to caution certificate date errors. Fahl et al. [29]
demonstrated this method of securing an application in
the event of trusted root certificate compromise, which
entails employing DVCert pinning to protect against
MITM.

As seen in Figure 13, Public Key Cryptography

Standard #5/#7 (PKCS5/PKCS7) padding with Cipher-
Block-Chaining (CBC) mode enabled is the most frequent
(23%) cryptographic vulnerability within the study,
affecting 11 applications critically. The difference between
the two padding mechanism lies in block size; PKCS5
padding is limited to 8-byte block sizes, and PKCS7 padding

work for block size from 1 to 255 bytes. In the past, this
cryptography algorithm was considered secure. However,
Microsoft Vulnerabilities Report for 2023 captured that this
method is no longer secure to decrypt data encrypted with
the Cipher-Block-Chaining (CBC) mode of symmetric
encryption [30]. It further shows that the method is
vulnerable to constant timing attacks, which rely on the
ability to change the encrypted data and test the result with

the oracle due to timing differences. To mitigate this
vulnerability, all application which implements the
PKCS5/PKCS7 algorithm, such as AFRB app, should
enforce an encrypt-then-sign model, that is, should create a
signature for its data and validate the created signature
before any data exchange or other operation are performed.
Data integrity checks such as Keyed-hash message
authentication code (HMAC), which validate at constant
time comparison before decrypting the data, should be paired

with PKCS5/PKCS7 padding and implemented in check
before the decrypt method.

Figure 12

Distribution of Vulnerability sources

Figure 13

Chart showing occurrence level of the

vulnerabilities

Archives of Advanced Engineering Science Vol. XX Iss. XX yyyy

__

 9

4.2.11. Other vulnerabilities

The use of four or five-digit PINs was the default
authentication implementation for the majority of

applications in the dynamic analysis section of the study.
PINs are weak against brute force attacks, as Chanda [31]
and Guerar et al. [32] suggested that a solid password
provides better security to applications when compared to
PINs. L'BK app was found to save password reset in
plaintext. This does not occur for the original set password.
However, although this is not tested in a dynamic
environment and may be a false positive by MobSF, the code

structure in three different locations suggests differences.
Six applications were found to have wrongly

implemented code, which exposes the application to this
vulnerability. Of the six applications, five were located in the
northern region of the continent, suggesting variation in
factors influencing such attributes.

Permission to read and write sensitive and non-sensitive
application data to external storage such as SD disk remained
high among applications within the study regardless of

numerous efforts from Android, iOS and other study
documentation warning of the critical security implication
this practice leads to. On average, 80% of the study's dataset
applications enabled permission to read and write data for
both operating systems.

 Applications such as UBAM app enable user data
backup to external storage. On further dynamic analysis, the
backup data contains a cleartext of user-sensitive

information. In addition to cleartext being contained in the
backup data, the backup data was recognized by UBAM app
when uploaded to a different device. However, given that
UBAM app performs a device connected to an account

check, this weakness may not affect the application
critically.

Camera access/Screenshot permission was enabled for
70% of the applications from different regions except for the

southern region, which had all its applications enable
permission for camera access/screenshot. This permission
evades the application user privacy as it can capture
activities by taking screenshots of transactions or take
photography using the primary or secondary camera. Similar
results for input harvest were obtained in Chen et al. [28]. Of
the 50 applications analyzed, only the GTWL app
application was protected from screenshots of critical

screens such as transaction history and account balance. This
vulnerability is primarily caused by developers failing to
implement anti-screenshot harvest code, such as setting the
isScreenCaptureEnabled flag to disable. Only five (10%) of
the applications enabled permission for SMS access,
agreeing with findings in Chen et al. [6], and a significant
improvement on what it was in Castle et al. [19], where SMS
spoofing was found to be the most significant threat.

4.3 Vulnerability sources

4.3.1. Code

Vulnerabilities arising from wrong implementation
code practice and code quality were the highest source of
security vulnerabilities, affecting 27 applications (54%)

from the study dataset (see Figure 13). Wrong
implementation of PKCS5/PKCS7 with CBC mode enabled
without data integrity check code affected 11 applications,
critically rendering these applications vulnerable to Oracle
padding attack; implementing an insecure random number
generator critically affected two applications due to poor
code implementation.

4.3.2. Manifests

Vulnerabilities resulting from the wrong configuration
of the manifest file were the second most notable cause of

security vulnerability, affecting nine applications (18%), as
seen in Figure 13. Of the nine applications affected, seven
applications enabled clear text traffic, while two applications
enabled application data backup in their manifest. As Chen
et al. [33] concluded, such practice creates room for user
information leakage. The insecure configuration of network
protocol critically affected eight applications; seven had its
base configuration insecurely configured to permit clear text

traffic to all domains defined in its application scope.
Sivakorn et al. [34] showed in their study that implementing
such an insecure domain configuration for cleartext leads to
sensitive user information being exposed to malicious
entities, even with HTTPS protocols are enabled.

4.3.3. Network

Proper Network configuration strengthened the security
of five applications. These applications enabled based
network configuration files to disallow clear text traffic to all
domains, forcing all communication to be encrypted

appropriately and transmitted using SSL.

Archives of Advanced Engineering Science Vol. XX Iss. XX yyyy

__

 10

4.3.4. Trackers

Accessing Coarse Location (GPS) and Fine Location
(Network location) was enabled for 60% of the applications.
However, this privacy vulnerability was more significant in
the western region, affecting 90% of applications for fine

location and 80% for coarse location. These applications can
track the user's location. Contrary to popular belief that iOS
manages user tracking permission better than Android, the
study found that 100% of applications that enabled Android
tracking permission did the same for iOS. Nevertheless, iOS
enabled this permission when needed, not at install time.
Moreover, iOS indicated whenever an application tracking
was in use. Therefore, iOS did notify its user's an application

was tracking its location. Kollnig et al. [35] and Yin [36] in
their studies obtained similar results, concluding that
although users' perceived trust for privacy within the iOS
ecosystem was high, in reality, applications in the Android
ecosystem performed similar location data requests as those
for the iOS.

4.3.5. Certificates

Poor code quality was the leading cause of critical
security concerns, properly implemented source code was
also determined to be the most significant source of security

strength for most applications. Twenty-seven (27)
applications of the study dataset implemented SSL
certificate pinning through proper coding to detect MITM
attacks, while two applications implemented code to tackle
anti-tap jacking attacks.

5. Conclusion

Insecure and vulnerable mobile payment application in
third-world countries has contributed to the slow adoption of
the mobile payment application method. The increased
perceived risk hinder the rapid growth in different

developing countries. However, with the fast-paced growth
of smartphones and the widespread of Fintech organizations,
individuals in these regions are embracing this payment
method for daily payment of goods and services. Thus,
creating the need to analyze how secure the applications used
daily for different transactions arises, hence the need for
vulnerability analysis embarked upon by the study.

Case study applications, countries, and tools were

carefully selected using a sorting algorithm to produce the
best possible representatives for each case respectively. Fifty
applications were selected from 5 African regions, choosing
two countries from each region and five payment
applications from each country. Furthermore, the study
taxonomy was carefully selected to best present top
vulnerabilities specific to mobile payment applications.
These were categorized into information/storage leakage,

access control, cryptography, and certificate vulnerabilities,
with a couple of specific vulnerabilities in each category.
Using top ten vulnerabilities on CWE and OWASP listing
proved significant, as a vast majority of vulnerabilities
checked for were statistically critical.

The study uses a hybrid vulnerability analysis method,
employing static analysis for source code, meta-file, and
privacy analysis. Dynamic analysis was used for application
behaviour, connections, and authentication analysis. Tools

used for static analysis included MobSF and AUSERA,
while MobSF was used primarily for dynamic analysis.
QARK was used for testing applications which showed
weakness in proper code obfuscation during static analysis.

A vast majority of mobile payment application had
average overall performance on the assessments conducted.

Recommendations

Failure to properly analyze the weaknesses and threat
channels to an application will negatively impact the revenue,

trust, integrity, and reliance of any financial payment
institute. Therefore, application packing protection methods
for payment applications are necessary. Financial entities
should implement protection file packages such as
APKProtect or Bangcle, as this increases the exploitation
difficulty. Secondly, integration of third-party libraries

remains the easiest way of introducing weaknesses for one’
s application; a careful selection process should be
implemented when choosing third-party libraries to manage
risk from libraries.

Funding Support

This work is sponsored by 2019 Project of Humanities
and Social Sciences of Henan Provincial Department of
Education: “Research on Translation for Overseas Publicity

from the Perspective of the Persuasion Theory in Western
Rhetoric” (2019-ZZJH-643); 2019 Teaching Reform Project
of School of Foreign Studies, North China University of
Water Resources and Electric Power: “The Reforming
Design and Practice of Mixed Teaching of Online and
Offline Course for English Rhetoric”; 2019 Teaching
Reform Project of Henan Province: A Research on the
“Golden Lesson” of College English from the Perspective of

Telling Chinese Stories (2019SJGLX284).

Ethical Statement

This study does not contain any studies with human or
animal subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of
interest to this work.

Data Availability Statement

Data available on request from the corresponding
author upon reasonable request.

References

Archives of Advanced Engineering Science Vol. XX Iss. XX yyyy

__

 11

[1] Bech, M. L., Faruqui, U. and Shirakami, T. (2020).
Payments without borders. International Journal of
Computer Science and Information Security, 14(7):77-
78.

[2] GSMA (2023). State of the Industry Report on Mobile
Money 2023. Available at:
https://www.gsma.com/sotir/wp-ontent/uploads/2023/
04/GSMA-State_of_the_Industry-2023_Exce-
summary-ENG.pdf. Retrieved 23 March, 2024).

[3] Mishra, V., Walsh, I., & Srivastava, A. (2022).
Merchants’ adoption of mobile payment in emerging
economies: the case of unorganised retailers in
India. European Journal of Information
Systems, 31(1):74-90.

[4] Dinh, V. S., Nguyen, H. V. and Nguyen, T. N. (2018).
Cash or cashless? promoting consumers’ adoption of

mobile payments in an emerging economy. Strategic
Direction, 34(1):1–4.

[5] Cham, T. H., Cheah, J. H., Cheng, B. L. and Lim, X. J.
(2021). I Am too old for this! barriers contributing to
the non-adoption of mobile payment. International
Journal of Bank Marketing, 40(5):1017–1050.

[6] Chen, S., Zhang, Y., Fan, L., Li, J. and Liu, Y. (2023).
Automated security vulnerability detection for android
apps. Proceedings of the 37th IEEE/ACM international
conference on automated software engineering, China,
from 1st - 3rd June, 2023: 1–5.

[7] Gao, L. and Waechter, K. A. (2017). Examining the role

of initial trust in user adoption of mobile payment
services: An empirical investigation. Information
Systems Frontiers, 19(3):525–548.

[8] Khan, M. R., Rana, S. and Hosen, M. I. (2022). Impact
of Trustworthiness on the Usage of M-banking Apps: A
Study on Bangladeshi Consumers. Business
Perspectives and Research, 10(2):234–250.

[9] O’kello, G. and Munene, J. C. (2021). Analyzing the
relationship between mobile money adoption and
usage and financial inclusion of msmes in developing
countries: mediating role of cultural norms in Uganda.
Journal of African Business, 22(1):1–20.

[10] Sharma, S. (2023). A Study of Vulnerability Scanners

for Detecting SQL Injection and XSS Attack in
Websites. In Artificial Intelligence and
Applications, 1(4), 214-220.

[11] Ma, L., Su, X., Yu, Y., Wang, C., Lin, K. &
Lin, M. (2018). What drives the use of m-
payment? an empirical study about alipay and
wechat payment, in 2018 15th International

Conference on Service Systems and Service
Management (ICSSSM), Hangzhou, China, 1–
6.

[12] Chang, W., Chen, L. M. & Hashimoto, T. (2021).
Cashless Japan: Unlocking influential risk on
mobile payment service, Information Systems
Frontiers, 1–14.

[13] Nguyen, L., Gallery, G. & Newton, C. (2019).
The joint influence of financial risk perception and
risk tolerance on individual investment decision-
making. Accounting & Finance, 59, 747–771.

[14] Asuquo, P., Usoh, M., Stephen, B., Chikezie Samuel,

A., & Awodeyi, A. (2022). Cyber-Physical Systems
Attacks and Countermeasures. In Intelligent Cyber-
Physical Systems Security for Industry 4.0, 119-145.
Chapman and Hall/CRC.

[15] Lien, J., Hughes, L., Kina, J. and Villasenor, J. (2015).
Mobile money solutions for a smartphone-dominated
world. Journal of Payments Strategy and Systems,

9(3):341–350.

[16] Abdullah, H., and Zeebaree, S. R. (2021). Android
mobile applications vulnerabilities and prevention
methods: A review. In 2021 2nd Information
Technology To Enhance e-learning and Other
Application (IT-ELA), 148-153.

[17] Shahriar, H., Zhang, C., Talukder, M. A., and Islam, S.
(2021). Mobile application security using static and
dynamic analysis. Machine Intelligence and Big Data
Analytics for Cybersecurity Applications, 443-459.

[18] Bojjagani, S., & Sastry, V. N. (2017). VAPTAi: a threat
model for vulnerability assessment and penetration

testing of android and iOS mobile banking apps.
In 2017 IEEE 3rd International Conference on
Collaboration and Internet Computing (CIC): 77-86.
IEEE.

[19] Castle, S., Pervaiz, F., Weld, G., Roesner, F. and
Anderson, R. (2016). Let’s talk money: evaluating the
security challenges of mobile money in the developing

world. Proceedings of the 7th annual symposium on
computing for development, Tampa, Florida, USA,
from 30th May - 4th June, 2016, 1–10.

[20] Zhan, X., Fan, L., Chen, S., Wu, F., Liu, T., Luo, X. and
Liu, Y. (2021). Atvhunter: Reliable version detection of
third-party libraries for vulnerability identification in
android applications. In 2021 IEEE/ACM 43rd

International Conference on Software Engineering
(ICSE):1695–1707.

[21] Bassolé, D., Koala, G., Traoré, Y., & Sié, O. (2020).
Vulnerability analysis in mobile banking and payment
applications on android in African Countries.
In Innovations and Interdisciplinary Solutions for
Underserved Areas: 4th EAI International

Conference, InterSol 2020, Nairobi, Kenya, 164-175.
Springer International Publishing.

[22] Bech, M. L. and Hancock, J. (2020). Innovations in

Payments. Journal of Computer and Information,
7(6):11-25.

[23] Yang, T., Yang, Y., Qian, K., Lo, D. C.-T., Qian, Y.
and Tao, L. (2015). Automated detection and analysis
for Android ransomware. In 17th international
conference on high performance computing and
communications; 7th international symposium on

cyberspace safety and security, and 12th international
conference on embedded software and systems,

1338–1343.

[24] Reaves, B., Bowers, J., Scaife, N., Bates, A., Bhartiya,
A., Traynor, P., & Butler, K. R. (2017). Mo (bile)
money, mo(bile) problems: Analysis of branchless

banking applications. ACM Transactions on Privacy
and Security (TOPS), 20(3), 1-31.

https://www.gsma.com/sotir/wp-ontent/uploads/2023/

Archives of Advanced Engineering Science Vol. XX Iss. XX yyyy

__

 12

[25] Huebner, J., Schmid, C., Bouguerra, M., & Ilic, A.
(2019). FinMARS: A mobile app rating scale for
finance apps. In Proceedings of the 9th International
Conference on Information Communication and

Management, 6-11.

[26] OWASP (2023a). OWASP API Security Top 10 2023
has been released | OWASP Foundation. OWASP.
Available at: https://owasp.org/blog/2023/07/03/
owasp-api-top10-2023.html. Retrieved 15 July, 2023.

[27] OWASP (2023b). OWASP Top Ten | OWASP
Foundation. OWASP Top Ten.

https://owasp.org/www-project-top-ten. Retrieved 15
July, 2023).

[28] Chen, S., Su, T., Fan, L., Meng, G., Xue, M., Liu, Y.
and Xu, L. (2018). Are mobile banking apps secure?
What can be improved? Proceedings of the 26th ACM
joint meeting on European software engineering
conference and symposium on the foundations of
software engineering, China, from 13th - 15th August,

2018: 797–802.

[29] Fahl, S., Harbach, M., Perl, H., Koetter, M. and Smith,
M. (2013). Rethinking SSL development in an appified
world. In Proceedings of the 2013 ACM SIGSAC
conference on computer and communications security,
39–50.

[30] Microsoft (2023). Microsoft Vulnerabilities Report

2023. Available at:
https://www.beyondtrust.com/resources/
whitepapers/microsoft-vulnerability-report. Retrieved
12 August, 2023.

[31] Chanda, K. (2016). Password security: an analysis of
password strengths and vulnerabilities. International
Journal of Computer Network and Information

Security, 8(7), 23–30.
[32] Guerar, M., Migliardi, M., Palmieri, F., Verderame, L.

and Merlo, A. (2020). Securing PIN‐based
authentication in smartwatches with just two gestures.
Concurrency and Computation: Practice and
Experience, 32(18), 46-56.

[33] Chen, S., Fan, L., Meng, G., Su, T., Xue, M., Xue, Y.,
Liu, Y. and Xu, L. (2020). An empirical assessment of

security risks of global Android banking apps.
Proceedings of the ACM/IEEE 42nd international
conference on software engineering, China, from 12th -
15th May, 2020, 1310–1322.

[34] Sivakorn, S., Keromytis, A. D. and Polakis, J. (2016).
That’s the way the cookie crumbles: evaluating https
enforcing mechanisms. Proceedings of the 2016 ACM

on Workshop on Privacy in the Electronic Society,
Malaysia, from 6th - 7th November, 2016, 71–81.

[35] Kollnig, K., Shuba, A., Binns, R., Van Kleek, M. and
Shadbolt, N. (2022). Are iphones really better for
privacy? comparative study of iOS and Android apps.
Proceedings on Privacy Enhancing Technologies,

22(2):6–24.

[36] Yin, Z. (2017). Dynamic analysis methods of ios
application security. DEStech Transactions on
Computer Science and Engineering, 19(4):372-385.

How to Cite: Archibong, E. E., Stephen, B. U., & Asuquo,
P. (2023). Analysis of Cybersecurity Vulnerabilities in
Mobile Payment Applications. Archives of Advanced

Engineering Science.
https://doi.org/10.47852/bonviewAAES42022595

https://owasp.org/blog/2023/07/03/
https://www.beyondtrust.com/resources/%20whitepapers/microsoft-vulnerability-report
https://www.beyondtrust.com/resources/%20whitepapers/microsoft-vulnerability-report

	1. Introduction
	2. Literature Review
	3. Research Methodology
	3.1. System model
	3.2. Study region selection
	3.3. App selection process
	3.4. Vulnerability analyses
	3.4.1. Study taxonomy
	3.4.2. Experiment setup

	4. Results
	4.1. Performance evaluation
	4.1.1. Adoption of OWASP/CWE convention
	4.1.2. Traditional vs fintech apps
	4.1.3 Impact of economic and technological advantages

	4.2. Vulnerabilities
	4.2.11. Other vulnerabilities
	4.3 Vulnerability sources
	Recommendations
	Funding Support
	Ethical Statement
	Conflicts of Interest
	Data Availability Statement
	References

